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Abstract: Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation
efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove
Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition
of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of
Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic
radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of
Rhodamine B. Increasing either the concentration of CuFe2O4 (0–100 mg/L) or PAA (10–100 mg/L)
promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH
conditions (6–8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3

−,
and a small amount of Cl− (10–100 mmol·L−1) slightly inhibited the degradation of Rhodamine B.
However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L−1)
of Cl−. After four iterations of catalyst recycling, the degradation efficiency remained stable and
no additional functional group characteristic peaks were observed. Taking into consideration the
reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the
CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.

Keywords: peracetic acid (PAA); rhodamine B; copper ferrite (CuFe2O4); organic radicals (R-O˙)

1. Introduction

With the increasing maturity of activated sludge processing technologies and physico-
chemical treatment methodologies, common pollutants present in sewage represented by
parameters such as the chemical oxygen demand (COD), nitrogen content, and phosphorus
content have been effectively treated. However, there are still problems associated with
the removal of micropollutants with complex structures, which has spurred great research
interest in recent years. Due to the appreciable removal performance of persistent organic
pollutants in sewage effluent and industrial wastewater, advanced oxidation processes
(AOPs) have attracted more and more attention and have been considered one of the most
promising technical treatment options [1–3]. AOPs consist of various technologies, such as
ozonation, photocatalytic oxidation, Fenton-like oxidation, electrochemical oxidation, etc.
The basis for these treatment methodologies relies on reactive oxygen species (ROS) such
as hydroxyl radicals, sulfate radicals, and organic radicals [4–6].

Several oxidants such as hydrogen peroxide (H2O2), ozone (O3), persulfate (PDS),
and peroxymonosulfate (PMS) are used in AOPs to generate free radicals [7–9]. Hydrogen
peroxide is the most-used oxidant because of the high activity of its oxidizing species (e.g.,
HO˙). Moreover, these oxidizing species are capable of completely and non-selectively
destroying recalcitrant organic contaminants [10]. Recently, the application of peracetic
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acid (PAA) in AOPs has been studied. PAA, a peroxy acid oxidant, has been widely used
for disinfection and sterilization in textile industries, aquaculture, medical applications,
and food processing [11,12]. Owing to its low toxicity, less harmful byproducts, and high
disinfection efficiency, the application of PAA has increased continuously as an alternative
disinfectant in wastewater treatment systems in Europe and North America. The standard
reduction potential of PAA (relative to the standard hydrogen electrode) is 1.06–1.96 V,
which is close to that of H2O2 (E0 = 1.8 V) [11]. However, the peroxide bond energy of PAA
is 159 kJ/mol, which is lower than that of hydrogen peroxide (HP, 213 kJ/mol) and PMS
(317 kJ/mol) [13,14], indicating that PAA can be activated more easily to produce oxidative
radicals. Moreover, PAA has less dependence on pH, and its decomposition products
are non-toxic, safe, and biodegradable [15–19]. When integrated with biotreatment, these
decomposition products can supply additional carbon sources [20]. In summary, PAA is an
ideal novel oxidant; however, developing an efficient and pollution-free activation method
of PAA is of great significance.

Many researchers have devoted significant time to exploring efficient catalysts for PAA
activation, and considerable progress has been made on this front. In AOPs with PAA as the
oxidant, degradation of persistent organic pollutants is driven by various radicals, including
OH˙ and R-C˙ (e.g., CH3˙, CH3O2˙, CH3CO˙, CH3CO2˙, and CH3CO3˙) [21,22]. Thus, the
catalytic decomposition of PAA is more complicated compared with the activation of
inorganic peroxides. Transition metals, ultraviolet/solar light irradiation, ultrasound, heat,
electrochemical processes, and carbon catalysts are all techniques used in AOPs [22–24].
The techniques that have been most applied for PAA catalysis are UV radiation and the
inclusion of transition metals. The dominant radicals may be different when different
activation systems are applied. In the UV/PAA system, HO˙ and CH3CO2˙ are the initial
products (Equation (1)). Subsequently, CH3CO3˙ is generated (Equation (2)) [25].

CH3CO3H + UV 
 HO˙ + CH3CO2˙ (1)

CH3CO3H + HO˙→ CH3CO3˙ + H2O (2)

As for the transition metal/PAA system, the products are much more complex
(Equations (3)–(8)), among which CH3CO2˙ and CH3CO3˙ are regarded as the dominant
radicals, while little to no HO˙ is generated [26,27].

