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Abstract: Organophosphorus ligands are an invaluable family of compounds that continue to under-
pin important roles in disciplines such as coordination chemistry and catalysis. Their success can
routinely be traced back to facile tuneability thus enabling a high degree of control over, for example,
electronic and steric properties. Diphosphines, phosphorus compounds bearing two separated PIII

donor atoms, are also highly valued and impart their own unique features, for example excellent
chelating properties upon metal complexation. In many classical ligands of this type, the backbone
connectivity has been based on all carbon spacers only but there is growing interest in embedding
other donor atoms such as additional nitrogen (–NH–, –NR–) sites. This review will collate some
important examples of ligands in this field, illustrate their role as ligands in coordination chemistry
and highlight some of their reactivities and applications. It will be shown that incorporation of a
nitrogen-based group can impart unusual reactivities and important catalytic applications.

Keywords: amine groups; chelate effect; coordination chemistry; NMR spectroscopy; P ligands; synthesis

1. Introduction

Phosphorus compounds are of widespread fascination due to their importance in or-
ganic, coordination/organometallic chemistry, catalysis, and numerous other applications.
Many such P-based compounds are derived from simple fundamental building blocks such
as white phosphorus (P4) for example. Various industrial processes for accessing simple
P-based compounds are well known and, nowadays, current challenges in generating such
compounds more efficiently [1] and sustainably are being actively pursued [2]. Interest has
spurred in converting P4 into useful compounds directly [3,4] and this area will no doubt
continue to be a highly important area going forward.

The following review will provide a brief update, from the Author’s perspective, of
selected examples of chelating diphosphines with a central nitrogen functional group in the
backbone and illustrate the diverse behaviour(s) imparted by this additional donor atom.
The focus will be on ligand design and synthesis protocols, 31P{1H} NMR spectroscopy as a
useful tool for assessing purity and characterisation and an illustration of how such ligands
are used, primarily in coordination chemistry and catalysis. This review is by no means
exhaustive but will highlight the growing emergence of these ligands versus their all-carbon
backbone counterparts which historically have been known for several decades. Depending
on the diphosphine ligand, 4-, 5-, 6- (Figure 1) and larger chelate/macrocyclic rings with one
(or more) –NH–/–NR– sites are formed upon complexation to a range of typical transition
metals. The present review aims to embrace the Reader with a perspective of the importance
of these ligands and their continuing prominence going forward. These ligands constitute
important families to the already extensive number of known phosphorus compounds. As
will be illustrated, the tuneability of phosphines thereby precisely controlling properties
such as electronic effects, sterics, asymmetry, solubility, chirality etc is applicable to the
diphosphines discussed here.
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asymmetry, solubility, chirality etc is applicable to the diphosphines discussed here. 

 
Figure 1. Cartoon illustration of some known diphosphines bearing a N atom in the backbone (R, 
R` = alkyl, aryl group). 

Unlike general synthetic phosphorus methodologies widely used for constructing P–
C bonds [5], the transformations shown in Scheme 1 are simple condensations and em-
ploy, typically, secondary chlorophosphines or secondary phosphines as key starting re-
agents. In many instances, especially the Phospha-Mannich based reactions [6,7], work-
up and isolations are straightforward and target P(III) compounds can often be accessed 
in good to high yields. Furthermore, in an industrial context, these reactions are important 
in the industrial preparation of flame retardants for cotton based materials using 
[P(CH2OH)4]+ salts and condensation with urea [8]. The utility of this approach will be 
highlighted, using suitable examples, in the following sections. 

 
Scheme 1. Key steps for relevant P-based ligand syntheses utilising R2PCl and R2PH. 

2. P–N Chemistry 
2.1. Synthesis of Selected Examples 

The ligand 1a (Figure 2), bearing a phenyl substituent (X = Y = H), has been known 
for over 25 years [9] and related analogues have been described [10]. The pyridyl ana-
logue, 1b, was first reported in 2000 by Woollins and co-workers and prepared from 2-
aminopyridine, NEt3, and ClPPh2 at 0 °C and isolated as a white powder in 78% yield [11]. 
Reaction of an in situ generated lithiated amide, with 1 equiv. of Ph2PCl, afforded air sta-
ble 1c as a white solid in 66% yield and showed a 31P signal at 38.5 ppm [12]. A single 
crystal X-ray structure analysis of 1c revealed a P–N distance of 1.702(13) Å. Ligand 1c 
could function in a P-monodentate fashion, but also through one of the phenyl rings on 
the benzhydryl group as a tethered η6-arene when bound at a Ru(II) piano-stool centre. 
Pope and co-workers [13] prepared a range of fluorescent phosphinous amides 1d–f from 
a stoichiometric reaction of the appropriate primary amine:ClPPh2 in CH2Cl2, and NEt3, at 
0 °C. It was found that 1d–f could be isolated as colourless, yellow oils or as a dark orange 
solid and showed 31P signals at 42.2, 42.1, and 26.1 ppm, respectively. These ligands were 

Figure 1. Cartoon illustration of some known diphosphines bearing a N atom in the backbone
(R, R‘ = alkyl, aryl group).

Unlike general synthetic phosphorus methodologies widely used for constructing P–C
bonds [5], the transformations shown in Scheme 1 are simple condensations and employ,
typically, secondary chlorophosphines or secondary phosphines as key starting reagents.
In many instances, especially the Phospha-Mannich based reactions [6,7], work-up and
isolations are straightforward and target P(III) compounds can often be accessed in good
to high yields. Furthermore, in an industrial context, these reactions are important in the
industrial preparation of flame retardants for cotton based materials using [P(CH2OH)4]+

salts and condensation with urea [8]. The utility of this approach will be highlighted, using
suitable examples, in the following sections.
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Scheme 1. Key steps for relevant P-based ligand syntheses utilising R2PCl and R2PH.

