Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in the Microbiological Properties of the Ozone Treated Saskatoon Berry Fruit
2.2. Changes in pH and Acidity in the Saskatoon Berry during Ozone Exposure
2.3. Influence of the Ozonation Process on the Sugar Profile of the Fruit of the Saskatoon Berry
2.4. The Content of Bioactive Compounds in the Fruit of Saskatoon Berry
3. Materials and Methods
3.1. Material
3.2. Treatment of Fruits by Ozone
3.3. Microbiological Analysis of the Saskatoon Berry
3.4. PH and Acidity Determination
3.5. Determination of the Sugars Content
3.6. Determination of Bioactive Components
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mitra, P.; Meda, V.; Green, R. Effect of drying techniques on the retention of antioxidant activities of Saskatoon berries. Int. J. Food Stud. 2013, 2, 224–237. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Pluta, S. The composition of bioactive compounds and antioxidant activity of Saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. Food Chem. 2017, 235, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, F.; Hui, A.L.; Shen, G.X. Bioactive Components and Health Benefits of Saskatoon Berry. J. Diabetes Res. 2020, 2020, 3901636. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.; Ryland, D.; Isaak, C.K.; Prashar, S.; Siow, Y.L.; Taylor, C.G.; Aliani, M. Effect of Vitamin D3 Fortification and Saskatoon Berry Syrup Addition on the Flavor Profile, Acceptability and Antioxidant Properties of Rooibos Tea (Aspalathus Linearis). J. Food Sci. 2017, 82, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, S.A.; Mitra, P.; Meda, V. Color, mechanical and microstructural properties of vacuum assisted microwave dried Saskatoon berries. Int. J. Food Prop. 2014, 17, 2142–2156. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Seliga, Ł.; Pluta, S. Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules 2017, 22, 853. [Google Scholar] [CrossRef]
- Lachowicz, S.; Seliga, Ł.; Pluta, S. Distribution of phytochemicals and antioxidative potency in fruit peel, flesh, and seeds of Saskatoon berry. Food Chem. 2020, 305, 123430. [Google Scholar] [CrossRef]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlček, J.; Baron, M. Flavonoid Profile of Saskatoon Berries (Amelanchier alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar] [CrossRef]
- Moyo, M.; Aremu, A.O.; Plačková, L.; Plíhalová, L.; Pĕnčík, A.; Novák, O.; Holub, J.; Doležal, K.; Van Staden, J. Deciphering the growth pathern and phytohormonal content in Saskatoon berry (Amelanchier alnifolia Nutt.) in response to in vitro cytokinin application. New Biotechnol. 2018, 42, 85–94. [Google Scholar] [CrossRef]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective Role of Dietary Berries in Cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Khafipour, E.; Sepehri, S.; Huang, F.; Beta, T.; Shen, G.X. Impact of Saskatoon berry powder on insulin resistance and relationship with intestinal microbiota in high fat-high sucrose diet-induced obese mice. J. Nutr. Biochem. 2019, 69, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef]