CH3C(O)OOH + Mn+ →M(n+1)+ + HO−+ CH3COO˙ (3)

CH3C(O)OOH + M(n+1)+ →Mn+ + H+ + CH3COOO˙ (4)

CH3C(O)OOH Mn+
→ CH3C(O)O. + HO. (5)

CH3C(O)OOH + HO˙→ CH3C(O)OO˙ + H2O (6)

CH3C(O)O˙→ CH3˙ + CO2 (7)

CH3˙ + O2 →CH3O2˙ (8)

The different relative species that contributed to contaminant degradation were
further probed in some studies. For example, it has been reported that CH3CO2˙ and
CH3CO3˙ demonstrated a good organic compound removal efficiency for compounds such
as naproxen, naphthyl compounds, phenol, 2-naphthoxyacetic acid, aniline, bezafibrate,
acid orange 7, bisphenol-A, carbamazepine, diclofenac, ibuprofen, clofibric acid, methylene
blue, sulfa drugs, and sulfamethoxazole. Furthermore, these radicals had a longer half-life
than HO˙ [28,29]. Zhou et al. [16] reported that in the PAA/activated carbon fiber system
for the degradation of red X-3B, HO˙ was not important compared to acetyl(per)oxyl rad-
icals. Kim et al. [17] delineated that in the biphasic kinetics of Fe(II)/PAA contaminant
degradation, acetyl(per)oxyl radicals, HO˙, and Fe(IV) were responsible reactive species for
the degradation of contaminants.
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Transition metal/PAA systems may demonstrate greater promise in the future. How-
ever, toxicity and poor reusability bring hindrances to the application of transition metals
in homogeneous processes [30]. To overcome these shortcomings, heterogeneous catalysis
could be a good alternative. Yu et al. [31] successfully applied fabricated magnetically
separable TiO2-FeOx-polyoxotungstate (POM) to 2,4-DCP degradation, which exhibited
excellent performance. Karbasi et al. [32] studied the use of magnetized photocatalysts
(Bi2WO6-FeOx) to avoid the high separation cost of catalyst recycling. An environmentally
benign and non-toxic catalyst for PAA activation is desirable based on sustainable and
green development.

Recently, spinel-type particles with the general formula MFe2O4 (M = Cu, Zn, Co,
Mn, etc.) have attracted great interest [33]. Spinel ferrite, a typical spinel ferrite, has a
relatively stable structure, which reduces the leaching of heavy metals [34]. Another
advantage of spinel ferrite is its magnetic property; thus, it can be easily separated from
water for recovery [35]. Moreover, the spinel oxide powders could provide a larger surface
area to assist the diffusion of reactants onto the active sites. Although CoFe2O4 has a better
catalytic ability than CuFe2O4, the release of Co during the reaction may bring more risk
of toxicity and carcinogenicity [36]. In recent studies, the PMS/CuFe2O4 system has been
explored for the degradation of bisphenol-A at neutral pH values [37], and CuFe2O4 has
been used to generate SO4˙ from PMS [38].

As a synthetic xanthene dye, Rhodamine B was often chosen as a target containment
to investigate various AOPs systems [39–41]. In the present work, the degradation of
Rhodamine B by peracetic acid activated with a spinel copper ferrite (CuFe2O4) was
studied. The morphology, elemental composition, total pore volume, and BET surface area
of the catalyst were systematically investigated. The influence of different pH conditions,
PAA, and catalyst loading on the pollutant removal efficiency was explored. Furthermore,
the activation mechanism and reactive species were further proposed. Finally, the effect
of water matrices, reusability, and stability of the catalyst was discussed to see if the
PAA/CuFe2O4 demonstrated a practical utilization value.