2. P–N Chemistry
2.1. Synthesis of Selected Examples

The ligand 1a (Figure 2), bearing a phenyl substituent (X = Y = H), has been known for
over 25 years [9] and related analogues have been described [10]. The pyridyl analogue, 1b,
was first reported in 2000 by Woollins and co-workers and prepared from 2-aminopyridine,
NEt3, and ClPPh2 at 0 ◦C and isolated as a white powder in 78% yield [11]. Reaction of
an in situ generated lithiated amide, with 1 equiv. of Ph2PCl, afforded air stable 1c as
a white solid in 66% yield and showed a 31P signal at 38.5 ppm [12]. A single crystal
X-ray structure analysis of 1c revealed a P–N distance of 1.702(13) Å. Ligand 1c could
function in a P-monodentate fashion, but also through one of the phenyl rings on the
benzhydryl group as a tethered η6-arene when bound at a Ru(II) piano-stool centre. Pope
and co-workers [13] prepared a range of fluorescent phosphinous amides 1d–f from a
stoichiometric reaction of the appropriate primary amine:ClPPh2 in CH2Cl2, and NEt3,
at 0 ◦C. It was found that 1d–f could be isolated as colourless, yellow oils or as a dark
orange solid and showed 31P signals at 42.2, 42.1, and 26.1 ppm, respectively. These lig-
ands were coordinated to gold(I) and displayed interesting photophysical properties. In
2022, unlike conventional pathways to phosphinoamines (Route A, Scheme 1) previously
highlighted, an electrochemical route has been reported as an alternative strategy for gen-
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erating P–N bonds. For example, 1g could be accessed through coupling of secondary
amines/phosphines and concomitant H2 evolution [14]. Utilising a single P–N bond form-
ing step has successfully enabled the preparation of PN2-tridentate ligands such as 1h
and 1i [15,16] which have subsequently been widely studied in various catalytic trans-
formations via metal ligand cooperative catalysis. The synthesis of 1h was accomplished
using NEt3/nBuLi, tBu2PCl, and 6-[(diethylamino)methyl]pyridine-2-amine. The tridentate
phosphinoamine, 1j, was prepared from Cy2PCl and BzNH2 in C7H8, in the presence of
excess NEt3, and was isolated as a colourless solid in 69% yield [17]. The 31P NMR of 1j
showed one resonance for the PN atom at 32.6 ppm (as a dd) and −12.6 ppm (as a d for
the -PCy2 groups, Table 1). Other multidentate ligands, such as 1k [18], were synthesised
by reaction of (2-C5H4N)CH2N(CH2CH2NH2)2 with 2 equiv. of iPr2PCl in THF in the
presence of excess NEt3 to afford the desired product as a pale yellow oil in 88% yield and
a 31P NMR at 63.9 ppm (in C6D6). P–N formation can be accomplished, through condensa-
tion, upon reaction of 2-aminopyridine and [ClP(µ-NtBu)]2 in the presence of excess NEt3,
in THF, to afford 1l as a colourless crystalline solid in 32% yield. The 31P NMR spectrum
showed a signal at 106.4 ppm whilst single crystal X-ray analysis revealed an intramolecular
N–H . . . N H-bond spanning the P2N2 four-membered core [19]. The tripodal phosphi-
noamine 1m [20,21] was readily prepared from N(CH2CH2NH2)3 and tBu2PCl (3 equivs) in
THF in the presence of DBU and isolated as a colourless oil in 95% yield and with a 31P NMR
signal at 77.9 ppm (in C6D6). The three NH sites could further be readily deprotonated,
with nBuLi and quenched with GaCl3, to form a corresponding Ga compound. The ligand
1n (abbreviated as TPAP) was synthesised from reaction of tris[2-[N-(2-pyridinemethyl)-
amino]ethyl]amine and ClP(NMe2)2, which upon subsequent deprotonation with excess
tBuOK in THF gave 1n as a white solid which displayed a 31P resonance at 126 ppm [22,23].
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A well-known transformation of tertiary phosphines is their oxidation and this re-
activity is also the case for phosphinoamines which react with H2O2, elemental sulfur or
selenium or even BH3.SMe2 to give the corresponding P(V) analogues. These aminophos-
phine chalcogenides display a rich and varied chemistry towards a range of alkali metal
complexes, frequently involving deprotonation of the NH group [24].
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2.2. Importance of –N(H)– Backbone Functionality in P–N Ligands

The impact of an –N(H)– group in catalysis can be nicely illustrated by the methyl sub-
stituted derivative Ph2PN(Me)(2-C5H4N) 1o which could be prepared from
2-(methylamino)pyridine in Et2O and nBuLi as base followed by quenching with ClPPh2 [25].
After workup, 1o was isolated as a pale yellow crystalline solid in 65%. The palladium(II)
catalysed methoxycarbonylation of olefins using 1b as ligand, bearing an –NH– spacer, was
found to be an efficient catalyst system. In contrast, when using 1o instead, a significantly
reduced catalytic activity was observed thereby demonstrating an important effect of the
–NH– group. The free –NH– group in these singly substituted phosphinoamines also en-
ables further P–N bond coupling reactions to occur leading to, for example, unsymmetrical
P–N–P diphosphinoamines, as will be discussed further in Section 3.2.

Coordinated aminophosphines, bearing an –NH– group, often display excellent hy-
drogen bonding capabilities and are often investigated using single crystal X-ray crystallog-
raphy. For example, cis-dichoroplatinum(II) complexes of ester functionalised analogues
of 1a show intramolecular N–H . . . ClPt H-bonding [10]. With the inclusion of an addi-
tional acceptor, such as that in 1b, intermolecular N–H . . . N hydrogen bonding linking two
molecules into a dimer pair was observed [11]. Other H-bonding motifs have also been
observed but are not discussed here.

Deprotonation of the secondary amine group can also enable amido based ligands to
be prepared as illustrated by the elegant work of Velian and co-workers [26]. This group
showed that the coordinated Ph2PN(H){C6H4(4-Me)} ligand in a cobalt selenide cluster
could be deprotonated, using nBuLi and reacted with FeCl2, to form a mixed Co/Fe cluster
in which [Ph2PN{C6H4(4-Me)}]− bridges an Fe and Co metal centre. Likewise, a copper
complex of 1j, was found to undergo deprotonation with KH to form a binuclear amido
complex in which 1j functions as a P3N-tetradentate ligand [17]. Deprotonation of 1m with
nBuLi was shown to afford trianionic trisamido ligands which could be used to form an
interesting array of heterometallic complexes [18,19]. The –NH– group in complexes of pin-
cer ligands (e.g., 1h, 1i) play an important catalytic role through metal-ligand cooperation
involving dearomatisation/rearomatisation via deprotonation/reprotonation steps [16].

3. P–N–P Chemistry
3.1. Synthesis of Selected Examples

Small bite-angle diphosphines such as the ubiquitous dppm [bis(diphenylphosphino)
methane] have attracted much interest over the years as an excellent chelating or bridging
ligand for mononuclear and polynuclear metal centres. Closely related to dppm, namely
dppa [bis(diphenylphosphino)amine, Figure 3], has also been widely studied as an excellent
coordinating ligand [27–30]. One further attractive advantage of dppa, over dppm, is the
ease by which it is possible to further functionalise the central amine with a range of
different substituents and some highlights to demonstrate this behaviour will be reviewed
here. The diphosphine, dppa, can readily be synthesised from ClPPh2 and (Me3Si)2NH
and isolated as a white solid [31].

One of the most spectacular successes of bis(phosphino)amines in catalysis has fo-
cused on extensive studies of PNP ligands that have been reported, in relation to the
formation of 1-octene via a Cr catalysed ethylene tetramerisation [32]. A typical PNP
ligand is based on Ph2PN(iPr)PPh2 (2a) and an extensive library of other –N(alkyl)– based
systems have been reported [33,34]. Suntharalingam and co-workers [35] prepared a simple
alkyl chain (diphosphino)amine, Ph2PN(C6H13)PPh2 (2b) from n-hexylamine and 2 equiv.
of ClPPh2 in CH2Cl2 in the presence of NEt3 and was isolated as a white solid in 81%
yield. A diagnostic 31P resonance at δ 62.1 ppm (in CDCl3) was observed (Table 1). Ho-
moleptic Group 10 metal complexes were prepared, as their tetrafluoroborate salts, and the
Pd/Pt complexes were shown to be extremely potent complexes for CSC mammosphere
activity. Additional functionalities have been incorporated into the –N(R)– backbone
(2c, 2d) and, in these cases, no further donor atom participation was found in the result-
ing complexes that were studied [36,37]. Khan and co-workers have used some simple,
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–N(aryl)– modified, (diphosphino)amines to investigate a range of Au(I) complexes and
their aurophilic behaviour [38]. Two ligands studied in this work were Ph2PN(Ph)PPh2 and
2,6-Me2C6H3N(PPh2)2 (2e) which both react with AuCl(SMe2) to afford P-monodentate or
P,P-bridging gold(I) complexes. From X-ray diffraction studies of these complexes, strong
intramolecular Au . . . Au contacts were observed and displayed excellent luminescent
properties with high quantum yields. The same group [39] also used bis(phosphino)amines,
here 2,6-iPr2C6H3N(PPh2)2 (2f). for synthesising further Au(I) complexes. An alternative
illustration of routes to the synthesis of PNP ligands was provided by Pal and co-workers
who prepared Ph2PN(2,6-iPr2C6H3)PPh2 (2f), in a two-step process, from the primary
amine/nBuLi/ClPPh2 in Et2O, to give the desired PNP ligand as a yellow solid in 87%
yield. The 31P NMR spectrum showed a singlet at−6.4 ppm significantly upfield from other
–N(arene)– diphosphines of this type. In addition to 2e, (p-Me)C6H4N(PPh2)2 could be
used to prepare Cu(I) complexes that exhibited mechanochromic as well as thermochromic
luminescent behaviour. This may be attributed to the shortened Cu . . . Cu contacts [40]. We
showed that PNP ligands, with ester groups on the central –N(arene)– core (e.g., 2g) could
be synthesised from the amine/ClPPh2/NEt3 in Et2O [41]. Ligands such as 2h could be pre-
pared from Me3SiN(R‘)SiMe3/2 equiv. PCl2R and, depending on the R groups employed,
could be obtained as a mixture of R,S/S,S and R,R stereoisomers in different amounts [42].
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3.2. Importance of –N(R)– Backbone Functionality in P–N–P Ligands