- Aslam, R.; Alam, M.S.; Saeed, P.A. Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. Food Eng. Rev. 2020, 12, 48–67. [Google Scholar] [CrossRef]
- Carletti, L.; Botondi, R.; Moscetti, R.; Stella, E.; Monarca, D.; Cecchini, M.; Massantini, R. Use of Ozone in Sanitation and Storage of Fresh Fruits and Vegetables. J. Food Agric. Environ. 2013, 11, 585–589. [Google Scholar]
- Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Ummat, V.; Singh, A.K.; Sidhu, G.K. Effect of Aqueous Ozone on Quality and Shelf Life of Shredded Green Bell Pepper (Capsicum Annuum). J. Food Process. Preserv. 2018, 42, e13718. [Google Scholar] [CrossRef]
- Nur Aida, M.P.; Hairiyah, M.; Wan Mohd Reza, W.H.; Nur Ilida, M. Effect of Ozonated Water Wash on Quality of Fresh-Cut “Josapine” Pineapple During Storage. Acta Hortic. 2011, 902, 487–492. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Ali, A.; Forney, C.F. Effects of Ozone on Major Antioxidants and Microbial Populations of Fresh-Cut Papaya. Postharvest Biol. Technol. 2014, 89, 56–58. [Google Scholar] [CrossRef]
- Zapałowska, A.; Matłok, N.; Zardzewiały, M.; Piechowiak, T.; Balawejder, M. Effect of ozone treatment on the quality of sea buckhorn (Hippophae rhamnoides L.). Plants 2021, 10, 847. [Google Scholar] [CrossRef]
- Piechowiak, T.; Antos, P.; Józefczyk, R.; Kosowski, P.; Skrobacz, K.; Balawejder, M. Impact of Ozonation Process on the Microbiological Contamination and Antioxidant Capacity of Highbush Blueberry (Vaccinum corymbosum L.) Fruit during Cold Storage. Ozone Sci. Eng. J. Int. Ozone Assoc. 2019, 41, 376–385. [Google Scholar] [CrossRef]
- Ayranci, U.G.; Ozunlu, O.; Ergezer, H.; Karaca, H. Effects of Ozone Treatment on Microbiological Quality and Physicochemical Properties of Turkey Breast Meat. Ozone Sci. Eng. J. Int. Ozone Assoc. 2020, 42, 95–103. [Google Scholar] [CrossRef]
- Pretell-Vásquez, C.; Márquez-Villacorta, L.; Siche, R.; Hayayumi-Valdivia, M. Optimization of ozone concentration and storage time in green asparagus (Asparagus officinalis L.) using response surface methodology. Vitae 2022, 28. [Google Scholar] [CrossRef]
- Zardzewiały, M.; Matlok, N.; Piechowiak, T.; Gorzelany, J.; Balawejder, M. Ozone Treatment as a Process of Quality Improvement Method of Rhubarb (Rheum rhaponticum L.) Petioles during Storage. Appl. Sci. 2020, 10, 8282. [Google Scholar] [CrossRef]
- Aguayo, E.; Escalona, V.H.; Ertes, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biol. Technol. 2006, 39, 169–177. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants 2020, 24, 1637. [Google Scholar] [CrossRef]
- Horvitz, S.; Cantalejo, M.J. Effects of ozone and chlorine postharvest treatments on quality of fresh-cut red bell peppers. Int. J. Food Sci. Technol. 2012, 47, 1935–1943. [Google Scholar] [CrossRef]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Sochar, J.; Kizek, R.; Humpolíček, P.; Balík, J. Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.). Host. Sci. 2012, 39, 123–128. [Google Scholar] [CrossRef]
