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Abstract: Sr2*-substituted p-tricalcium phosphate (3-TCP) powders were synthesized using the
mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The
concentration of Sr2* in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and
16.67 (0.5SrTCP) mol.% with the expected Caz(POy),, Cap 9Srg 1(POy);, and Cap 55rg 5(PO4), formulas,
respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry
(EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The
study of the phase composition of the synthesized powders and ceramics by the powder X-ray
diffraction (PXRD) method revealed that 3-TCP is the main phase in all compounds except 0.1SrTCP,
in which the apatite (Ap)-type phase was predominant. TCP and 0.55rTCP ceramics were soaked in
the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of
the initial 3-TCP phase with the formation of the Ap-type phase and changes in the microstructure
of the ceramics. The Sr?* ion release from the ceramic was measured by the ICP-OES. The human
osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility
studies. The results show that the introduction of Sr%* ions into the p-TCP improved cell adhesion,
proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for
the application of the Sr%*-substituted ceramics in model experiments in vivo.

Keywords: ceramic; strontium; tricalcium phosphate; strontium substituted tricalcium phosphate;
strontium doped tricalcium phosphate; dissolution; cells adhesion; cytocompatibility

1. Introduction

Currently, extensive research and developments of new materials for bone restoration
are carried out [1,2]. The most common of these materials are based on calcium phos-
phates (CP) and are similar to the mineral components of bone tissue, being also non-toxic,
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biocompatible, and osteoinductive [3,4]. CP-based materials can be used for cements [5],
ceramics [6], and composites preparation [6,7].

CP-based ceramic is the most common material for filling bone defects [6], especially
in places bearing a mechanical load [8]. Such orthophosphates as hydroxyapatite (HA,
Cay9(PO4)6(OH)y) [9], tricalcium phosphate (3-TCP, 3-Caz(POy)2) [4], brushite (DCPD,
CaHPO4-2H,0) [10], and octacalcium phosphate (OCP, Cag(HPO4)2(PO4)4-5H,0) [11] can
be used for ceramics preparation. However, 3-TCP-based ceramics are more applicable for
bone tissue restoration, since 3-TCP is more soluble than HA [12] and has the ability to be
resorbed in the body [13,14]. Moreover, calcium phosphates are excellent accommodators
of substitutions by foreign ions, favoring the restoration of the mineral component of
the bone, and 3-TCP ceramics appear to be very promising [13,15]. The efficiency of
-TCP for bone tissue restoration is comparable to that of auto- and allografts [16,17].
The review [16] presents a comparison of clinical trials of 3-TCP, two-phase 3-TCP/HA
materials, HA cement, and autografts. Analysis of the clinical trial results demonstrated
that 3-TCP materials promote bone tissue repair better than HA and are similar to those
of autografts [16]. A detailed comparison of the effectiveness of 3-TCP and autografts
was shown in [17], where the formation of new bone tissue during tooth transplantation
was studied in vivo in mice [17]. A porous -TCP scaffold and a porous 3-TCP scaffold
seeded with mouse bone marrow cells were implanted in animals. Parameters of bone
volume, bone surface, and indicators of the trabeculae growth demonstrated no significant
differences between (3-TCP and (3-TCP with bone marrow cells [17].

The possibility of the substitution of calcium ions into the 3-TCP structure opens a way
of modifying its properties [15,18]. Substitution ions can act as bioactive agents imparting
antimicrobial properties or enhancing tissue regeneration processes [15,19-21]. From this
point of view, a number of substituted CP materials containing Cu?* [22], Mn?* [23],
Zn%* [24], Fe3* [25], and Gd3* [26] ions have been studied.

Additionally, a number of investigations have been devoted to strontium (Sr) function-
alization into calcium phosphates [27,28], since it is known to be effective for osteoporosis
treatment [29]. Special interest in Sr is due to its properties that influence osteogenesis
in vivo [20,30-32]. Furthermore, Sr?* ions stimulate the growth of osteoblasts promoting
new bone growth, while inhibiting the activity of osteoclasts and reducing the rate of bone
resorption [27,33,34]. Furthermore, Sr stimulates angiogenesis, which additionally affects
bone repair [21,27]. Many studies on cellular and animal models have been devoted to the
bioactive effect of Sr [28,35].

