
Citation: Nachaithong, T.;

Moontragoon, P.; Thongbai, P.

Dielectric Responses of

(Zn0.33Nb0.67)xTi1−xO2 Ceramics

Prepared by Chemical Combustion

Process: DFT and Experimental

Approaches. Molecules 2022, 27, 6121.

https://doi.org/10.3390/

molecules27186121

Received: 4 August 2022

Accepted: 14 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Dielectric Responses of (Zn0.33Nb0.67)xTi1−xO2 Ceramics
Prepared by Chemical Combustion Process: DFT and
Experimental Approaches
Theeranuch Nachaithong 1, Pairot Moontragoon 2,3,4,* and Prasit Thongbai 4

1 Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University,
Khon Kaen 40002, Thailand

2 Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University,
Khon Kaen 40002, Thailand

3 Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
4 Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: mpairo@kku.ac.th

Abstract: The (Zn, Nb)-codoped TiO2 (called ZNTO) nanopowder was successfully synthesized
by a simple combustion process and then the ceramic from it was sintered with a highly dense
microstructure. The doped atoms were consistently distributed, and the existence of oxygen vacancies
was verified by a Raman spectrum. It was found that the ZNTO ceramic was a result of thermally
activated giant dielectric relaxation, and the outer surface layer had a slight effect on the dielectric
properties. The theoretical calculation by using the density functional theory (DFT) revealed that the
Zn atoms are energy preferable to place close to the oxygen vacancy (Vo) position to create a triangle
shape (called the ZnVoTi defect). This defect cluster was also opposite to the diamond shape (called
the 2Nb2Ti defect). However, these two types of defects were not correlated together. Therefore, it
theoretically confirms that the electron-pinned defect-dipoles (EPDD) cannot be created in the ZNTO
structure. Instead, the giant dielectric property of the (Zn0.33Nb0.67)xTi1−xO2 ceramics could be
caused by the interfacial polarization combined with electron hopping between the Zn2+/Zn3+ and
Ti3+/Ti4+ ions, rather than due to the EPDD effect. Additionally, it was also proved that the surface
barrier-layer capacitor (SBLC) had a slight influence on the giant dielectric properties of the ZNTO
ceramics. The annealing process can cause improved dielectric properties, which are properties with
a huge advantage to practical applications and devices.

Keywords: TiO2; electron hopping; dielectric constant; loss tangent; DFT

1. Introduction

Recently, giant or colossal dielectric permittivity oxide materials, which are the metal
oxides with a high dielectric permittivity (ε′) (more than 103), e.g., BaTiO3, CCTO, LaFeO3
and codoped NiO-based oxides [1–7], have been extensively researched [8–15]. They have
a potential to apply in many devices, i.e., multilayer ceramic capacitors and high-energy-
dense storage devices. However, there are still some practical problems about their high
dielectric loss tangent (tanδ) values, particularly in a range of low frequency.

In recent years, the giant dielectric properties of (In, Nb)-codoped TiO2 ceramics (called
INTO) [16] have been studied. It has been reported that codoped TiO2 ceramics show a very
high ε′ (~104), low tanδ (~0.02) and high temperature stability from 80 to 450 K. However,
there is still controversy in the origination of this colossal dielectric behavior. In some
reports, the electron-pinned defect-dipole (EPDD) was caused by the colossal permittivity
of this metal oxide. On the other hand, it was claimed that the colossal permittivity was
contributed from the other effects, such as the internal barrier-layer capacitor (IBLC) effect,
the surface barrier-layer capacitor (SBLC), the sample–electrode contact effect and polaronic
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hopping models [16–20]. Therefore, in this work, the mechanics inside of the giant dielectric
permittivity of TiO2-based ceramics will be reported and clarified. Although the colossal
dielectric response of (Zn, Nb)-codoped TiO2 was widely investigated [21,22], the colossal
permittivity properties of these system ceramics synthesized by wet chemical routes has
not been widely reported. Thus, in this study, both experimental and theoretical studies
were simultaneously performed on TiO2 ceramics codoped with Zn2+/Nb5+ ions. In the
experimental part, both the (Zn0.33Nb0.67)xTi1−xO2 powders and sintered ceramics were
thoroughly fabricated and characterized. Their colossal permittivity properties at different
frequencies and temperatures were investigated to expose the mechanics and behavior
inside the microstructures. In the theoretical aspect, the density functional theory (DFT)
was employed to evaluate the ground-state properties of the (Zn0.33Nb0.67)xTi1−xO2 to
understand the cause of the colossal permittivity in the (Zn, Nb)-codoped TiO2 ceramics.
The feasible explanation for the noticed giant permittivity behavior will be reported.