- Juríková, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic—A Comparative Study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Wiśniewski, R.; Seliga, Ł.; Pluta, S. Chemical parameters profile analysis by liquid chromatography and antioxidative activity of the Saskatoon berry fruits and their components. Eur. Food Res. Technol. 2019, 245, 2007–2015. [Google Scholar] [CrossRef]
- Bieniek, A.; Markuszewski, B.; Kopytowski, J.; Pluta, S.; Markowski, J. Yielding and fruit quality of several cultivars and breeding clones of Amelanchier alnifolia grown in North-eastern Poland. Zemdirb. -Agric. 2019, 106, 351–358. [Google Scholar] [CrossRef]
- Ma, X.; Yang, W.; Kallio, H.; Yang, B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit. Rev. Food Sci. Nutr. 2021, 62, 3798–3816. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Podsędek, A.; Glinka, R. Antioxidant potential and polyphenolic compounds of glycolic extracts from Hippophae rhamnoides L. Post. Fitoter. 2016, 17, 33–38. (In Polish) [Google Scholar]
- Mazza, G. Compositional and Functional Properties of Saskatoon Berry and Blueberry. Int. J. Fruit Sci. 2005, 5, 101–120. [Google Scholar] [CrossRef]
- Lavola, A.; Karjalainen, R.; Julkunen-Tiitto, R. Bioactive polyphenols in leaves, stems, and berries of Saskatoon (Amelanchier alnifolia Nutt) cultivars. J Agric. Food Chem. 2012, 60, 427–433. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J. Saskatoon—A valuable raw material for processing. Ferment. Fruit Veg. Ind. 2016, 6, 25–27. (In Polish) [Google Scholar]
- Mazza, G.; Cottrell, T. Carotenoids and cyanogenic glucosides in Saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Compos. Anal. 2008, 21, 249–254. [Google Scholar] [CrossRef]
- Tian, Y.; Lümatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Ribeiro de Souza, D.; Willems, J.L.; Low, N.H. Phenolic composition and antioxidant activities of Saskatoon berry fruit and pomace. Food Chem. 2019, 290, 168–177. [Google Scholar] [CrossRef]
- Gorzelany, J.; Michałowska, D.; Pluta, S.; Kapusta, I.; Belcar, J. Effect of Ozone-Treated or Untreated Saskatoon Fruits (Amelanchier alnifolia Nutt.) Applied as an Additive on the Quality and Antioxidant Activity of Fruit Beers. Molecules 2022, 27, 1976. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Miron, A.; Trifan, A.; Luca, V.S.; Costache, I.I. The Cardiovascular Effects of Cocoa Polyphenols—An Overview. Diseases 2016, 4, 39. [Google Scholar] [CrossRef]
- PN-EN-12147:2000; Fruit and Vegetable Juices—Determination of Titrable Acidity. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-A-04019:1998; Food Products—Determination of Vitamin C content. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef] [PubMed]
Fruit Cultivar | Ozone Exposure Time [min] | The Date of the Test | |||
---|---|---|---|---|---|
1 Day after Ozonation [log cfu g−1] | 4 Days after Ozonation [log cfu g−1] | 7 Days after Ozonation [log cfu g−1] | 10 Days after Ozonation [log cfu g−1] | ||
0 | 6.32 aA | 6.41bA | 6.51 bB | 6.56 bB | |
‘Honeywood’ | 15 | 6.20 aA | 6.28 aA | 6.04 aA | 6.32 aA |
30 | 6.18 aA | 6.15 aA | 6.01 aA | 6.20 aA | |
0 | 6.51 bB | 6.62 cC | 6.65 cC | 6.71 cC | |