It has been shown that isomorphic substitution Ca?* — Sr?* covers a wide range
of x in Cas_,Sry(POy), solid solutions with the 3-TCP-type structure [36]. The limit of
phase formation with the B-TCP-type structure corresponds to x = 2.286 [36]. This value
is quite high in comparison with other divalent elements (M?*), such as Zn?*, Mn?*, and
Mg?*, where the isomorphic substitution Ca?* — M?* can be realized up to x = 0.286 in
Caz_ M (POy), [37]. The excess of Sr?* ions in the B-TCP host leads to the formation of a
palmierite-type phase [38], which is not suitable as a bioactive material. The difference in
the substitution level of Sr>* and M?* ions is due to the ionic radius (the incorporation into
different crystal sites of the initial 3-TCP host) and chemical similarity in comparison with
the Ca®* ions [37].

The physiochemical aspects of the Sr?* substitution in CPs were previously considered
in [39-41]. Some recent studies presented data on Sr2*-substituted HA [42] and «-TCP [43]
phases or biphasic materials [44]. However, materials based on the above-mentioned CPs
have several significant disadvantages. HA is slowly resorbed in the body environment and
thereby delays the formation of native tissue [45]. The o-TCP phase is thermodynamically
unstable, easily passes into calcium deficient HA, and, therefore, does not guarantee a
single-phase product during use [46].

At the same time, there is a number of studies dedicated to the Sr2*-substituted 3-TCP
(S'TCP). The effect of Sr** substitution in the B-TCP structure, phase composition, and
powder microstructures was studied in [47-52]. The mechanism of Sr?* substitution into -
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TCP was previously shown in [53]. StTCP ceramics and the influence of Sr2* concentration
on the sintering of ceramics were investigated in [54,55].

Due to the outstanding properties of Sr>*-containing CPs and their ability to influence
osteogenesis in vivo, there is a need to expand the data regarding the Sr>* substituted
[3-TCP ceramics. In the present work, the Sr2*-substituted B-TCP ceramics were obtained
with varying Sr?* concentrations, and their behavior in a standard saline solution was
investigated. The dissolution process of the ceramic samples accompanied by the formation
of different phases was analyzed by means of powder X-ray diffraction (PXRD), scanning
electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX),
and inductively coupled plasma optical emission spectroscopy (ICP-OES) methods and
discussed. In vitro tests using human osteosarcoma MG-63 cell lines were performed
accessing cell adhesion to the surface of the prepared Sr**-substituted 3-TCP ceramics and
the cytocompatibility of the prepared materials.

2. Results and Discussion
2.1. Analysis of TCP and SrTCP Powders
2.1.1. PXRD Study

PXRD patterns of the prepared TCP, 0.1SrTCP, and 0.55rTCP powders are shown
in Figure 1. The phase analysis revealed the presence of two types of phases in the
samples: the B-TCP-type structure (3-Caz(POy);) and the apatite-type structure (Ap,
Caj9(PO4)6(OH);) [52,54]. The Ap-type phase can be formed according to the reaction (1):

(9 — x)CaO + xSrO + 6(NH,4),HPO, —

Cag_+St+(POy)g(OH), + 12NH; + 9H,0 @

where xis 0, 0.1, and 0.5.
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Figure 1. (a) PXRD patterns of TCP, 0.1SrTCP, and 0.55rTCP powders along with PDF#2 card 70-2065
(B-Caz(POy);) as a reference. The impurities of the Ap-type phase and calcium pyrophosphate
(CapP,0y) are labeled. (b) PXRD pattern of 0.5SrTCP powder preheated at 400 °C.
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Quantitative phase analysis results obtained by the Rietveld method using the JANA2006
software (JANA, Inc., Universal City, TX, USA) and the data from the literature are given
in Table 1. Based on Table 1 and Figure 1, it can be concluded that the quantities of the
B-TCP and the Ap-type phases are different. 0.55rTCP powder sample is characterized
by the highest 3-TCP phase amount (83 wt.%), which is consistent with the data in the
literature [50,54]. The lowest content of the Ap-phase can be explained by the inhibition
of its formation by Sr?* ions, in accordance with [56]. The inhibition rate is rising with
the increase of the Sr?* concentration in the range of 0.3-10 mol.% [56]. Since 0.1SrTCP
sample contains 3.33 mol.% of Sr*, this value is insufficient for suppressing the growth of the
Ap-type phase. The presence of the pyrophosphate phase in the 3-TCP powders obtained by
the mechano-chemical activation method has been reported in the literature [5,57] due to the
condensation of HPO,?~ according to reaction (2):