The –NH– backbone functionality in P–N–P ligands is a good donor, for H-bonding,
and has been shown to H-bond to various solvents (e.g., dioxane, MeOH, acetone) and
anions (e.g., PF6

−) [27–30].
Furthermore, like dppm, it is possible to deprotonate the –NH– proton to give the

corresponding diphenylphosphinoamido anion which could also coordinate to metal
centres. To illustrate this point, Kemp and co-workers [43] prepared a five-co-ordinate
indium(III) complex In(iPr2PNPiPr2)2Cl by reaction of (iPr2P)2NLi and InCl3 in Et2O/THF.

Routes to increasing donor functionality in PNP ligand systems have been realised
through the works of several groups. Balakrisna and co-workers [44] described a new
terpyridine based diphosphinoamine 2i (Figure 4) prepared from reaction of the parent
amine and ClPPh2, in CH2Cl2 and the presence of NEt3. The phosphine 2i was isolated as a
colourless solid in 48% yield and displayed a characteristic 31P resonance at δ 69.3 ppm (in
CDCl3). From a single crystal X-ray analysis, the two P–N bond distances are 1.713(2) and
1.721(2) Å with a P–N–P angle of 114.46(12)◦. The sum of the angles around the nitrogen
centre is 359.77◦ indicating a planar geometry. Diphosphine 2i was shown to exhibit various
ligating motifs (P,P-chelate, P,P-bridging, or as a multidentate system using all P2N3 donor
atoms). Braunstein and co-workers [45,46] prepared a series of bis(phosphino)amines,
including the thioether ligands 2j and 2k [R = PhCH2, CH3(CH2)5]. These were prepared
from the corresponding primary amines and ClPPh2, in the presence of NEt3, in Et2O at
0 ◦C. Both 2j and 2k showed a single peak at δ 62.9 ppm in their 31P{1H} NMR spectra
and both ligands could be used to afford heterodinuclear and trinuclear metal complexes



Molecules 2022, 27, 6293 6 of 27

through P2S-binding. Roodt and co-workers [47] developed new pathways to potentially
water-soluble P–N–P ligands such as 2l. Hence, the N-Boc ligand was synthesised from
the free primary amine and ClPPh2, in CH2Cl2, in the presence of NEt3. The product was
isolated as a white solid in 81% yield and the 31P showed a signal at 63.8 ppm (in CD2Cl2).
This ligand could be “protected” by coordination to an {Re(CO)3} fragment, whereupon
the protecting group was removed with CF3CO2H followed by neutralisation to give a free
pendant amine site.
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salt in quantitative yield. Deprotonation of 2n with NEt3 regenerated 2m. Agapie and co-
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Unsymmetrical R‘2PN(R)PR“2 ligands [48–50] could also be synthesised through stoi-
chiometric reaction of two different chlorophosphines and MeNH2 or PhobPN(H)Me (Phob
= phobane) and Ar2PCl in the presence of NEt3. There was also a strong correlation with
iminobisphosphine PPN products formed under certain experimental conditions [49–51].
On this theme, another intriguing reaction to note, for bis(phosphino)amines, is their
rearrangement to iminobisphosphines, which is reversible and promoted by protona-
tion/deprotonation [52]. The N=P–P group is isomeric to the P–N–P systems. The
bis(phosphino)amine 2m reacts with HBF4 in CH2Cl2 to give 2n, as the tetrafluorobo-
rate salt in quantitative yield. Deprotonation of 2n with NEt3 regenerated 2m. Agapie and
co-workers have also shown the importance of aluminum induced isomerisation of PNP to
PPN ligands and relevance to Cr based ethylene tetramerisation catalysis [53].

The impact of an –N– substituent is clear with regard to the relationship between
steric effects and 1-octene/1-hexene selectivities using PNP/Cr complexes. Roodt [54]
introduced a steric parameter to describe the steric bulk at the N atom of a range of
bis(phosphino)amine ligands, a parameter similar to the Tollman cone angle widely appreci-
ated. Furthermore, simple –N(R)– group manipulation (R = H, Me, Et) of
bis(diphenylphosphino)amines can afford a range of novel, unique, polynuclear gold(I)
sulfido complexes as reported in 2020 by Yam and co-workers [28].

Finally, our group has shown [41] that the P–N bond undergoes room tempera-
ture methanolysis in which one bond is cleaved affording a phosphinoamine, bearing
an –NH– group, and a cis MeOPPh2 phosphinite bound at a Pt(II) square planar metal.
Furthermore, C–H activation of an ortho C–Harom was found to occur, within the coordina-
tion sphere, affording a five-membered metallacycle that was confirmed by single crystal
X-ray crystallography.

4. Bicyclic P–N Chemistry

Radosevich and co-workers [55] reported the synthesis of two phosphorus triamides
3a/3b (R = Me, iPr, Figure 5) from the reaction of triamines and PCl3 and NEt3 in a mixed
THF/Et2O solvent to give 3a in 80% yield as an off-white solid. The N-propyl analogue,
3b, was prepared in 83% yield. For 3a the observed 31P shift was at 159.8 ppm and the P–N
distances were found to be 1.7014(14) Å and 1.7190(13) Å whereas the pseudoaxial nitrogen
was longer [1.7610(12) Å]. The synthesis of an unusual 10-aza-9-phosphatriptycene, [56]
was achieved by reaction of the brominated tertiary amine and tBuLi, followed by addition
of (ArO)3P (1 equiv) to give 3c in 71% yield and whose 31P displayed a signal at −77.0 ppm.
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treatment of [PPh2(CH2OH)2]Cl [61]. Accordingly, this was used to access 4e in 95% yield 
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be prepared from the parent amine, HPPh2, CH2O in THF at 60 °C as a colourless oil in 
80% isolated yield and showed a 31P chemical shift at −26.3 ppm [62]. Using a Re(I) com-
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2021, our group recently described an unusual approach for obtaining coordinated P–C–
N ligands from a bridging P–C–N–C–P ligand that was promoted by internal acid proto-
nation from an arene group located on the central N atom [63]. This was shown to be a 
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5. P–C–N Chemistry
5.1. Synthesis of Selected Examples