‘Thiessen’ | 15 | 6.48 bB | 6.45 aB | 6.34 aA | 6.41 aA |
30 | 6.46 bB | 6.34 bB | 6.20 aA | 6.29 aA | |
0 | 6.34 aA | 6.36 aA | 6.46 bA | 6.54 bB | |
‘Amela’ | 15 | 6.32 aA | 6.31 bA | 6.23 aA | 6.26 aA |
30 | 6.23 aA | 6.15 aA | 6.08 aA | 6.18 aA | |
0 | 6.40 aB | 6.43 bB | 6.49 bC | 6.54 bC | |
Clone type H | 15 | 6.34 aB | 6.32 aB | 6.26 aA | 6.28 aA |
30 | 6.28 aA | 6.15 aA | 6.08 aA | 6.15 aA | |
0 | 6.45 aA | 6.52 bA | 6.5 cB | 6.65 cC | |
Clone no 5/6 | 15 | 6.42 aA | 6.38 bA | 6.32 aA | 6.38 aA |
30 | 6.41 aA | 6.34 bA | 6.28 aA | 6.34 aA | |
0 | 6.18 aA | 6.34 bB | 6.43 bB | 6.52 bC | |
Clone type N | 15 | 6.17 aA | 6.15 aA | 6.08 aA | 6.23 aA |
30 | 6.16 aA | 6.11 aA | 6.04 aA | 6.15 aA |
Fruit Cultivar | Ozone Exposure Time [min] | The Date of the Test | |||
---|---|---|---|---|---|
1 Day after Ozonation [log cfu g−1] | 4 Days after Ozonation [log cfu g−1] | 7 Days after Ozonation [log cfu g−1] | 10 Days after Ozonation [log cfu g−1] | ||
0 | 3.93 cC | 3.94 cC | 4.02 cC | 4.15 bC | |
‘Honeywood’ | 15 | 3.63 aA | 3.61 aA | 3.57 aA | 3.61 aA |
30 | 3.61 aA | 3.50 aA | 3.36 aA | 3.38 aA | |
0 | 3.96 cC | 4.03 cC | 4.11 cC | 4.22 cC | |
‘Thiessen’ | 15 | 3.71 aA | 3.70 aA | 3.69 aA | 3.72 aA |
30 | 3.72 aA | 3.72 aA | 3.56 aA | 3.71 aA | |
0 | 3.88 bB | 3.90 bB | 3.96 bB | 4.02 bC | |
‘Amela’ | 15 | 3.51 aA | 3.49 aA | 3.48 aA | 3.51 aA |
30 | 3.45 aA | 3.46 aA | 3.45 aA | 3.46 aA | |
0 | 3.84 bB | 3.94 bB | 4.01 bB | 4.06 bB | |
Clone type H | 15 | 3.54 aA | 3.51 aA | 3.49 aA | 3.52 aA |
30 | 3.53 aA | 3.52 aA | 3.54 aA | 3.51 aA | |
0 | 3.81 bB | 3.83 bB | 3.85 bB | 3.95 bB | |
Clone no 5/6 | 15 | 3.49 aA | 3.51 aA | 3.4 8aA | 3.54 aA |
30 | 3.48 aA | 3.52 aA | 3.47 aA | 3.51 aA | |
0 | 3.97 cC | 3.96 cC | 4.01 cC | 4.04 cC | |
Clone type N | 15 | 3.62 aA | 3.63 aA | 3.60 aA | 3.62 aA |
30 | 3.60 aA | 3.53 aA | 3.59 aA | 3.60 aA |
Fruit Cultivar | Ozone Exposure Time [min] | Glucose [g·100 g−1 d. w.] | Fructose [g·100 g−1 d. w.] | Sorbitol [g·100 g−1 d. w.] | Σ Sugar |
---|---|---|---|---|---|
0 | 3.02 fg ± 0.11 | 1.63 cd ± 0.15 | 1.39 gh ± 0.10 | 6.21 h ± 0.09 | |
‘Honeywood’ | 15 | 2.72 de ± 0.10 | 1.44 abc ± 0.18 | 1.28 fg ± 0.11 | 5.45 fg ± 0.08 |
30 | 2.21 bc ± 0.14 | 1.20 a ± 0.15 | 1.01 cde ± 0.20 | 4.43 c ± 0.15 | |
0 | 2.17 b ± 0.11 | 1.54 bc ± 0.15 | 0.64 a ± 0.14 | 4.34 c ± 0.17 | |
‘Thiessen’ | 15 | 2.56 de ± 0.21 | 1.70 cd ± 0.10 | 0.86 bcd ± 0.13 | 5.11 e ± 0.10 |
30 | 2.32 c ± 0.13 | 1.52 bc ± 0.19 | 0.80 ab ± 0.10 | 4.65 d ± 0.05 | |
0 | 3.30 hi ± 0.08 | 1.70 cd ± 0.07 | 1.60 hi ± 0.13 | 6.60 i ± 0.08 | |
‘Amela’ | 15 | 3.20 gh ± 0.18 | 1.62 cd ± 0.14 | 1.58 hi ± 0.11 | 6.40 hi ± 0.15 |
30 | 3.27 hi ± 0.19 | 1.61 cd ± 0.13 | 1.66 i ± 0.08 | 6.53 i ± 0.14 | |
0 | 1.90 a ± 0.18 | 1.20 a ± 0.15 | 0.70 a ± 0.22 | 3.80 a ± 0.15 | |
Clone type H | 15 | 2.24 bc ± 0.15 | 1.41 a ± 0.19 | 0.83 abc ± 0.13 | 4.47 cd ± 0.12 |
30 | 2.02 ab ± 0.13 | 1.25 a ± 0.05 | 0.77 ab ± 0.11 | 4.04 b ± 0.17 | |
0 | 2.80 ef ± 0.13 | 1.81 de ± 0.18 | 0.98 bcde ± 0.08 | 5.60 g ± 0.12 | |
Clone no 5/6 | 15 | 2.83 ef ± 0.17 | 1.91 def ± 0.10 | 0.92 bcd ± 0.08 | 5.07 e ± 0.11 |