2Ca" +2HPO2~ — CapP,05 + H,O )

Furthermore, CayP,0O7 (Figure 1a) forms the 3-TCP structure as it follows from the
reaction (3):
CapP, Oy + Ca(OH)2 — Cag (PO4)2 + H,O 3)

where Ca(OH); is formed upon the addition of the distilled water into the initial reaction
mixture (4):
CaO + H,0 — Ca(OH), 4)

Additionally, no impurities of amorphous CP or «-TCP phases were found in all the
studied powder samples. Previously, it was shown that Sr?* substitution in the 3-TCP
structures did not affect the thermal stability of the x-TCP phase and could suppress its
formation for up to 10 mol.% of Sr2* substitution [58].

Table 1. Quantitative phase analysis of TCP and SrTCP powders and the corresponding reference data.

Unit Cell Parameters

Sample Phase wt%, Jana 2006 Space Group " " Reference
a, A c, A
B-TCP 79 R3c 10.416(6) 37.385(2) .
Tcr Apatite 21 Pés/m 9.416 (9) 6.878(9) This work
B-TCP 525 R3c 10.478(3) 37.483(1) .
0.1SrTCP Apatite 475 Pés /m 9.434(4) 6.902(5) This work
B-TCP 83 R3c 10.482(3) 37.491(2)
0.5STCP Apatite 11 P6s /m 9.441(4) 6.903(4) This work
CarP,0; 6 P4y 6.687(9) 24.146(8)

B-Cas(POy), B-TCP 100 R3c 10.435(3) 37.403(7) [59]
Ca9St01(POy), B-TCP 100 R3c 10.448(4) 37.409(7) [60]
Cayo(PO4)s(OH) Apatite 100 P6s/m 9.423(2) 6.883(8) [61]

Cag.62510.05(PO4)s(OH), Apatite 100 P6s/m 9.435(3) 6.889(4) [62]
St10(PO4)6(OH), Apatite 100 P6s/m 9.745(1) 7.265(3) [63]
2+

Only a slight shift of the diffraction peaks versus lower angles with an increase in the Sr
concentration was observed (Figure 1) due to a small mol.% substitution. Usually, this shift is
caused by a mismatch in the size between Ca?* (rypy = 1.12 A) and Sr2* (ryyn = 1.26 A) ions [48].
Crystallographic data for 0.55rTCP (16.67 mol.% Sr?*) calculated by the Le Bail decomposition
are in accordance with [48] (Table 1).

PXRD pattern of 0.5SrTCP at the intermediate stage, after 400 °C heating, is shown
in Figure 1b. The broad peaks are attributed to a poor crystalline Ap-phase. Further
calcination leads to 3-TCP stabilization (Figure 1a).
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2.1.2. SEM Investigation

SEM images of TCP and SrTCP powders are presented in Figure 2. The particle size of
Sr?*-containing powders is smaller compared to the pure TCP sample and can be observed
at 10 um resolution (Figure 2a,c,e). Previously, it was shown that the presence of Sr2+
ions in CPs retard their crystallization process [58], so the sample with the highest Sr?*
concentration shows the smallest particles. The smaller particle size can be explained by
a greater tendency of ST'TCP powders to agglomerate [52], so the microstructure of the
prepared powders is represented by agglomerates with sizes up to 40 um for TCP powder
and up to 85 um for 0.1SrTCP and 0.55rTCP (Figure 2b,d,f).

TCP

0.1SrTCP

Figure 2. SEM images of TCP (a,b), 0.1SrTCP (c,d), and 0.5SrTCP (e,f) powders calcinated at 900 °C
at 10 and 50 um resolutions.