2. Results and Discussion
2.1. Characterization of the Catalyst

To understand the microstructure of the commercial catalyst, the surface morphology
of CuFe2O4 was studied via SEM. As shown in Figure 1a, CuFe2O4 possessed a relatively
regular shaped particle morphology. All catalysts contained small particles with even
surfaces. The particles agglomerated together due to the magnetic properties of the material,
which was consistent with previous findings. Furthermore, the elemental compositional
analyses of the catalysts were conducted by Energy Dispersive X-ray Spectroscopy (EDS).
As shown in Figure 1b, five elements were present in the commercial sample: O, Al, P,
Fe, and Cu. The atomic contents of these elements were 69.5%, 1.46%, 6.05%, 16.39%, and
7.05%, respectively. The total pore volume of CuFe2O4 was 0.067 cm3/g, and the BET
surface area of CuFe2O4 was 19.4 m2/g.
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2.2. The Effect of Initial pH on Contaminant Degradation

In metal-based catalysis, the solution pH could affect the oxidation potential of a
process, which is considered a crucial parameter for chemical oxidation reactions. The
effect of initial pH on the degradation of Rhodamine B in the CuFe2O4/PAA system
was further evaluated, as shown in Figure 2. Different degradation efficiencies could be
observed at different pH values. At pH 4 and 9, the removal efficiencies of the system
were 18.5% and 21.2% within 30 min, respectively. The sequence of degradation efficiencies
under other selected pH values was as follows: pH 5 (47.9%) < pH 7 (66.4%) < pH 6
(72.8%) < pH 8 (77.5%). After 60 min of reaction, the sequence of degradation efficiencies
changed to the following: pH 9 (41.4%) < pH 4 (43.6%) < pH 5 (84.3%) < pH 7 (91.4%) < pH 8
(94.4%) < pH 6 (95.4%). It can be inferred that the specific pH range (weakly acid to
weakly alkaline conditions, including neutral conditions) was favorable for Rhodamine B
decomposition. When the pH condition was higher than eight or lower than six, the
removal efficiency decreased sharply. There were two possible causes for this phenomenon:
the first was the abnormal decomposition of PAA and the second was the change of the
catalyst state. For acidic conditions, it has been reported that the structure of PAA could
remain stable under pH 3–5 [1]. In addition, PAA activation by Cu2+ could be suppressed
under acidic conditions in AOP systems because high concentrations of H+ could inhibit
the generation of CH3CO3˙ via Equation (9). Therefore, the degradation of Rhodamine
B would be suppressed. Conversely, the causes changed for alkaline conditions. It has
been reported in previous studies that the pKa of PAA was 8.2 [42], indicating that the
self-decomposition of PAA can easily occur to produce CH3CO3

− when the pH was 9
or greater. Moreover, PAA was a precursor for H2O2 according to Equation (10) [43].
Therefore, the generation of CH3CO3

− and the reaction between H2O2 and CH3CO3
− via

Equation (11) caused the reduction of PAA, which affected the generation of radicals due
to the lack of substrate activation. In terms of the catalyst, the high OH− concentration
could also suppress the generation of radicals via Equation (12). Moreover, the Cu(OH)2
complex formed under alkaline conditions through the reaction between CuFe2O4 and
OH− [1], which had a lower solubility and lower activity than free ions. In heterogeneous
systems, these complexes are attached to the catalyst surface easily [44]. Therefore, the
PAA activation efficiency was reduced by the reduction of both the catalyst and the contact
area. In summary, the results showed that weakly acidic to weakly alkaline pH conditions
were all suitable for PAA degradation in the CuFe2O4/PAA system. For actual sewage
treatment (e.g., domestic sewage, livestock and poultry breeding wastewater, and some
kinds of industrial wastewater), the CuFe2O4/PAA system holds practical value, without
the need for excess acid and alkaline conditions.

Cu3+ + CH3C(O)OOH 
 Cu2+ + CH3C(O)OO˙ + H+ (9)

CH3C(O)OO H + H2O 
 H2O2 + CH3C(O)OH (10)

CH3C(O)OO− + H2O2 → CH3C(O)OO− + H2O + O2 (11)

CH3C(O)OO H + Cu2+ → Cu3+ + OH− + CH3C(O)O˙ (12)

2.3. The Effect of PAA and Catalyst Loading on Contaminant Degradation

The degradation of Rhodamine B under different PAA concentrations and catalyst
loadings in the CuFe2O4/PAA system at pH 7 was explored as summarized in Figure 3.