30 | 3.14 gh ± 0.08 | 2.03 ef ± 0.16 | 1.11 efg ± 0.11 | 6.28 h ± 0.11 | |
0 | 3.45 i ± 0.15 | 2.14 f ± 0.06 | 1.31 g ± 0.21 | 6.90 j ± 0.12 | |
Clone type N | 15 | 2.33 c ± 0.07 | 1.34 ab ± 0.24 | 0.99 cde ± 0.10 | 4.66 d ± 0.06 |
30 | 2.64 de ± 0.04 | 1.56 c ± 0.15 | 1.07 def ± 0.14 | 5.27 ef ± 0.14 |
Fruit Cultivar | Ozone Exposure Time [min] | Antioxidant Activity | |
---|---|---|---|
DPPH [mM TE·100g−1 d.w.] | ABTS+ [mM TE·100g−1 d.w.] | ||
0 | 17.38 ab ± 0.10 | 31.20 j ± 0.09 | |
‘Honeywood’ | 15 | 17.59 b ± 0.26 | 31.73 k ± 0.26 |
30 | 17.21 a ± 0.12 | 32.06 l ± 0.28 | |
0 | 20.97 fg ± 0.13 | 30.06 h ± 0.22 | |
‘Thiessen’ | 15 | 21.07 fg ± 0.16 | 29.97 h ± 0.15 |
30 | 21.16 g ± 0.16 | 31.13 j ± 0.09 | |
0 | 21.04 fg ± 0.04 | 32.16 l ± 0.16 | |
‘Amela’ | 15 | 21.16 g ± 0.06 | 31.07 j ± 0.07 |
30 | 20.88 fg ± 0.13 | 32.53 m ± 0.03 | |
0 | 18.99 cd ± 0.26 | 25.18 f ± 0.18 | |
Clone type H | 15 | 19.44 de ± 0.11 | 24.75 e ± 0.10 |
30 | 19.67 e ± 0.09 | 22.67 d ± 0.16 | |
0 | 20.88 fg ± 0.23 | 21.33 b ± 0.24 | |
Clone no 5/6 | 15 | 21.14 g ± 0.14 | 21.87 c ± 0.13 |
30 | 21.42 h ± 0.04 | 20.88 a ± 0.13 | |
0 | 18.95 c ± 0.05 | 29.33 g ± 0.16 | |
Clone type N | 15 | 19.21 d ± 0.12 | 29.96 h ± 0.04 |
30 | 19.50 e ± 0.30 | 30.43 i ± 0.10 |
Compound | Rt | λmax | [M-H] m/z | ‘Honeywood’ | ‘Thiessen’ | ‘Amela’ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[mg·100 g−1 d.w.] | (min) | nm | MS | MS/MS | 0 | 15 | 30 | 0 | 15 | 30 | 0 | 15 | 30 | |
Anthocyanins | ||||||||||||||
1 | Cyanidin 3-O-galactoside | 2.52 | 279, 515 | 449+ | 287 | 6119.91 g ± 1.12 | 736.76 ab ± 0.98 | 1447.30 b ± 2.13 | 6788.96 h ± 1.87 | 1630.43 b ± 1.01 | 2032.50 c ± 0.89 | 7014.80 h ± 1.12 | 6832.15 h ± 2.74 | 1869.40 bc ± 1.74 |
2 | Cyanidin 3-O-glucoside | 2.76 | 279, 514 | 449+ | 287 | 3485.43 i ± 2.55 | 259.63 b ± 1.76 | 620.68 cd ± 2.01 | 3942.85 j ± 3.16 | 754.76 de ± 1.22 | 926.08 ef ± 2.65 | 1031.46 f ± 3.41 | 997.11 f ± 2.98 | 245.17 ab ± 1.75 |
3 | Cyanidin 3-O-arabinoside | 2.99 | 279, 515 | 419+ | 287 | 1388.30 i ± 3.02 | 106.32 a ± 2.37 | 264.89 bc ± 1.22 | 1664.07 j ± 1.54 | 300.72 c ± 1.76 | 372.98 c ± 2.39 | 862.04 g ± 2.13 | 726.57 f ± 2.38 | 162.84 ab ± 1.49 |
4 | Cyanidin 3-O-xyloside | 3.36 | 281, 517 | 419+ | 287 | 1062.72 g ± 2.51 | 75.41 a ± 2.73 | 180.59 c ± 2.69 | 1245.41 h ± 2.90 | 207.04 cd ± 1.65 | 264.46 cd ± 2.08 | 503.94 e ± 1.78 | 433.15 e ± 2.86 | 101.74 b ± 1.64 |
Other phenolics | ||||||||||||||
5 | Neochlorogenic acid | 2.24 | 288sh, 324 | 353- | 191 | 421.75 h ± 1.99 | 20.15 a ± 1.33 | 43.83 ab ± 1.84 | 372.00 g ± 3.05 | 38.13 ab ± 3.00 | 64.79 b ± 2.68 | 360.83 g ± 1.65 | 347.93 g ± 2.66 | 56.26 abc ± 2.44 |
6 | Chlorogenic acid | 2.85 | 288sh, 324 | 353- | 191 | 2377.23 f± | 127.80 a ± 1.22 | 292.13 ab ± 1.49 | 2370.38 f ± 1.69 | 266.57 ab ± 1.41 | 451.51 bc ± 1.51 | 1948.70 e ± 1.62 | 1799.27 e ± 1.72 | 295.07ab ± 1.49 |
7 | Procyanidin dimer B-type | 3.01 | 279 | 577- | 289 | 563.80 g ± 1.56 | 47.59 a ± 2.56 | 101.84 b ± 1.22 | 545.94 g ± 2.16 | 113.21 b ± 1.35 | 132.78 b ± 2.55 | 628.94 g ± 1.55 | 592.16 g ± 1.55 | 148.05 bc ± 2.32 |