EDX analysis was used to confirm the chemical composition of the prepared pow-
ders (Table 2). The measurements were performed getting seven points for each sample.
The Ca:Sr:P ratios were obtained, and only a slight deviation from the expected bulk
composition was detected.

Table 2. Chemical composition of TCP and SrTCP samples obtained by EDX and ICP-OES data. The
values are given with a relative error of 0.05%.

i Calculated Calculated Molar Ratio
E ted Nominal EDX Data ICP-OES Data
Formula  M(SC)XI0%  Formulafrom  u(S<)xioe  Formulafrom  uGrr)xiooe  frogEOIRa
n(Ca2++Sr2+) EDX Data n(Ca2++Sr2+) ICP-OES Data n(ca2++5r2+) T
Powder samples
TCP Ca3(POy); 0 mol.% Sr?* Ca.96(PO4)2 0 mol.% Sr?* n/a n/a 1.48
0.1SrTCP Caz,gsro_l (PO4)Z 3.33 mol.% Sr2+ Caz,sgsr(]ll (PO4)2 7.27 mol.% Sr2+ Caz,sgsI‘o,ll (PO4)2 3.66 mol.% SI‘2+ 145
0.5SrTCP Caz,ssl‘o_s (PO4)2 16.67 mol.% SI‘2+ Caz,44sr0_4z (PO4)2 17.13 mol.% SI‘ZJr CazA4gsr0_52 (PO4)2 17.33 mol.% SI‘ZJr 143
Ceramic samples
TCP Ca3(POy); 0 mol.% Sr?* Capg3(PO4)2 0 mol.% Sr?* n/a n/a 1.415
0.1SrTCP Cazgsl‘o_l (PO4)2 3.33 mol.% Sr2+ Caz,sgsro_za (PO4)2 9.12 mol.% SI‘2+ CazAggsl‘o_n (PO4)2 3.66 mol.% SI‘2+ 1.425
0.5SrTCP Cay55r95(PO4)2 16.67 mol.% Sr2* Cay 5551039 (PO4)2 13.26 mol.% Sr2* Cayp.48Sro52(PO4)2 17.33 mol.% Sr2* 1.47
Ceramic samples after soaking
TCP Ca3 (PO4)2 0 mol.% Sr2 Caz_52 (PO4)2 0 mol.% Srz* n/a n/a 1.31
0.5SrTCP Caz>55r0_5 (PO4)2 16.67 mol.% SI‘ZJr Caz>11 Sr0_39 (PO4)2 15.60 mol.% SvI‘ZJr n/a n/a 1.25
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2.2. Analysis of TCP and SyTCP Ceramics
2.2.1. PXRD Study

PXRD patterns of TCP, 0.1SrTCP, and 0.55rTCP ceramics sintered at 1100 °C are shown
in Figure 3. The phase compositions of the samples are close to those of the original powders
calcinated at 900 °C. TCP and 0.5SrTCP ceramics contain the 3-TCP as the main phase,
while 0.1SrTCP is represented mainly by the Ap-phase (Figure 3). The heat treatment at
1100 °C leads to the decomposition of the Ap-phase with the formation of the 3-TCP-type
structure. However, no impurity of the CayP,Oy phase was detected in the samples.

+Ap

0.5SrTCP

*

I 0.1SrTCP

SR RV TCP

[3-Ca3(|:"04)2

Ll Ly i II|‘\|\ i) ol g Buasld L

10 20 30 40 50 60
20, deg.

Figure 3. XRD patterns of TCP, 0.1SrTCP, and 0.5SrTCP samples calcined at 1100 °C along with
PDF#2 card No 70-2065 (B-Caz(PO4)»).

Intensity, a. u.

2.2.2. SEM Investigation

After the sintering at 1100 °C of TCP and SrTCP powders that were preheated at 400 °C,
the samples of ceramics were obtained (Figure 4). With the increase in the Sr** concentration
in TCP from 3.33 mol.% to 16.67 mol.%, the formation of fused particles connected to each
other was observed (Figure 4a—f), which indicates the sintering process. The grain size
increased with the rise in the Sr?>* concentration (Figure 4e,f), as was evidenced by the
results obtained in [55]. Apparently, for 0.5SrTCP, a liquid phase is formed earlier and
the sintering proceeds according to the liquid-phase mechanism. Previously, in [54] it
was shown that TCP ceramics with 4 and 8 mol.% of Sr sintered at 1250 °C were also
characterized by larger grains in comparison with pure TCP ceramics. The chemical
composition of the ceramic samples is given in Table 2.