Careful monitoring of the reaction conditions for the preparation of the tBu phosphine
4a (Figure 6), as a yellow oil, were required and involved performing the reaction at r.t. in
CH2Cl2 with 1.5 equiv. of amine and Ph2PCH2OH [57]. The 31P NMR shift (in CH2Cl2)
was −16.7 ppm (Table 1). Under dynamic vacuum, the reaction of aniline and Ph2PCH2OH
gave the phenyl analogue, 4b, in 95% yield and showed a signal at −19.4 ppm (in C6D6).
The pyrimidine ligand 4c was prepared from Ph2PH, (CH2O)n and 2-aminopyrimidine,
in C7H8 and isolated in 93% as a white solid [58]. The 31P chemical shift was indicative
of single substitution. The 1,10-phenanthroline functionalise ligand, 4d, could be isolated
in 63% yield as a yellow solid, from the in situ reaction of HPPh2, (CH2O)n and 2-amino-
1,10-phenanthroline [59]. The PN2-tridentate behaviour could be demonstrated through
coordination to Co2+ and Ni2+ affording octahedral complexes with two ligands per metal.
Here, the ligands are either PN2- or N2-coordinated. In 2021, Ren and co-workers showed
that 4d could afford a trinuclear Au2Ag complex through PN2-coordination [60]. An
alternative entry route to Ph2PCH2OH could be achieved through base (NEt3) treatment of
[PPh2(CH2OH)2]Cl [61]. Accordingly, this was used to access 4e in 95% yield and which
displayed a typical 31P resonance at −35.9 ppm. The corresponding oxide was obtained
through reaction with aq. H2O2 in CHCl3. The phosophino-aza crown 4f could be prepared
from the parent amine, HPPh2, CH2O in THF at 60 ◦C as a colourless oil in 80% isolated
yield and showed a 31P chemical shift at −26.3 ppm [62]. Using a Re(I) complex of 4f
incorporating the macrocyclic ring promoted binding of Group 2 metal ions. In 2021, our
group recently described an unusual approach for obtaining coordinated P–C–N ligands
from a bridging P–C–N–C–P ligand that was promoted by internal acid protonation from
an arene group located on the central N atom [63]. This was shown to be a remarkably clean
reaction affording 4g [and only RuCl2(p-cym)(Ph2PH), cym = cymene] and the progress of
the reaction could be carefully monitored, in solution, by NMR spectroscopy. In the absence
of a metal, this reaction did not proceed cleanly. It should also be added that P–C–N ligands
can also undergo P–C cleavage affording a secondary phosphine complex. Reaction of
tris(2-aminophenyl)amine in CH2Cl2 with Ph2PCH2OH (3 equiv.) in the presence of CaH2
to remove H2O, gave the phenyl 4h compound as a pale white solid in 82% yield and with
a 31P of−19.6 ppm (in C6D6) [64]. A similar approach could be employed, for the isopropyl
analogue of 4h, using iPr2PCH2OH affording a white powder in 90% yield [δ(P) 3.1 ppm,
C6D6] [65]. Finally, the success of Phospha-Mannich condensations, with Ph2PCH2OH,
could be realised for the synthesis of highly decorated dendrimers with multiple terminal
N–C–PPh2 functionalities [66].
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The synthesis of tripodal aminomethylphosphines, 4i [67], 4j [68–73] and 4k [74]
have successfully been achieved through threefold condensation using P(CH2OH)3 and
three equiv. of the appropriate amine, either in dynamic vacuum or using toluene as
solvent in an azeotropic distillation to remove water. For 4k, the use of [P(CH2OH)4]Cl
as a P(V) precursor and reaction with 4 equiv. of amine afforded the corresponding
tetraaminoalkylphosphonium salts, followed by reduction with tBuOK, gave the tripodal
ligands in >85% isolated yields.

5.2. Importance of –N(H)– Backbone Functionality in P–C–N Ligands

The –N(H)– functionality can undergo intermolecular N–H . . . O H-bonding to sol-
vent molecules such as MeOH and EtOH. In tripodal ligands such as 4k intramolecular
N–H . . . N H-bonding persists between adjacent arms of the aminomethyl groups on P [74].

The –NH– group was shown to promote protonolysis of LnacnacLnR2(THF) (Ln = Y
and Lu) with 2 equiv. of Ph2PCH2N(H)Ph yielding phosphinoamido complexes. Further re-
action with Ni(COD)2 (COD = cycloocta-1,5-diene) resulted in an unusual heterobimetallic
species in which one of the P–C bonds was cleaved and the imine group is present within
the coordination sphere. Cui et al. [75] showed how [Ph2PCH2NPh]− chelating amido
ligands could be obtained upon deprotonation of the secondary amine, Ph2PCH2N(H)Ph.
Furthermore, unusual heterobimetallic complexes could be obtained in which P–C bond
cleavage of one [Ph2PCH2NPh]− ligand with both the PhN=CH2 and PPh2 fragments
present in the coordination sphere. These findings demonstrate, under these conditions, the
instability of the [Ph2PCH2NPh]− ligand. Johnson and co-workers [68–73] used tripodal
ligands, based on three amido and one P donor sites, for constructing novel heterometallic
complexes. The synthesis of 4j was accomplished using the water-soluble trialkylphos-
phine, P(CH2OH)3 and the desired aniline under neat conditions and with use of dynamic
vacuum to remove water. In some cases, it was necessary to use C7H8 as solvent and
Dean-Stark setup to remove water. The 31P{1H} NMR data for 4j are shown in Table 1.
Reaction of 4j with excess elemental selenium in C7H8 gave the corresponding selenides
as white solids in >80% isolated yields. The 31P{1H} NMR spectra showed downfield
singlets, flanked with 77Se satellites, with JPSe couplings around 700 Hz. Reaction with
AlMe3 resulted in loss of one of the –CH2N(H)Ar arms.

Our group have previously shown that the –NH– group could be further modified
to form unsymmetrical PCNCP ligands using a second equiv. of HOCH2PR2 [76]. These
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unsymmetrical ligands showed a range of coordination capabilities as a function of the
more sterically encumbered R group. More recently, we have also shown the –NH– group
could be deprotonated with base, and quenched with ClPPh2, to afford PCNP ligands
(see Section 8).

6. PTA Chemistry
6.1. Synthesis of Selected Examples

PTA (1,3,5-triaza-7-phosphaadamantane, Figure 7) is a unique, air stable and water
soluble trialkylphosphine that has been extensively studied [77] for its coordination capabil-
ities [78–81], catalytic [77], and medicinal properties [82]. In 2015, an electron rich tricyclic
analogue of PTA, namely CAP (1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane, was re-
ported [77,83,84]. Both PTA and CAP could be prepared by Phospha-Mannich condensations
of hexamethylenetetramine or 1,4,7-triazacyclononane and P(CH2OH)3 [77]. Typically, this
procedure involved reaction of commercially available THPC and 1,4,7-triazacyclononane in
water/NaOH to give CAP in 39% isolated yield as a white crystalline solid [84]. The 31P
shows a singlet at 47.8 ppm in CDCl3 (Table 1).
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showed that lithiated PTA intermediate with aromatic nitriles gave enamine modified lig-
ands in 49–91% yields as white solids. The 31P NMR spectra show a typical single reso-
nance around −87.0 ppm. All compounds were shown to slowly oxidise, in the solid state, 
but in solution this reactivity was more rapid (1 month in chlorinated solvents). Oxidation 
with H2O2 afforded the corresponding phosphine oxides. P,N-chelation could be demon-
strated by coordination to a W(CO)4 fragment. Kwiatkowska and co-workers [88] recently 
reported the first examples of enantiomerically pure PTA ligands using a series of hydro-
lytic enzymes in a stereoselective acetylation performed under kinetic resolution condi-
tions. 
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Various “upper rim” functionalisations (5a, X = various enamines [85], phosphines [86],
imidazolyl [87]) have been obtained, via a intermediate lithiated PTA species, thus enabling
access to a greater pool of “PTA like” ligand systems. Frost and co-workers [85] showed
that lithiated PTA intermediate with aromatic nitriles gave enamine modified ligands in
49–91% yields as white solids. The 31P NMR spectra show a typical single resonance around
−87.0 ppm. All compounds were shown to slowly oxidise, in the solid state, but in solution
this reactivity was more rapid (1 month in chlorinated solvents). Oxidation with H2O2
afforded the corresponding phosphine oxides. P,N-chelation could be demonstrated by
coordination to a W(CO)4 fragment. Kwiatkowska and co-workers [88] recently reported
the first examples of enantiomerically pure PTA ligands using a series of hydrolytic enzymes
in a stereoselective acetylation performed under kinetic resolution conditions.