8 | Coumaric acid glucoside | 3.06 | 309 | 325- | 163 | 271.08 g ± 2.31 | 18.82 a ± 2.17 | 39.76 bcd ± 1.59 | 279.97 g ± 2.88 | 51.21 cd ± 1.69 | 63.95 de ± 2,83 | 72.35 e ± 2.01 | 74.79 e ± 1.69 | 18.89 ab ± 2.11 |
9 | Procyanidin dimer B-type | 3.25 | 279 | 577- | 289 | 68.82 f ± 3.19 | 5.00 a ± 2.89 | 13.34 a ± 1.85 | 114.04 g ± 2.64 | 14.29 ab ± 1.78 | 21.42 bc ± 1.35 | 29.68 c ± 1.89 | 31.61 c ± 1.89 | 12.93 a ± 1.98 |
10 | (+) Catechin | 3.40 | 274 | 289- | 141 | 683.61 c ± 1.45 | 56.62 b ± 1.34 | 92.61 bc ± 1.79 | 572.86 c ± 2.34 | 71.77 b ± 1.94 | 69.41 b ± 1.53 | 2112.92 g ± 2.61 | 1978.65 g ± 2.14 | 251.59 c ± 2.36 |
11 | Coumaroilo-quinic acid | 3.56 | 308 | 337- | 163 | 124.37 c ± 1.66 | 24.80 a ± 1.67 | 47.54 a ± 1.99 | 215.36 d ± 2.99 | 53.99 ab ± 1.66 | 55.53 ab ± 1.46 | 127.81 c ± 2.17 | 154.53 c ± 2.38 | 36.40 a ± 2.51 |
12 | Coutaric acid | 3.79 | 311 | 295- | 163 | 302.34 g ± 1.97 | 15.12 a ± 1.54 | 37.71 b ± 2.37 | 298.33 g ± 3.16 | 25.51 ab ± 2.13 | 38.77 b ± 1.82 | 400.31 i ± 1.63 | 340.39 h ± 1.98 | 62.17 c ± 2.41 |
13 | Quercetin 3-O-arabinoside-glucoside | 4.21 | 255, 355 | 595- | 301 | 263.44 d ± 2.18 | 42.00 a ± 3.06 | 75.77 a ± 3.18 | 338.77 e ± 3.47 | 59.18 a ± 1.56 | 72.19 a ± 2.49 | 795.50 g ± 1.32 | 796.85 g ± 2.13 | 177.66 bc ± 1.88 |
14 | Quercetin 3-O-rutinoside | 4.41 | 255, 355 | 609- | 301 | 460.00 h ± 2.26 | 60.04 a ± 2.49 | 97.68 ab ± 2.46 | 453.31 h ± 2.58 | 111.98 bc ± 1.46 | 122.54 c ± 2.13 | 427.08 gh ± 1.48 | 433.46 gh ± 2.41 | 135.12 cd ± 1.41 |
15 | Kaempferol 3-O-glucuronide | 4.49 | 264, 338 | 461- | 285 | 116.05 g ± 2.49 | 12.18 a ± 1.74 | 18.77 a ± 1.10 | 125.58 gh ± 2.13 | 23.04 ab ± 2.85 | 26.55 b ± 2.31 | 108.58 f ± 1.52 | 113.00 fg ± 2.69 | 27.98 b ± 1.63 |
16 | Quercetin 3-O-glucoside | 4.57 | 255, 355 | 463- | 301 | 1787.98 h ± 1.18 | 271.72 ab ± 1.39 | 459.53 c ± 1.56 | 1941.97 i ± 2.00 | 549.81 d ± 2.16 | 525.40 d ± 2.47 | 1378.46 g ± 2.01 | 1418.09 g ± 2.36 | 454.05 cd ± 1.52 |
17 | Quercetin 3-O-galactoside | 4.71 | 255, 355 | 463- | 301 | 259.56 e ± 1.74 | 26.75 a ± 2.12 | 53.87 bc ± 1.87 | 283.87 f ± 2.01 | 52.94 bc ± 2.48 | 44.81 ab ± 1.74 | 263.20 ef ± 2.02 | 257.90 e ± 2.46 | 62.6 1bc ± 2.16 |
18 | Quercetin 3-O-pentoside I | 4.93 | 255, 355 | 433- | 301 | 74.98 e ± 1.64 | 9.54 a ± 1.49 | 18.88 ab ± 1.74 | 73.25 e ± 1.67 | 19.66 ab ± 1.15 | 19.32 ab ± 2.83 | 31.51 c ± 1.79 | 29.30 bc ± 2.72 | 11.26 a ± 2.55 |
19 | Quercetin 3-O-pentoside II | 5.01 | 255, 355 | 433- | 301 | 156.32 g ± 3.08 | 24.91 a ± 2.56 | 45.38 bc ± 1.41 | 152.68 g ± 1.49 | 38.50 b ± 1.28 | 40.12 b ± 2.71 | 74.83 d ± 1.06 | 77.41 d ± 1.83 | 23.97 a ± 2.01 |
20 | Quercetin 3-O-pentoside III | 5.11 | 255, 355 | 433- | 301 | 41.55 e ± 2.18 | 11.06 ab ± 2.81 | 17.49 bc ± 2.67 | 37.45 e ± 2.55 | 10.50 ab ± 1.49 | 16.29 b ± 2.01 | 20.24 c ± 2.54 | 20.12 c ± 1.61 | 10.28 ab ± 2.61 |
21 | 3,4-di-O-caffeoyl-quinic acid | 5.20 | 288sh, 324 | 515- | 353 | 221.33 ij ± 1.19 | 21.80 a ± 2.39 | 42.35 b ± 2.61 | 231.46 j ± 2.49 | 31.66 ab ± 1.75 | 47.04 bc ± 1.16 | 209.93 hi ± 2.42 | 198.25 h ± 1.78 | 42.50 b ± 1.17 |