2. Experimental Details

(Zn0.33Nb0.67)xTi1−xO2 (ZNTO) nanoparticles (x = 0.5, 1, 2.5, 5.0 and 10%) were synthe-
sized by a simple combustion method. C16H28O6Ti (Sigma-Aldrich, Bangkok, Thailand),
NbCl5 (Sigma-Aldrich, >99.9%), N2O6Zn·xH2O (Sigma-Aldrich, 99.999%) were weighed
corresponding to each doped content. Firstly, NbCl5 and N2O6Zn·xH2O were mixed in
citric acid and then a C16H28O6Ti solution was mixed at 130 ◦C and stirred until a gel was
obtained. Secondly, all doping concentrations gels were calcined, then they were pressed
into pellets with diameter of 9.5 mm and thickness of ~1.3 mm. Finally, they were sintered
at 1400 ◦C for 5 h. (Zn0.33Nb0.67)xTi1−xO2 ceramics with x = 0.5 and 0.25% are referred to as
the 0.5% ZNTO and 2.5% ZNTO ceramics, respectively.

The phase structure of all samples was characterized by X-ray diffraction technique
(XRD, PANalytical, EMPYREAN). The field emission scanning electron microscopy tech-
nique (FE-SEM, FEI, Hileos Nanolab G3CX) was performed to reveal the surface morpholo-
gies of the homogeneity of all elements in the sintered samples. To confirm existing oxygen
vacancies in the microstructures, the Raman spectra of sintered ceramics were measured
with a Raman System (NT-MDT Ntegra Spectra), using laser wavelength of 532 nm. Fi-
nally, the dielectric properties or permittivity responses were measured by an impedance
analyzer technique (KEYSIGHT E4990A). In this study, the temperature dependence of
the dielectric constant (ε′) and loss tangent (tanδ) was measured in the frequency and
temperature ranges of 102–106 Hz and −60 to 200 ◦C. In order to thoroughly understand
inside the nanoscale level, the stable configuration of the periodic boundary conditions of
2 × 2 × 6 super-cell Zn and Nb-codoped rutile–TiO2 structure was studied using the DFT
calculation, performed under Vienna Ab initio Simulation Package (VASP) with Projector-
augmented plane-wave pseudopotential method (PAW) and the Perdew–Burke–Ernzerhof
(PBE) form of exchange–correlation functional. In this model, firstly, one oxygen vacancy
was created and then replaced two Ti atoms with Zn atoms to form 2ZnVo triangular defect
and another two Ti atoms with Nb atoms to form 2NbTi diamond defect. Additionally,
cutoff energy of 600 eV and 3 × 3 × 3 k-point meshes in Monkhorst–Pack k-point are also
employed to optimize the structures to obtain the lowest energy-preferable configuration,
the conjugate-gradient algorithm and Hellmann–Feynman theorem were carried out to
calculate the force acting on each ion and 5 × 5 × 5 k-point meshes in Monkhorst–Pack
k-point are used to calculate the electronic structures. The orbitals of Ti(3p6 4s2 3d2), Zn(3p6

4s2 3d10), O(2s2 2p4) and Nb(4p6 5s1 4d4) were treated as valence electrons.

3. Results and Discussion

According to Figure 1, the XRD patterns of the ZNTO powders prepared by a chemi-
cal combustion method confirmed the rutile-TiO2 (JCPDS 21-1276) [23,24] phase and no
impurity phase, which is in good agreement with other works [23–25]. The a and c values,
extracted from the XRD patterns, are shown in Table 1, and they increased with the rising
doping content. These results confirmed that the Zn2+ and Nb5+ can substitute in the Ti
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sites of the rutile structure of TiO2. The increase in the lattice parameters was due to the
larger ionic radii of the dopants compared to that of the Ti4+ host ion.
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Figure 1. XRD patterns of single doped (a) Zn, (b) Nb in TiO2 powder and (Zn0.33Nb0.67)xTi1−xO2

powder with x = (c) 0.5%, (d) 2.5% and (e) 0.5% ZNTO, (f) 2.5% ZNTO ceramics.