6.2. Importance of -N- Backbone Functionality in PTA and Related Compounds

Whilst various efforts have focused on “upper rim” modification of the carbon atom
between P and N, the presence of N donor atoms has enabled alkylations of PTA to be
performed using various benzylic halides and all showed good water solubility [89,90].
These alkylated PTA ligands 5b (A = Cl−, Br−, PF6

−) could be used as Rh(I) catalyst pre-
cursors for the aqueous-biphasic hydroformylation of 1-octene [89] and as Au(I) complexes
anticancer agents [90]. Other quaternisations have been reported and used to generate Ru
complexes that showed cytotoxic activity towards cancer cell lines [82].

Both PTA and CAP display N-protonation characteristics that were be monitored by
31P{1H} NMR spectroscopy [77]. Our group found that cationic trialkylphosphines 5c are
intramolecular H-bonded analogues of PTA and could function as effective ligands to Ru(II)
and Rh(III) metal centres [91]. PTA was shown to undergo direct N-acylation with benzoic
anhydride affording 5d in 38% yield and was shown to be soluble in both water and other
polar solvents [92].

Whilst various examples of complexes of PTA are known, using exclusively the P-
donor, it has also been possible to construct networks using both P/N donor atoms [93].
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7. P–C–N–C–P Chemistry
7.1. Synthesis of Selected Examples

As analogues of dppp [bis(1,3-diphenylphosphino)propane], P–C–N–C–P ligands
have received widespread appeal. In their excellent review, Balint and co-workers [94]
highlighted various aspects of P–C–N–C–P (and P–C–N) ligands and the Reader is directed
here for further insights. This type of synthesis methodology (Route B, Scheme 1) can be
extended to various R/R‘ groups on both P and N donors and studied, for example in
conjunction with Cr, for tri- and tetramerisation of ethylene [95]. In some cases, the ligands
6a (Figure 8) were found to be extremely air sensitive. Typical R groups on both P centres
include Ph and Cy, whilst on N they include iPr, tBu, and Ph. The bisphosphine, 6b, could
be prepared under similar conditions as an air stable colourless solid and showed a 31P
signal at −25.9 ppm [96]. Ligand 6b was found to react with Au(I) and shown to act as a
bridging or chelating diphosphine depending on stoichiometry. In all cases presented so
far, the –PR2 groups are identical. Our group reported the first examples of nonsymmetrical
P–C–N–C–P ligands 6c using a two-step synthesis [76]. This was further corroborated by
the presence of two 31P signals in the NMR spectrum consistent with inequivalent P nuclei.
We also observed these ligands could bind in various motifs (P-monodentate, PP-chelate,
and PP-bridging two different metal centres). The differences in ligating behaviour could
be attributed to the sterics of both R groups on the two P-centres. We have also reported
the synthesis of a 2-alkenyl N-arene functionalised P–C–N–C–P ligand 6d [97]. N-pyridyl
functionalised bis(phosphino)amines 6e and 6f (95% yield, 31P −27.7 ppm) could be syn-
thesised from Ph2PH, CH2O and the appropriate pyridylamine [98–101]. Both 6e and 6f
show diverse coordination chemistries with Group 11 metals. Bridging P–C–N (6g) [102],
2,2‘-bipyridyl diphosphine (6h) [103] and the polyphosphine P–C–N–C–P (6i) [104,105]
ligands have also been reported. Tetradentate ligands 6i, based on a phenyl, naphthyl or
biphenyl scaffold have been prepared and show (by single crystal XRD) weak C–H . . . π

interactions upon complexation to Group 11 metal centres [105]. The air stable orange
ferrocenyl bisphosphinoamine 6j could be prepared, in 87% yield, from double conden-
sation of the ferrocenyl primary amine and Ph2PCH2OH and showed a 31P signal at
−23.5 ppm [106]. The X-ray structure of this compound was also determined. Likewise the
carborane functionalised phosphine 6k could be prepared from CH2O, H2NPh in DMF
at 60 ◦C for 3 h and showed two singlets at 30.2 and 36.6 ppm (ratio 30:1 for rac:meso) for
the two diastereomers [107]. Our group recently described a novel diphosphane 6l, based
on two five membered, bicyclic P2C2N, rings that could be prepared from [P(CH2OH)4]+

and (4-Me2N)C6H4NH2 or (4-MeO)C6H4NH2 [108,109]. Microwave assisted Kabachnik-
Fields reaction of aminomethylphosphine oxides and (CH2O)n and Ph2P(O)H gave the
corresponding (un)symmetrical phosphine oxides, such as 6m, in excellent (>90%) yield
bearing a central –NH– or –NR– group [110].

Miller and co-workers [111–113] prepared tripodal phenyl and cyclopentyl phosphines,
6n, from Ph2P(CH2OH)2

+ and NH3. The latter in 59% yield and showed a 31P signal at
−18.4 ppm. Tridentate ligands 6n can be prepared either from [Ph2P(CH2OH)2]Cl or in
situ, from P(C5H9)2H/(CH2O)n and NH3. The 31P{1H} NMR spectrum showed a singlet
at −18.4 ppm indicative of this substitution pattern. Both P3- and P2-coordination modes
were observed at Ru metal centres. This is a common fragment that is present in a range
of phosphine ligands that are finding excellent applications in catalysis and coordination
chemistry. In 2011, Gade and co-workers reported the synthesis of tridentate 2,5-dimethyl-
and 2,5-diphenylsubstituted phospholanes 6o using a similar synthetic methodology [114].
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7.2. Importance of –N(R)– Backbone Functionality in P–C–N–C–P Ligands

Previously, diphosphine 6g bearing two secondary amine groups, is capable of acting
as a bridging ligand. In contrast, the groups of Yamashita [115] and Hill [116,117] have
shown related 1,2-substituted bis(phosphino)amines 6p and 6q (Figure 9) are precursors to
hydroborane and PCP pincer proligands. Hence, reaction of 1,2-phenylenediamine with
tBu2PH and CH2O gave 6p in 68% yield, with both –NH– groups available for further
reaction, in this case with BH3.SMe2 and nPr2NH to afford a hydroborane in this case.
Whilst 6q was not isolated, it is clearly an intermediate which subsequently reacts with
CH2O to form N,N‘-bis(phosphinomethyl)-dihydroperimidines.

Molecules 2022, 27, 6293 12 of 27 
 

 

 
Figure 9. Selected examples of P–C–N–C–P ligands. 

Our group have been interested, for a number of years, in highly decorated ditertiary 
phosphines with –CO2H and/or –OH functionalities in the N-arene backbone and have 
found positioning to be important in determining packing arrangements as seen for vari-
ous Au(I), Pd(II), Pt(II), and Ru(II) metal centres studied [118–122]. The diphosphine 6r 
forms an unusual hexameric structure in which the ligand acts as a P2O-tridentate ligand 
[121]. We have shown, by careful manipulation of the R group on the nitrogen atom, the 
ability to impact a range of packing motifs through H-bonding patterns at various late 
transition metal centres. In addition, the position of, for example, –CO2H groups could 
also result in intramolecular protonation of one of the P–C bonds forming lactone func-
tionalised P–C–N ligands at a coordinated metal centre [63]. A similar P–C bond cleavage 
has been observed in a piano-stool complex of 4i (X = O) which, in the Ru(II) coordination 
sphere, shows a single secondary aminophosphine ligand and Cp/PPh3 ligands [123]. In 
6r, where only a singly ortho hydroxy group is available, P2O-tripodal coordination at 
Re(V) and Tc(V) oxo centres has very recently been observed [124]. 