Figure 3a shows that the degradation of Rhodamine B was significantly enhanced, as
the PAA concentration increased when 100 mg/L CuFe2O4 was added. When the PAA
concentration increased from 10 mg/L to 100 mg/L, the degradation of Rhodamine B in the
CuFe2O4/PAA system after 60 min increased from 40.9% to 99.0%. The results indicated
that a higher PAA concentration produced more active radicals at the same time interval,
which could accelerate the degradation of Rhodamine B. When the PAA concentration
was 60 mg/L, the degradation efficiency of Rhodamine B after 60 min was 97.0%, while
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a higher degradation efficiency (98.1%) was achieved in a shorter time (45 min) when
the PAA concentration was 100 mg/L, which also supported the aforementioned finding.
However, the removal efficiency reached 95.8% after 60 min when the PAA concentration
was 80 mg/L; thus, further increasing the PAA loading was not conducive to controlling
cost. In addition, negligible degradation of Rhodamine B was observed in the absence
of PAA, illustrating that the adsorption of Rhodamine B by CuFe2O4 could be ignored
(Figure S1).
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Figure 3b demonstrates that the degradation of Rhodamine B was significantly en-
hanced as the CuFe2O4 concentration increased when 80 mg/L PAA was added. In the
absence of CuFe2O4, only 18.5% of Rhodamine B was degraded after 60 min, which in-
dicated that the degradation of pollutants mainly depended on the presence of active
species, and the oxidative degradation effect by PAA alone was relatively poor. When
the CuFe2O4 concentration increased to 100 mg/L, the degradation of Rhodamine B in
the CuFe2O4/PAA system after 60 min increased to 95.8%. The results showed that an
increase in the CuFe2O4 concentration could provide ample active sites for PAA to gener-
ate more free radicals during the same time interval. In addition, as a kind of magnetic
material, CuFe2O4 could be successfully separated by an external magnetic field. Therefore,
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a higher catalyst loading was acceptable even if cost control was taken into consideration.
This also suggested that CuFe2O4 had broader application prospects than other reported
heterogeneous metallic catalysts for the treatment of aquatic micro-organic pollutants.

2.4. Identification of Activation Metal

The XPS spectra of Cu, Fe, and O in the CuFe2O4/PAA system before and after
Rhodamine B degradation were obtained to illustrate the catalytic mechanism. The full-
scale XPS spectrum of CuFe2O4 (the binding energies were corrected by the C 1s peak) is
shown in Figure S2, which demonstrated the presence of Cu, Fe, and O. Other details are
presented in Figure 4.
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Figure 4a shows the XPS spectrum of Cu 2p before and after the reaction. The binding
energy peaks at 942.70 eV and 935.30 eV could be ascribed to Cu (II). After the reaction, the
two peaks shifted to 943.98 eV and 935.57 eV, respectively. A new peak at 940.97 eV was
observed after the reaction, suggesting the appearance of a new valence state which could
be ascribed to Cu (I) [45]. The generation of Cu (I) illustrated that Cu (II) was reduced to a
+1 valence state via the catalytic process, which was similar to PMS activation and could
be explained by the coexisting oxidation and reduction processes (Cu2+-Cu+-Cu2+) [14].
Figure 4b shows the XPS spectrum of Fe 2p before and after the reaction. The binding energy
at 718.97 eV and 725.75 eV can be assigned to Fe2+ and Fe3+, respectively [46]. Obviously,
little to no redox reactions involving Fe2+/Fe3+ occurred on the CuFe2O4 surface, which was
deduced because the Fe valence state hardly changed, as indicated by the Fe 2p3/2 and Fe
2p1/2 sites after the reaction. Similar results were also reported in previous studies [29,47].
Although PAA activation has been reported in homogeneous systems via the Fe2+/Fe3+

redox cycle, iron ions exhibited lower activity than copper ions. In heterogeneous systems,
the contribution of the Fe2+/Fe3+ redox cycle was limited to the catalyst surface at neutral
pH conditions [29]. The O 1s XPS spectrum shown in Figure 4c illustrates two major peaks
at 530.38 eV and 531.54 eV before the reaction. These peaks were assigned to the lattice
O and surface adsorbed oxygen (or surface hydroxyl species), respectively [48,49]. The
proportions of lattice O and adsorbed oxygen (or surface hydroxyl species) before the
reaction were 6.7% and 93.3%, respectively, while lattice O nearly disappeared after the
reaction. It can be inferred that strong hydroxylation reactions happened on the catalyst
surface during the oxidation process. The decrease of lattice oxygen was due to the
reduction of Cu2+ to Cu+, and the increase of surface hydroxyl species could be attributed
to the formation of Cu-OH complexes via Equations (13) and (14).
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2.5. Identification of Reactive Species