Table 1. Lattice parameter of ZNTO powders and ceramics with difference codoping levels.

Sample
Lattice Parameter (Å)

a c

(a) 0.5% Zn-TiO2 powder 4.5961 2.9618

(b) 0.5% Nb-TiO2 powder 4.5964 2.9619

(c) (Zn0.33Nb0.67)xTi1−xO2 powder with x = 0.5% 4.5971 2.9621

(d) (Zn0.33Nb0.67)xTi1−xO2 powder with x = 2.5% 4.5994 2.9624

(e) 0.5% ZNTO 4.5967 2.9625

(f) 2.5% ZNTO 4.5997 2.9647

According to Figure 2, the surface morphologies of the ZNTO ceramic sintered at
1400 ◦C for 5 h with 0.5 and 2.5% were revealed. It shows that the grains with grain sizes of
5.7 ± 2.4 and 3.7 ± 1.3 µm, respectively, and the grain boundaries were clearly observed.
The microstructure of the sintered ceramics was highly dense without pores in the 0.5%
ZNTO and 2.5% ZNTO ceramics. The mean grain size of the ZNTO ceramics decreased
with an increasing codoping concentration. This result is similar to those reported in the
literature by Nachaithong et al. [26] and Yang et al. [27]. It was explained that the decreased
mean grain size of the codoped TiO2 ceramics was caused by the solute drag mechanism.
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Figure 2. Surface morphologies of the (Zn0.33Nb0.67)xTi1−xO2 ceramics with x = 0.5 and 2.5%.

As shown in Figure 3, the Raman spectra of the pure TiO2 and ZNTO ceramics with
the Eg and A1g modes were presented. The Eg peaks of the TiO2, 0.5% Nb-doped TiO2,
0.5% Zn-doped TiO2, 0.5% ZNTO and 2.5% ZNTO samples appeared at 446.5, 446.5, 446.5,
444.5 and 444.5 cm−1, respectively, whereas the A1g modes appeared at 610.5, 610.0, 611.0,
611.5 and 610.5 cm−1, respectively. It was shown that the oxygen vacancies and O–Ti–O
bonds were associated with the Eg and A1g modes [28].
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Figure 3. Raman spectra of rutile-TiO2, single doped of Nb5+ and Zn2+ and ZNTO ceramics with
difference codoping levels.
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According to Figure 4, the SEM-mapping method was used to reveal a distribution of
the elements in the ZNTO ceramics (such as Zn, Nb, Ti and O), and it was found that there
is a homogeneous dispersion of the doped elements in the microstructure.
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Figure 5 shows the ε′ permittivity at room temperature of the Pure-TiO2, 0.5% ZNTO
and 2.5% ZNTO ceramics. All the samples exhibited a giant dielectric permittivity in the
frequency range of 40–106 Hz. The ε′ value of a pure-TiO2 was the lowest. Although
a rutile-TiO2 had the largest ε′ value among the simple oxides, its ε′ value is very low
compared to those of many complex oxides, such as BaTiO3 and CaCu3Ti4O12-based
materials. Nevertheless, the ε′ value of TiO2 can be significantly enhanced by codoping
metal ions. In the tanδ spectrum, the samples showed that the tanδ peaks in the frequency
range of 103–104 and ε′ slightly changed. This dielectric relaxation behavior could imply
that the Nb5+ and Zn2+ codoping ions have slightly affected the ionic polarization. However,
when it was considered in a low-frequency range, the tanδ increased with an increasing
codopant concentration. It shows that the codopants have an effect on the interfacial
polarization which is usually induced at the internal insulating layer, i.e., a semiconducting
region or surface of the sample–electrode layer of ceramics. The ε′ values of the 0.5% ZNTO
and 2.5% ZNTO ceramics were about ≈ 9 × 104 and 3 × 104 with tanδ ≈ 0.26 and 1.25 at
1 kHz and RT, respectively.
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Figure 5. Frequency dependence of (a) ε′ and (b) tanδ at RT for ZNTO ceramics with various codopant
concentrations (x = 0.5%, 0.25%).