One of the earliest demonstrations of the importance of the pendant amine is its sus-
ceptibility towards protonation, relevant to many catalytic processes involving hydrogen. 
For example, elegant work by Bullock and co-workers [125] has shown that the tricarbonyl 
iron complex Fe(CO)3(6s) undergoes protonation, with [(Et2O)2H]+[B(C6F5)4]− at the Fe, 
whilst with HBF4.OEt2, protonation occurs at the iron and pendant N. Treatment with ex-
cess HOTf gives a dicationic complex where both the Fe and N centres are protonated. 
Protonation reactions have also been studied in disubstituted diiron systems as well [126]. 
In addition to the protonation capabilities at the pendant amine, the nitrogen can also 
participate in further bonding to a transition metal, acting as a facial P2N-tridentate system 
as found in [Mo(Cp)(PNP-6s)(CO)]+ [127]. 

Whilst many studies have focused on the use of Ph2PCH2OH, the more electron rich 
Et2PCH2OH has been used to access a range of amino acid ester ligands 6t [128]. The Rh 
complexes have been used for the catalytic hydrogenation of CO2 and found to be active 
with respect to formate formation. 

The ligand 6u has been used to support a Ni(0) metal centre, and immobilised within 
a protein scaffold via in situ amide bond formation [129]. Finally, Li and co-workers have 
used a hybrid NHC-diphosphine 6v as a facial coordinating ligand for the Ru-catalysed 
synthesis of N-substituted lactams by acceptorless dehydrogenative coupling of diols 
with primary amines [130]. 

8. P–C–N–P and P–N–N–P Ligands 
Synthesis of Selected Examples 

Recent work by our group has shown that rare examples of P–C–N–P ligands 7a (Fig-
ure 10), with an N-backbone group, could be synthesised by reaction of the singly substi-
tuted naphthyl P–C–N precursors, with ClPPh2 in the presence of LDA [131]. These 

Figure 9. Selected examples of P–C–N–C–P ligands.

Our group have been interested, for a number of years, in highly decorated ditertiary
phosphines with –CO2H and/or –OH functionalities in the N-arene backbone and have
found positioning to be important in determining packing arrangements as seen for various
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Au(I), Pd(II), Pt(II), and Ru(II) metal centres studied [118–122]. The diphosphine 6r forms
an unusual hexameric structure in which the ligand acts as a P2O-tridentate ligand [121].
We have shown, by careful manipulation of the R group on the nitrogen atom, the ability
to impact a range of packing motifs through H-bonding patterns at various late transition
metal centres. In addition, the position of, for example, –CO2H groups could also result in
intramolecular protonation of one of the P–C bonds forming lactone functionalised P–C–N
ligands at a coordinated metal centre [63]. A similar P–C bond cleavage has been observed
in a piano-stool complex of 4i (X = O) which, in the Ru(II) coordination sphere, shows a
single secondary aminophosphine ligand and Cp/PPh3 ligands [123]. In 6r, where only a
singly ortho hydroxy group is available, P2O-tripodal coordination at Re(V) and Tc(V) oxo
centres has very recently been observed [124].

One of the earliest demonstrations of the importance of the pendant amine is its sus-
ceptibility towards protonation, relevant to many catalytic processes involving hydrogen.
For example, elegant work by Bullock and co-workers [125] has shown that the tricarbonyl
iron complex Fe(CO)3(6s) undergoes protonation, with [(Et2O)2H]+[B(C6F5)4]− at the Fe,
whilst with HBF4.OEt2, protonation occurs at the iron and pendant N. Treatment with
excess HOTf gives a dicationic complex where both the Fe and N centres are protonated.
Protonation reactions have also been studied in disubstituted diiron systems as well [126].
In addition to the protonation capabilities at the pendant amine, the nitrogen can also
participate in further bonding to a transition metal, acting as a facial P2N-tridentate system
as found in [Mo(Cp)(PNP-6s)(CO)]+ [127].

Whilst many studies have focused on the use of Ph2PCH2OH, the more electron rich
Et2PCH2OH has been used to access a range of amino acid ester ligands 6t [128]. The Rh
complexes have been used for the catalytic hydrogenation of CO2 and found to be active
with respect to formate formation.

The ligand 6u has been used to support a Ni(0) metal centre, and immobilised within
a protein scaffold via in situ amide bond formation [129]. Finally, Li and co-workers have
used a hybrid NHC-diphosphine 6v as a facial coordinating ligand for the Ru-catalysed
synthesis of N-substituted lactams by acceptorless dehydrogenative coupling of diols with
primary amines [130].

8. P–C–N–P and P–N–N–P Ligands
Synthesis of Selected Examples

Recent work by our group has shown that rare examples of P–C–N–P ligands 7a
(Figure 10), with an N-backbone group, could be synthesised by reaction of the singly
substituted naphthyl P–C–N precursors, with ClPPh2 in the presence of LDA [131]. These
ligands coordinate to Cr(0) centres generating the corresponding octahedral tetracarbonyl
complexes. Furthermore, these ligands were also hown to be effective, in the presence of
Cr(acac)3 and MMAO-3A, for ethylene tri-/tetramerisations. Conversely, starting from
tBu2PNC3H3N and deprotonation with nBuLi at −78 ◦C then quenching with tBu2PCl at
low temperature then warming to r.t. gave 7b in 71% isolated yield [132]. Two doublets in
the 31P NMR support the non-symmetric structure. Only 5% P–N hydrolysis took place in
CDCl3 indicating 7b has good solution stability under these conditions. The same approach
could be used to access a series of diphosphinoindole ligands 7c [133]. Reaction of the P(III)
intermediate with nBuLi, in Et2O, at −78 ◦C and reaction with ClPPh2 gave the chelating
ligands 7c in 35–73% isolated yields. The NMR spectra showed one doublet around 39 ppm
for the phosphinoamine and a further second doublet around −25 ppm. In relation to PNP
and PCNCP ligands this is a hitherto new class of ligand that has received only limited
attention so far.
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Simple Ar2P–N–N–PAr2 ligands, 7d, can be accessed through the direct reaction of the
appropriate hydrazine and ClPR2 (Ar = 2-MeC6H4, 2MeOC6H4) [48].

9. P–C–C–N–C–C–P Ligands
9.1. Synthesis of Selected Examples

The basic backbone here represents an important ligand class of terdentate ligand, or
“pincer” ligands [134,135] given they can occupy three coordination sites at a metal site.
In this context, the central N atom can be viewed as either neutral palindromic or anionic
palindromic ligands depending on the charge at nitrogen. Usually the central –NR– group
is either a secondary amine, tertiary amine or 2,6-pyridyl group for example. In this case,
the role of the central N atom can be more influential on the reactivity of the complex,
via electron effects and the variation of the trans influence. Some illustrative examples
of ligands of this type are shown in Figure 11 and a brief discussion of the synthesis and
reactivity are described here. It is important that these pincer ligands can import good
stability and hence often chosen for this property.

We use some recent elegant examples, from the literature, to highlight these classes of
diphosphines. As will also be mentioned, these ligands can display noninnocent behaviour
and can expand the application of such complexes in transition metal chemistry. This will
involve formation of a C=N double bond as will be illustrated and how this can be used
to impart further reactivity, either in catalysis and/or through bond activation. Note also,
the pincer arrangement also allows outer sphere effects, like what previously seen for the
PCNCP ligands with regard to protonation.