Several organic radicals (e.g., CH3COO˙, CH3COOO˙, CH3˙, and CH3CO2˙) and
OH˙ have been reported in PAA activation AOP systems. To identify the free radicals
that played a major role in the process, three kinds of radical scavengers (MeOH, PBA,
and 2,4-hexadiene (2,4-HD)) were tested in the CuFe2O4/PAA processing system, as
shown in Figure 5. TBA is a widely used OH˙ quencher with a second order rate con-
stant of 3.8–7.6 × 108 but zero-order with respect to acetyl(per)oxyl radicals [50]. When
100 mmol·L−1 TBA was added into the CuFe2O4/PAA system, the degradation of Rho-
damine B was not impacted to a great extent. The final removal efficiency was 98.6%
after 60 min of reaction, demonstrating a small difference from the condition with no TBA
addition. This phenomenon suggested that OH˙ did not play an irreplaceable role in the
degradation of Rhodamine B, which was consistent with the results of previous studies [51].
There were two C=C double bonds contained in 2,4-HD, which could be easily attacked
by peroxyl and acylperoxyl radicals. Therefore, 2,4-HD was used as the quencher for
acetyl(per)oxyl radicals [52]. When 100 mmol·L−1 2,4-HD was added, the degradation
of Rhodamine B after 60 min decreased from 98.6% to 18.2%. Obviously, acetyl(per)oxyl
radicals played the dominant role in the CuFe2O4/PAA system for the degradation of Rho-
damine B. The remaining oxidation capacity of 18.2% was attributed to the existence of OH˙.
MeOH was a strong scavenger for both OH˙ and organic radicals [1]. When 100 mmol·L−1

MeOH was added into the CuFe2O4/PAA system, the degradation of Rhodamine B after
60 min decreased from 98.6% to 40.2%. According to the above conclusions, acetyl(per)oxyl
radicals were the dominant radicals for degradation in the CuFe2O4/PAA system, whereas
OH˙ played an ancillary role.
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Figure 5. Effect of radical scavengers on Rhodamine B degradation (PAA = 80 mg/L,
CuFe2O4 = 100 mg/L, pH = 7, C0 = 20 mg/L, room temperature for 1 h).

Based on the above discussion, a possible activation mechanism in CuFe2O4/PAA
was proposed in Figure 6. The degradation of Rhodamine B was attributed to R-O˙ in the
heterogeneous process. During the preliminary stage, ≡Cu2+ accepted an electron from
PAA and was converted to ≡Cu+ which caused the subsequent generation of CH3C(O)OO˙.
The generated ≡Cu+ donated an electron to PAA, resulting in the formation of CH3C(O)O˙
and the maintenance of the ≡Cu2+/ ≡Cu+ redox cycle on the surface of the catalyst.

≡Cu2+ + OH− →≡CuOH+ (13)

≡CuOH+ + OH− →≡Cu(OH)2 (14)
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2.6. The Effect of Water Matrices on Contaminant Degradation

Humic acid (HA), Cl−, and HCO3
− are pervasive substances in natural water which

may suppress AOPs [53], so the effect of these naturally occurring anions on the degradation
of Rhodamine B was further evaluated. HA could adsorb on the surface of the catalyst
and block the catalyst active sites in heterogeneous systems to prevent contact between
the oxidant and catalyst [53], resulting in the reduction of catalytic activation efficiency. In
addition, R-O˙ could be partially scavenged by HA, which could also affect the pollutant
degradation efficiency. However, the shielding effect was not obvious in the CuFe2O4/PAA
system. The effect of HA on Rhodamine B degradation is shown in Figure 7a. Obviously,
HA only had a slight impact on Rhodamine B removal in the CuFe2O4/PAA system. As the
HA concentration increased from 0 mg/L to 5 mg/L, the removal efficiency after 60 min
decreased from 99.2% to 98.7%. This may be because the added CuFe2O4 was in excess for
PAA catalysis. In addition, HA may have pro-oxidant properties in AOPs [54]. Moreover,
although the generated R-O˙ could be partially scavenged by HA, as demonstrated in
previous studies [18], the remaining R-O˙ and other radicals such as OH˙ were abundant
enough to lead to Rhodamine B removal.