Total polyphenols [g·100 g−1 d.w.] | 20.25 k ± 2.13 | 1.97 a ± 1.17 | 4.01 cd ± 1.17 | 22.05 k ± 1.64 | 4.42 d ± 2.12 | 5.41 de ± 1.99 | 18.40 ij ± 1.69 | 17.65 i ± 2.22 | 4.21 cd ± 1.26 | |||||
Compound | Rt | λmax | [M-H] m/z | Clone Typ H | Clone No. 5/6 | Clone Typ N | ||||||||
[mg·100 g−1 d.w.] | (min.) | nm | MS | MS/MS | 0 | 15 | 30 | 0 | 15 | 30 | 0 | 15 | 30 | |
Anthocyanins | ||||||||||||||
1 | Cyanidin 3-O-galactoside | 2.52 | 279, 515 | 449+ | 287 | 6613.36 gh ± 1.79 | 5857.53 fg ± 3.21 | 5277.88 f ± 2.12 | 1259.10 b ± 2.87 | 3701.10 d ± 3.14 | 611.91 a ± 1.09 | 2206.33 c ± 2.18 | 4447.50 e ± 2.98 | 1658.29 b ± 3.01 |
2 | Cyanidin 3-O-glucoside | 2.76 | 279, 514 | 449+ | 287 | 2271.37 h ± 2.45 | 2284.64 h ± 2.69 | 2060.35 g ± 1.13 | 195.39 a ± 1.46 | 542.01 c ± 1.98 | 84.88 a ± 2.09 | 351.78 b ± 1.34 | 865.41 ef ± 2.37 | 240.92 ab ± 1.78 |
3 | Cyanidin 3-O-arabinoside | 2.99 | 279, 515 | 419+ | 287 | 1067.73 h ± 3.97 | 993.01 h ± 3.23 | 979.21 h ± 1.67 | 141.73 ab ± 1.51 | 396.57 c ± 1.87 | 59.32 a ± 1.11 | 244.25 bc ± 0.97 | 557.68 d ± 2.08 | 165.78 ab ± 2.31 |
4 | Cyanidin 3-O-xyloside | 3.36 | 281, 517 | 419+ | 287 | 801.68 f ± 1.99 | 799.17 f ± 2.06 | 734.74 f ± 2.33 | 73.39 a ± 1.78 | 200.10 cd ± 2.55 | 30.40 a ± 1.88 | 150.17 bc ± 1.52 | 343.67 d ± 2.00 | 95.86 ab ± 1.82 |
Other phenolics | ||||||||||||||
5 | Neochlorogenic acid | 2.24 | 288sh, 324 | 353- | 191 | 549.99 ± 2.08 | 451.57 h ± 2.64 | 345.00 g ± 1.22 | 95.67 cd ± 1.45 | 293,49 f ± 2.77 | 48.30 ab ± 1.89 | 115.50 d ± 1.55 | 177.27 e ± 1.70 | 61.17 bc ± 1.59 |
6 | Chlorogenic acid | 2.85 | 288sh, 324 | 353- | 191 | 3458.52 h ± 3.03 | 3014.45 g ± 2.18 | 2336.02 f ± 1.22 | 360.19 b ± 1.17 | 1111.06 d ± 3.17 | 164.79 a ± 1.52 | 616.93 c ± 1.51 | 1030.07 d ± 1.33 | 338.05 b ± 2.47 |
7 | Procyanidin dimer B-type | 3.01 | 279 | 577- | 289 | 421.25 f ± 3.12 | 359.94 ef ± 2.65 | 378.50 ef ± 2.36 | 86.99 ab ± 1.65 | 258.59 d ± 2.85 | 34.04 a ± 3.01 | 207.10 cd ± 1.26 | 316.64 de ± 1.18 | 148.96 bc ± 2.94 |
8 | Coumaric acid glucoside | 3.06 | 309 | 325- | 163 | 136.53 f ± 2.89 | 144.75 f ± 1.45 | 135.00 f ± 2.49 | 11.06 ab ± 1.87 | 31.09 bc ± 2.36 | 5.16 a ± 2.62 | 27.03 bc ± 1.69 | 40.06 bcd ± 2.11 | 19.74 ab ± 1.26 |
9 | Procyanidin dimer B-type | 3.25 | 279 | 577- | 289 | 54.27 de ± 2.11 | 44.89 d ± 1.22 | 58.92 e ± 2.74 | 6.26 a ± 1.13 | 15.39 ab ± 2.51 | 9.50 a ± 1.23 | 10.76 a ± 1.48 | 25.37 bc ± 2.71 | 13.65 ab ± 1.65 |
10 | (+) Catechin | 3.40 | 274 | 289- | 141 | 1597.33 f ± 2.19 | 1206.91 e ± 1.18 | 1018.92 d ± 2.61 | 24.37 b ± 1.27 | 55.54 b ± 2.81 | 6.93 a ± 1.05 | 618.81 c ± 1.12 | 948.91 d ± 2.94 | 265.09 c ± 1.39 |
11 | Coumaroilo-quinic acid | 3.56 | 308 | 337- | 163 | 293.64 e ± 2.17 | 272.08 e ± 2.18 | 236.00 de ± 2.91 | 49.32 a ± 1.67 | 156.36 c ± 1.64 | 29.89 a ± 1.26 | 50.96 a ± 1.64 | 78.70 b ± 2.33 | 44.91 a ± 1.37 |
12 | Coutaric acid | 3.79 | 311 | 295- | 163 | 158.98 e ± 3.13 | 137.55 e ± 1.69 | 105.11 d ± 1.91 | 21.84 ab ± 1.97 | 55.29 c ± 1.12 | 9.58 a ± 1.31 | 107.03 d ± 1.66 | 194.90 f ± 1.41 | 50.81 bc ± 1.88 |