The first type of R2P–C–C–N(H)–C–C–PR2 pincer ligands to consider (Figure 11) are
those with a central –N(H)– group where R = Ph (8a) [136,137], Cy (8b) [138], tBu (8c) [139].
The Ph derivative 8a was synthesised from Ph2PH, tBuOK and (ClCH2CH2)2NH2

+Cl− in
THF and could be isolated as a viscous oil showing a 31P shift at −20.6 ppm (C6D6) [136].
The tBu analogue 8c was prepared from tBu2PLi and Me3SiN(CH2CH2Cl)2 at −60 ◦C
in THF and isolated as a viscous light yellow liquid in 76% yield showing a 31P signal
at 22.3 ppm (in C6D6). Tertiary alkylamine diphosphinoamine ligands 8d [140] and the
phenyl-substituted 8e [141,142] are also known and could easily be obtained, in 44% yield,
from reaction of the lithium salt and the bis(chloroethyl)amine HCl salt.

PNP pincer ligands with a pyridyl N atom are also known, both with –CH2PR2 groups
and with –CMe2PR2 (8f) [143,144] or –CH{CH2(2-C5H4N)}PR2 (8g) [145] substituents.
Furthermore, the spacer can also be a –N(H)– group, as opposed to a –CH2– group, as
is the case for 8h [146] and prepared by the P–N coupling of ClP(C6H4CO2

tBu)2 with
2,6-diaminopyridine in the presence of NEt3 and showed a 31P signal at 25.4 ppm (in
CDCl3). Unsymmetrical PNP-pincer ligands such as 8i is an excellent ligand, in conjunction
with metals such as Mn [147–150] or Ru [151] for various catalytic transformations.

Pyridal appended (8j) [152], tetradentate P–C–C–N–C–C–P (8k) [152] and water-
soluble derivatives (8l) [153] have also been prepared, the latter via the diprimary phos-
phine intermediate (H2PCH2CH2)2N(CH2CH2OMe).
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9.2. Importance of –N(R)– Backbone Functionality in P–C–C–N–C–C–P Ligands

In a recent study in 2022 [154], the synthesis of a large family of N-amide functionalised
PNP ligands 8m, including water-soluble variants [155], has been reported using an acyl
chloride, NH2(CH2CH2PPh2)2

+Cl− and NEt3 in CH2Cl2. The 31P{1H} NMR spectra show
typically two singlets around −20 ppm, due to restricted amide bond rotation.

Deprotonation of the secondary amine can result in a facial PNP coordination in
which there is an amido group. This can be appreciated in several examples (8n, 8o) of
compounds shown in Figure 12 [156,157]. Dearomatisation is also important as a function
of deprotonation and extensive studies have been undertaken in this field [135].
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10. Small/Medium Ring Based Cyclic Ligands
10.1. Synthesis of Selected Examples

The Mannich condensation reaction can be used to form chiral seven membered macro-
cycles [158]. As is normal for this synthesis protocol, reaction of the bis(phosphine) with
(CH2O)n at around 100 ◦C led to te rac/meso hydroxymethyl functionalised diphosphine
which, upon treatment with chiral amines, gave 1-aza-3,6-diphosphacycloheptanes 9a as
air-stable crystalline solids (Figure 13). The X-ray structure revealed short P . . . P distances
(3.120 and 3.118 Å) in comparison to known rac isomers. Condensations with arylamines
such as aniline, p-toluidine and 5 aminoisophthalic acid and benzylamine were undertaken.
Two 31P peaks at −25 and −27 ppm for the arylamines and −33.5 and −31.8 for benzy-
lamine were observed (Table 1). The reaction of Ph(H)P(CH2)2P(H)Ph with CH2O, afforded
the corresponding hydroxymethyldiphosphine, then reaction with iPentNH2, in DMF, gave
a mixture of products as verified by 31P NMR [159]. Isolation of the macrocycle was possible
in 21% yield and confirmed by X-ray crystallography. Helm and co-workers [160] expanded
this seven-membered ring ligand family to other 4-C6H4X analogues (X= OMe, H, Me, Br,
Cl, CF3) and a subsequent series of Ni-based electrocatalysts for hydrogen generation.
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Various eight membered cyclo-P2N2 macrocycles have received attention and been
described. For example, cyclic diphosphines PR

2NR‘
2 (R = Ph, tBu; R‘ = Ph, Bn, 9b)

have been used to prepare diiron [161] and ruthenium [162] complexes. A water-soluble
variant of 9b, bearing –CO2H groups, has also been reported by Hey-Hawkins and co-
workers [163]. The 1,5-diaza-3,7-diphosphacyclooctane 9c could be conveniently prepared
from (2-C5H4N)P(CH2OH)2 and condensation with primary amines leading to a range of
air-stable crystalline products. Only one signal was observed in the 31P{1H} NMR spectra
in the region −33 to −63 ppm [164]. Other modifications of the pyridyl cyclic diphos-
phines [165–167] could also be achieved, following similar procedures to that employed for
9c, and suitably disposed for various coordination studies to be undertaken.

A synthetic strategy based on dynamic covalent chemistry of macrocyclic
aminomethylphosphines has been developed for various 14- [168], 16- [169], 18- [170]
and 20-membered P4N2 macrocycles. These reactions start with bis(phosphino)alkanes,
formaldehyde and primary amines resulting in multiple products. The amine in question
is again also important and influences the outcome of the condensation reaction. Again,
the lability of the P–CH2–N fragment is important for these dynamic systems.

10.2. Importance of –N(R)– Backbone Functionality in Cyclic Diphosphines

As seen in previous sections within this review, the interaction of the pendant amine in
complexes of cyclic diphosphines of 9c (and related analogues) has previously been studied
towards protonation reactions [171], heterolytic splitting of H2 [172], electrocatalytic alcohol
oxidation [173], and hydroalkoxylation [174].

Immobilisation of ligands of the type 9c have been undertaken in which a suitable
para substituted group on the N arene groups has been introduced enabling anchoring
to a metal oxide surface (via phosphonic acid groups) [175], glassy carbon electrodes (via
a CuI catalysed alkyne-azide cycloaddition) [176], or a carbon electrode (via amide bond
formation) [177]. Recently, Kubiak and co-workers [178] prepared a partially substituted
derivative through a multistep approach. The penultimate step, involved lithiation of a
bromo intermediate and reaction with ClP(O)(OEt2)2 in THF at −108 ◦C. The phosphonate
P2N2 ligand was isolated in 76% yield. A 31P spectrum showed a singlet at −49.4 ppm (in
CDCl3). Here, the group achieved immobilisation via modification of the arene on the P
donors (as opposed instead to the N donors as described previously).

11. P–C–P–C–N–C–P–C–P and P–C2–N–C2–N–C2–P Ligands
11.1. Synthesis of Selected Examples

In this penultimate section, some examples bearing one (or two) amine groups in a
diphosphine backbone (Figure 14) are highlighted. Ligand 10a could be prepared from
Ph2PCH2P(Ph)CH2OH and BnNH2 as a mixture of meso-/rac- diastereomers [179]. Disso-
lution in CH3CN enabled precipitation of the meso isomer in 25% yield. The 31P{1H} NMR
showed two doublets at−41.7 and−22.3 ppm for the meso form. 1,8-naphthyridine ligands
10b (R = iPr, tBu) [180,181] and 1,10-phenanthroline ligands 10c (R = Cy, Ph) [182,183] and
10d [184] are all examples of PNNP-tetradentate ligands. Finally, 10e could be prepared,
as the potassium salt, via reaction of KPPh2 with N,N‘-bis(2-fluorophenyl)-formamidine
in C7H8 in excellent yield and showed a 31P signal at −14.3 ppm (d8-THF) [185–187]. The
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3,3‘-azo-benzene phosphine 10f (31P −4.9 ppm, CDCl3) was prepared in 66% yield from
HPPh2, meta-diiodo-azobenzene and Pd(PPh3)4/NEt3 in C7H8 at 100 ◦C [188].
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bisamine 10g (Figure 15) and deprotonation achieved through reaction with 
Mg(nBu)2/C7H8 [189] or reaction with a dimesityliron(II) dimer in THF [190]. Lee and 
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Figure 14. Selected examples of P–C–P–C–N–C–P–C–P, P–Cm–N–Cn–N–Cm–P and P–C3–N–N–C3–P
ligands (m = 2, 5; n = 1, 2).