To study the effects of the surface on the electrical properties of ZNTO ceramics in
Figure 6, after the dielectric properties of the as-fired sample were measured, both sides of
the electrodes and the outer surface layers of the pellet were removed by polishing them
with SiC paper (referred to as the polished-sample), and after that, the polished-sample was
measured, the electrodes were removed by the SiC paper and annealed at 1200 ◦C in air for
30 min (referred to as the annealed-sample). In comparison with the as-sample, polished-
sample and annealed-sample, at room temperature, all the samples exhibited very high ε′

values of≈104–105. The change in the ε′ and tanδwas not considerable compared with that
of the polished-sample, but the dielectric permittivity slightly increased in frequency, more
than 103 Hz. The tanδ decreased significantly when compared with the as-sample. After
the annealing process, the greatly reduced tanδ value and greatly increased ε′ value in the
anneal-sample were primarily due to the filling of the oxygen vacancies on the surface.
Therefore, the SBLC effect was a key factor for the anneal-sample. In this experiment, it
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was clearly shown that the outer surface layer influences the dielectric responses of the
ZNTO ceramics. The annealing method was suggested to be one of the most important for
the improvement of the dielectric properties of ZNTO ceramics by creating a resistive outer
surface layer. Furthermore, this method could be a new outer surface design approach for
other codoped TiO2 ceramic systems.
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To explain the behavior of the colossal dielectric properties in ZNTO ceramics, the
effect of temperature on the dielectric behavior at different frequencies and temperatures
was investigated, as shown in Figure 7. It is seen that the ε′ step likely decreases with
an increasing frequency, but increases with an increasing temperature, corresponding to
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a decrease in the resistance (R). Moreover, the corresponding tanδ peak also increases.
This confirmed the thermally activated giant dielectric relaxation behavior. According
to Figure 8, the Arrhenius plots of the 0.5% ZNTO and 2.5% ZNTO ceramics show the
activation energy (Ea) which is the temperature dependence of the relaxation peak of the
dielectric loss (fmax), following the Arrhenius law:

fmax= f0 exp
(
−Ea

KBT

)
(1)
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Figure 7. Temperature dependence of the (a,c) dielectric relaxation and (b,d) tanδ at different
frequencies for ZNTO ceramics with x = 0.5 and 2.5% respectively.

It is required energy for the dielectric relaxation in the ceramics and calculated from
the slope of the ln fmax vs. 1000/T plots. The Ea values of the 0.5% ZNTO and 2.5%
ZNTO ceramics were 0.213 and 0.175 eV., respectively. It is implied that the giant dielectric
response could be related to the Zn2+/Zn3+ or Ti3+/Ti4+ electron hopping. Increasing the
Nb5+ doping concentration could result in a Ti3+/Ti4+ ions ratio increase. The concentration
of the free electrons in the Nb5+-doped TiO2 is generally proportional to the Nb5+ dopant
concentration, following the equations [16]:

2TiO2+Nb2O5
4TiO2→ 2Ti′Ti+2Nb•Ti+8OO +

1
2

O2, (2)

Ti4++e→ Ti3+ (3)
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Therefore, the electron hopping can be readily stimulated when the Ti3+ or Zn3+

content rises, giving rise to a decrease in the Ea values for the ZNTO ceramics with x = 0.5
and 2.5%.

According to the theoretical investigations, we placed 2Nb atoms preferentially form-
ing a diamond-shaped structure (called 2Nb2Ti defect) and the 2ZnVo triangular defect
into the TiO2 structure simultaneously in three configurations: near, opposite and far. The
lowest total energy can be obtained when the 2Nb diamond defects and 2ZnVo triangular
defects are opposite (as shown in Figure 9), corresponding to the EPDD model and not in
the ZNTO structure. It can be clearly suggested that the giant dielectric relaxation behavior
of the ZNTO ceramics did not originate from the EPDD effect. Moreover, the electron
hopping mechanism between the Ti3+/Ti4+ ions and Zn2+/Zn3+ is also the most likely
mechanism to be related to the giant dielectric relaxation in the ZNTO ceramics.
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4. Conclusions

In this work, the (Zn + Nb)-codoped TiO2 ceramics prepared by a combustion process
show a colossal dielectric permittivity and a low loss behavior. Moreover, their dielectric
characteristics show a good frequency stability. The annealing process can cause improved
dielectric properties, which are properties with a huge advantage in practical applications and
devices. In addition, the giant dielectric relaxation behavior of the ZNTO originated from both
the IBLC and the Ti3+/Ti4+ ions and Zn2+/Zn3+ electron hopping mechanism. It indicates
that there is giant dielectric relaxation behavior in the (Zn, Nb)-codoped TiO2 systems.
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