The effect of HCO3
− on Rhodamine B degradation is shown in Figure 7b. HCO3− had

an ignorable impact on Rhodamine B removal in the CuFe2O4/PAA system. As the HCO3
−

concentration increased from 0 mmol·L−1 to 1 mmol·L−1, the removal efficiency after
60 min decreased from 98.5% to 98.0%. It has been reported that HCO3

− is a scavenger of
hydroxyl radicals and sulfate radicals but could not affect R-O˙ radicals [22]. Similar to the
HA experiment, the disappearance of single free radicals did not affect the overall removal
of pollutants. In addition, unreactive carbonate complexes [14,29] were not generated,
suggesting the stability of the system. The effect of Cl− on Rhodamine B removal is shown
in Figure 7c. The degradation efficiency of Rhodamine B after 30 min was 76.5%, 72.4%,
and 96.2% with 0-, 50-, and 200-mmol·L−1 Cl− added, respectively. The final degradation
efficiencies after 60 min were 97.3%, 93.2%, 99.6% with 0, 50, 200 mmol·L−1 Cl− added,
respectively. Apparently, the effect of Cl− on the degradation of Rhodamine B was different
under different Cl− concentrations. A small dosage of Cl− (10–100 mmol·L−1) suppressed
the degradation of Rhodamine B while the addition of 200 mmol·L−1 Cl− promoted the
degradation of Rhodamine B. In addition, it was worth noting that the small dosage of
Cl− only slowed down the reaction speed while the final degradation was not seriously
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influenced. This was because Cl− could react with R-O˙ and OH˙ to produce chlorine-
containing species that had weaker oxidative capacities [55,56]. When 200 mmol·L−1

Cl− was added, the generation of Cl, Cl2˙, and ClOH˙ compensated for the weakened
oxidative capacity, and the radicals even synergized with the remaining R-O˙ and OH˙.
In summary, water matrices had only a minimal negative effect on the application of the
CuFe2O4/PAA system, which increased the possibility of the practical application of this
type of AOP system.
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2.7. Reusability and Stability of the Catalyst

In terms of practical application, reusability and stability are very important charac-
teristics of a catalyst. To evaluate the reusability of CuFe2O4, the removal of Rhodamine
B by recycling the catalyst after the reaction concluded was conducted under the same
experimental conditions (CuFe2O4 dosage of 100 mg/L, PAA dosage of 80 mg/L, initial
pH of 7, and treatment time of 60 min) for four cycles, as shown in Figure 8a. The final
removal efficiencies were 98.9%, 89.8%, 99.2%, and 98.2%, respectively, for the four itera-
tive catalyst recycling experiments. It was obvious that CuFe2O4 demonstrated excellent
catalytic performance, and the catalyst maintained a high performance for Rhodamine B
decomposition after the fourth iteration of catalyst recycling. Only a 0.7% degradation
efficiency decrease was observed, suggesting that CuFe2O4 possessed high reusability
towards PAA activation. In addition, The FTIR spectra of the catalysts before and after
the reaction are shown in Figure 8b. No additional functional group characteristic peaks
were observed for the recycled CuFe2O4, illustrating that no passivation occurred on the
CuFe2O4 surface compared with the fresh catalyst, and the catalyst exhibited good catalytic
stability. These results suggested that the use of CuFe2O4 could be operated within a
controllable cost window, owing to the high reusability and recyclability of the catalyst.
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3. Materials and Methods
3.1. Chemicals

Commercial peracetic acid (~20% PAA, ~5% H2O2, and ~20% acetic acid; w/w) was
obtained from Sigma-Aldrich (St. Louis, MO, USA). CuFe2O4 with a size of approximately
200 nm was supplied by Aladdin Co., Ltd. (Shanghai, China). Rhodamine B was supplied
by Sigma-Aldrich (St. Louis, MO, USA). 2,4-hexadiene (2,4-HD),tert-butyl alcohol (TBA),
methanol (MeOH), NaCl, Na2HCO3, Na2S2O3, and humic acid (HA) were purchased from
Aladdin (Shanghai, China). All chemicals were of at least reagent grade and used without
further purification. Nano-pure water (resistivity > 18 mΩ cm) was obtained from a Merck
Milli-Q Reference system (Darmstadt, Germany).