13 | Quercetin 3-O-arabinoside-glucoside | 4.21 | 255, 355 | 595- | 301 | 429.95 f ± 1.51 | 402.50 f ± 1.96 | 324.44 e ± 1.39 | 137.02 b ± 1.74 | 359.51 e ± 1.43 | 70.46 a ± 2.16 | 288.43 d ± 2.12 | 379.26 e ± 1.56 | 186.93 c ± 2.91 |
14 | Quercetin 3-O-rutinoside | 4.41 | 255, 355 | 609- | 301 | 321.12 f ± 1.45 | 324.24 f± | 251.07 e ± 1.55 | 147.19 cd ± 2.12 | 407.68 g ± 1.36 | 80.99 ab ± 2.41 | 170.64 d ± 1.66 | 219.35 e ± 1.82 | 120.07 c ± 2.73 |
15 | Kaempferol 3-O-glucuronide | 4.49 | 264, 338 | 461- | 285 | 134.83 h ± 1.69 | 124.06 gh ± 2.18 | 93.74 e ± 1.69 | 22.97 ab ± 2.41 | 67.25 d ± 1.84 | 10.84 a ± 2.51 | 42.30 c ± 1.15 | 56.16 d ± 1.16 | 27.02 b ± 2.41 |
16 | Quercetin 3-O-glucoside | 4.57 | 255, 355 | 463- | 301 | 1760.06 h ± 1.92 | 1691.82 h ± 2.46 | 1378.77 g ± 1.12 | 358.94 bcd ± 2.36 | 1018.56 f ± 2.51 | 203.50 a ± 2.73 | 555.11 d ± 1.05 | 710.52 e ± 1.83 | 469.63 cd ± 2.59 |
17 | Quercetin 3-O-galactoside | 4.71 | 255, 355 | 463- | 301 | 400.75 h ± 1.78 | 372.05 g ± 1.36 | 297.71 f ± 1.08 | 32.59 ab ± 2.91 | 107.60 d ± 2.37 | 21.55 a ± 2.34 | 104.56 d ± 1.09 | 124.56 d ± 1.33 | 70.33 c ± 2.11 |
18 | Quercetin 3-O-pentoside I | 4.93 | 255, 355 | 433- | 301 | 67.11 e ± 2.39 | 72.81 e ± 1.73 | 56.54 d ± 2.78 | 24.51 bc ± 2.41 | 68.29 e ± 2.51 | 16.07 a ± 1.59 | 12.74 a ± 1.39 | 20.66 b ± 1.61 | 12.69 a ± 1.13 |
19 | Quercetin 3-O-pentoside II | 5.01 | 255, 355 | 433- | 301 | 126.31 f ± 1.79 | 133.88 f ± 1.18 | 105.91 e ± 2.54 | 23.68 a ± 1.74 | 62.01 cd ± 2.71 | 14.34 a ± 1.74 | 32.94 b ± 1.51 | 37.48 b ± 1.28 | 30.40 ab ± 1.76 |
20 | Quercetin 3-O-pentoside III | 5.11 | 255, 355 | 433- | 301 | 98.79 g ± 1.09 | 101.42 g ± 2.13 | 86.37 f ± 2.06 | 27.65 d ± 1.94 | 101.17 g ± 1.64 | 22.73 cd ± 1.33 | 6.81 a ± 1.84 | 9.01 ab ± 2.14 | 9.49 ab ± 1.55 |
21 | 3,4-di-O-caffeoyl-quinic acid | 5.20 | 288sh, 324 | 515- | 353 | 79.62 e ± 3.16 | 70.62 de ± 1.79 | 64.13 d ± 1.16 | 54.44 cd ± 1.52 | 138.40 g ± 1.32 | 26.26 a ± 1.84 | 82.29 e ± 2.31 | 113.78 f ± 2.94 | 52.37 cd ± 1.03 |
Total polyphenols [g·100 g−1 d.w.] | 2.08 b ± 3.16 | 18.86 j ± 2.56 | 16.32 h ± 1.89 | 3.15 c ± 1.55 | 9.15 f ± 3.03 | 1.56 a ± 2.81 | 6.00 e ± 2.44 | 10.70 g ± 2.11 | 4.08 cd ± 1.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelany, J.; Kapusta, I.; Zardzewiały, M.; Belcar, J. Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.). Molecules 2022, 27, 6446. https://doi.org/10.3390/molecules27196446
Gorzelany J, Kapusta I, Zardzewiały M, Belcar J. Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.). Molecules. 2022; 27(19):6446. https://doi.org/10.3390/molecules27196446
Chicago/Turabian StyleGorzelany, Józef, Ireneusz Kapusta, Miłosz Zardzewiały, and Justyna Belcar. 2022. "Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.)" Molecules 27, no. 19: 6446. https://doi.org/10.3390/molecules27196446
APA StyleGorzelany, J., Kapusta, I., Zardzewiały, M., & Belcar, J. (2022). Effects of Ozone Application on Microbiological Stability and Content of Sugars and Bioactive Compounds in the Fruit of the Saskatoon Berry (Amelanchier alnifolia Nutt.). Molecules, 27(19), 6446. https://doi.org/10.3390/molecules27196446