11.2. Importance of –N(R)– Backbone Functionality

A bisamido, dianionic ligand could be accessed through the neutral parent proligand
bisamine 10g (Figure 15) and deprotonation achieved through reaction with
Mg(nBu)2/C7H8 [189] or reaction with a dimesityliron(II) dimer in THF [190]. Lee and
Thomas [191] recently found a nickel templated replacement approach of Ph substituents on P
could be achieved leading to different –PR2 substitutions [with Me, iPr or –(CH2)3– groups].
Deprotonation of ligands 10h [192] and 10i [193] gave β-diketiminate ligands whose struc-
tural flexibility can be realised through complexation to various metal centres.
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Table 1. 31P{1H} NMR data for selected ligands discussed in this review.

Ligand δ(P)/ppm NMR Solvent Reference

1a 25.9 CDCl3 [25]
1b 26.4 CDCl3 [11]
1c 38.5 CDCl3 [12]
1d 42.2 CDCl3 [13]
1e 42.1 CDCl3 [13]
1f 26.1 CDCl3 [13]
1g 71.3 CDCl3 [14]
1j 32.6 (and 12.6) C6D6 [17]
1k 63.9 C6D6 [18]
1l 106.4 CDCl3 [19]

1m 77.9 C6D6 [20]
1n 126 CD3CN [23]

dppa 43.1 CDCl3 [31]
2a 50.1 CDCl3 [32]
2b 62.1 CDCl3 [35]
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Table 1. Cont.

Ligand δ(P)/ppm NMR Solvent Reference

2f −6.4 CD2Cl2 [39]
2g 69.0 CDCl3 [41]

2h a 137.9/135.3 C7D8 [42]
2i 69.3 CDCl3 [44]

2m 59.5 CDCl3 [52]

2n 17.2 and −20.0 (JPP
277 Hz) CD2Cl2 [52]

3a 159.8 CDCl3 [55]
3c −77.0 CDCl3 [56]

4a −16.7 C6D6 [57]
4b −19.4 C6D6 [57]
4c −17.1 CDCl3 [58]
4d −18.6 CDCl3 [59]
4f −26.3 C6D6 [62]
4h −19.6 C6D6 [64]
4i ca. −61.0 CD3COCD3 [67]
4j −29.6 to −33.6 C6D6 [68,69]
4k ca. −42.0 CD3SOCD3 [74]

PTA −98.3 D2O [77]
−101.0 CDCl3 [77]

CAP 46.7 D2O [77]
52.8 CDCl3 [77]
47.8 CDCl3 [84]

5a ca. −87.0 CDCl3 [85]
5c ca. −55.0 CD3SOCD3 [91]
5d −77.9 CDCl3 [92]

6ab −26.5 C6D6 [95]
6b −25.9 CDCl3 [96]

6c −27.4 and −41.5 (JPP
4 Hz) CDCl3 [76]

6d −27.3 CDCl3 [97]
6e −28.0 CD3SOCD3 [98]
6f −27.7 CDCl3 [101]
6h −19.7 CDCl3 [103]
6j −25.3 CDCl3 [106]
6k 30.2 and 36.7 - [107]
6l ca. −34.5 CDCl3 [108,109]

6nc −28.0 CDCl3 [112]
6p 29.5 C6D6 [115]
6qc −26.0 C6D6 [116]
6r −22.1 to −28.1 CDCl3 [120]

7ad 67.0 and −21.7 CDCl3 [131]

7b 79.6 and 7.0 (JPP ~101
Hz) CDCl3 [132]

7de 47.3 CDCl3 [48]

8c 22.3 C6D6 [139]
8d ca. −19.0 CDCl3 [140]
8e −0.4 C6D6 [141]
8hf 25.4 CDCl3 [146]
8kg −7.0 and −19.6 CDCl3 [152]
8lh −52.8 CDCl3 [153]
8m −20.7 and −21.5 CDCl3 [154]
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Table 1. Cont.

Ligand δ(P)/ppm NMR Solvent Reference

9ac −25.8 and −26.6 C6D6 [158]
9ci −33.5 CDCl3 [164]

10a −22.3 and (JPP 121
Hz) CDCl3 [177]

10b 11.8 C6D6 [178]
10e −14.3 d8-THF [186]
10f −4.9 CDCl3 [188]
10h −14.5 CDCl3 [192]

a R = Ph, R‘ = Me; b R = Ph, R‘ = iPr; c R = Ph; d X = H, Y = CH; e Ar = 2-MeC6H4
; f Ar = 4-CO2

tBuC6H4; g R = Cy;
h R = Me; i R = 2-C5H4N.

12. Catalysis

There has been considerable interest in the development and application of mon-
odentate, bidentate, and polydendate phosphorus containing ligands of various metal
complexes as catalysts for wide ranging transformations of academic and industrial rele-
vance. This is also true for phosphine ligands encompassing one (or more) nitrogen donor
sites in their ligand backbone structure. The manganese(I) complex MnBr(CO)3(P,N-1b)
was shown to act as a pre-catalyst for the alkylation of amines via reductive amination
of aldehydes using molecular H2 as reductant [194]. The ruthenium(I) pincer complex
RuH(Cl)CO(PN2-1i) has been shown to hydrogenate catalytically challenging arenols to
their corresponding tetrahydronaphthols or cyclohexanols [16,195]. Significant advances
have been achieved with chromium catalysts of PNP ligands, for example 2a, for selec-
tive ethylene tri-/tetramerizations [32–34]. Furthermore recent examples of note include
incorporation of an N-triptycene group into the PNP backbone [196], the introduction of
bulky -SiR3 groups thereby avoiding use of methylaluminoxane [197], and the preparation
of new unsymmetrical PNP ligands from Ph2PNH(cyclopentyl) [198]. The isopropyl PNP
bis(phosphinoamine) ligand 2a has also been successfully applied to the gold catalysed
allylation of aryl boronic acids [199], manganese catalysed dehydrosilylation and hydrosi-
lylation of alkenes [200], and the 2,6-iPr2C6H3 PNP ligand 2f (and its C6H5 analogue) were
effective in the Buchwald-Hartwig coupling of various sterically hindered substrates [201].
The ready tuneability of PNP bis(phosphinoamine) ligands can be elegantly illustrated
by the preparation of PNPO monoxides which can act as P,O-chelating ligands to Pd(II)
and Ni(II) to afford catalysts for the copolymerization of ethylene with carbon monox-
ide [202,203]. Nickel(II) catalysts with cyclic diphosphine ligands incorporating pendant
amines have been extensively studied as electrocatalysts for both the oxidation and produc-
tion of H2 [204]. Richeson and co-workers [205] have shown that Ni(II) complexes with the
PNP pincer ligands 2,6-{Ph2PNR}2(NC5H3) (R = H, Me) can electrocatalytically generate
hydrogen from H2O/MeCN solutions. Mononuclear iridium(I) complexes of bulky PNNP
tetradentate ligands have been shown to be efficient photocatalysts for CO2 reduction [206].

13. Conclusions

It is without doubt that phosphorus ligands are an important class of compound
widely appreciated by the coordination chemistry community. Whilst considerable focus
has long been on all carbon backbone P-ligands, there is a considerable growing interest
in the incorporation of one (or more) nitrogen atoms. The importance of this class can
be released through the facile syntheses of such ligands and the tuneability, in terms of
additional reactivities, that can be imparted through the central nitrogen centre. These
types of ligands will continue to play a pivotal role in future avenues of phosphorus and
transition metal chemistry.
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