3.2. Experimental Procedures

Batch degradation experiments were performed at room temperature (25 ◦C), and
the solution was mixed by magnetic stirring in 250 mL amber glass bottles. After an
appropriate amount of Rhodamine B solution (20 mg/L) was transferred into the reactor,
PAA at designated concentrations (10–100 mg/L) was subsequently added. Then, the
initial pH was adjusted by 0.2 mol·L−1 NaOH and 0.1 mol·L−1 H2SO4 solution. The
experiments started as soon as the desired amount of CuFe2O4 was added. The samples
were extracted at predetermined time intervals and immediately quenched with excess
Na2S2O3 (10 mmol·L−1) for the detection of the Rhodamine B concentration. The quenched
sample was filtered through a 0.22-µm PTFE membrane, and the filtered sample was
subsequently stored at 4 ◦C before analysis within 24 h.

Cl− (0–200 mmol·L−1), HCO3
− (0–1 mmol·L−1), and humic acid (HA, 0–5 mg/L)

were added at the beginning of the reaction to evaluate the effect of water matrices on the
degradation of Rhodamine B. The same reaction procedures were repeated with tertbutyl al-
cohol (TBA, 100 mmol·L−1), methanol (MeOH, 100 mmol·L−1), and 2,4-HD (100 mmol·L−1)
added at the beginning of the reaction to assess the presence of radical species.

The used CuFe2O4 was collected via magnetic separation, washed with distilled water,
and dried via a vacuum freeze dryer (FD-1A-50, Boyikang, Shanghai, China) to evaluate
reusability. All experiments were conducted in duplicate.

3.3. Analytical Methods

N2 adsorption–desorption measurements were conducted using an ASAP 2020 volu-
metric adsorption analyzer (Micromeritics, Norcross, GA, USA). The specific surface areas
were measured using the standard Brunauer-Emmett-Teller (BET) method. The surface
morphology of the samples was characterized via a scanning electron microscope (SEM,
ZEISS SUPRA 55, Jena, Germany). The composition and chemical oxidation state of the
elements were determined by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi,
ThermoFisher Scientific, Waltham, MA, USA). Fourier-transform infrared spectroscopy
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(FTIR, VERTEX 70, Bruker, Karlsruhe, Germany) was used for the characterization of
CuFe2O4 before and after the reaction. The pH values were measured via a pH meter
(Starter-3100, Ohaus, Parsippany-Troy Hills, NJ, USA). The PAA concentration was mea-
sured according to the N, N-diethyl-p-phenylenediamine (DPD) colorimetric method [57].
The Rhodamine B concentration was measured via a UV-Vis spectrophotometer (Agilent,
Santa Clara, CA, USA) at 553 nm.

4. Conclusions

PAA demonstrated promise as an efficiency disinfectant in AOPs. Spinel ferrite
exhibited advantages in terms of structural stability and recovery, and Cu had a lower risk
of toxicity and carcinogenicity. The current work demonstrated that the CuFe2O4/PAA
system was a promising process for the degradation of organic pollutants. A pH range
of six to eight was suitable for efficient degradation. As the loading of PAA or CuFe2O4
increased (10–100 mg/L for PAA and 0–100 mg/L for CuFe2O4), the oxidation of pollutants
also increased. Taking into consideration cost control measures and treatment effects,
an unlimited increase in dosage was undesirable and unrealistic. When the PAA dose was
80 mg/L and the CuFe2O4 dose was 100 mg/L, a Rhodamine B removal efficiency of 95.8%
was observed, which was sufficient for sewage treatment. PAA activation was dominated
by the ≡Cu2+/≡Cu+ redox cycle, and the pollutant was removed mainly by the oxidation
of CH3C(O)O˙ and CH3C(O)OO˙. In terms of application in actual wastewater treatment
scenarios, a small number of common water matrices (HA, HCO3

−, and Cl−) had a small
negative effect on the process, while 200 mg/L of Cl− enhanced the oxidation process. In
addition, the CuFe2O4/PAA system demonstrated satisfying reusability and stability after
four recycling iterations. However, further studies are needed in terms of optimization and
intensification before promotion and application can be achieved.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196385/s1, Figure S1: Rhodamine B degradation with
and without PAA (PAA = 80 mg/L, pH = 7, C0 = 20 mg/L, room temperature for 1 h), Figure S2: The
full scale XPS spectrum of CuFe2O4.
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