TCP 0.1SrTCP 0.5SrTCP

Figure 4. SEM images of TCP (a,b), 0.15rTCP (c,d), and 0.55rTCP (e f) ceramics sintered at 1100 °C at
2 and 5 um resolution.
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The small deviations of the Ca** and Sr?* ion concentration on the surface and in
the bulk composition were detected by the EDX and ICP-OES methods, respectively.
Nevertheless, these results are in accordance with the expected chemical composition
(Table 2).

2.2.3. Mechanical Strength Measurements

The bending strength of the ceramics measured by the three-point bending method
was 35 + 3 MPa for 3-TCP ceramics and 27 & 3 MPa for 0.55rTCP ceramics (Figure 5). The
decrease in the strength of 0.55rTCP ceramics was likely influenced by the increase in grain
size when Ca?" is replaced by Sr?* (Figure 4a,e) according to [55]. However, the bending
strength depends on a number of factors. The change in the chemical composition and
ratio of TCP-type/ Ap-type phases likely also contributed to the bending strength, leading
to a lower value for the Sr-substituted ceramic sample compared to the pure TCP ceramic.

40

304

o, MPa

10

TCP 0.5SrTCP
Sample

Figure 5. Mechanical strength of TCP and 0.5SrTCP ceramics sintered at 1100 °C.

2.3. Behavior of TCP and 0.55rTCP Ceramics in a Model Liquid
2.3.1. PXRD and ICP-OES Study

The behavior of TCP and 0.55rTCP ceramics in the 0.9% NaCl in a TRIS buffer with a
pH of 7.4 was studied. The ceramic samples were soaked in a saline solution for 21 days.
Figure 6 shows PXRD patterns of TCP and 0.55rTCP ceramic samples after soaking. The
TCP ceramic is characterized by an increase in the apatite-type phase quantity (Figure 6).
Compared to the as-prepared TCP ceramic, in the soaked sample, the reflexes corresponding
to the Ap-phase appear to be more intense. The formation of the Ap-phase is due to the
dissolution of the 3-TCP phase and the release of the Ca%* and PO43’ ions into the solution,
which then precipitated as the Ap-phase on the surface of 3-TCP [64]. Moreover, the split of
the main (0 2 10) reflection (Figure 6) of the TCP sample corresponds to the formation of a
metastable x-TCP phase with the main (0 3 4) reflection close to the 3-TCP phase [65]. The
appearance of the x-TCP phase was previously observed in [55,64,66]. Another mechanism
influencing the increase in the Ap-type phase content can be explained by the hydrolysis
reaction of the a-TCP phase with the formation of calcium-deficient apatite [61] (5):

3Caj3 (PO4)2 + H,O — Cag (HPO4)(PO4)5(OH) (5)

Additionally, a smooth peak in PXRD pattern of TCP ceramic after soaking can be
observed, which is attributable to the OCP phase (Figure 6). The formation of the OCP arises
from the local increase in the CaZ* and PO,3~ ion concentration around TCP ceramics due
to the dissolution process. So, OCP can cause overgrowth in the initial f-TCP phase [67].
Additionally, it was reported that OCP is converted to the Ca-deficient Ap-phase in the
supersaturated solutions (Equation (6)) [68,69]:

Cag(HPOy), (POy),-5H,0 + (2 — x)Ca(OH), — Cayg_yH,(PO4),(OH), .+ 7H,O (6)
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where x can be ranged from 0 to 2. Therefore, the transformation of the TCP in the saline
solution can be described as follows: 3-TCP — x-TCP, OCP — Ap.

A OCP *a-TCP

w 0.5SrTCP
*
A
Sk “m TCP

Ca,,(PO,),(OH),

Intensity, a. u.

| f o mew ol oy m. L |.I1I1I : Lkl
B'Ca3(PO4)2

T T J".‘ I|I‘gln T
10 20 30 40 50 60
20, deg.

Figure 6. PXRD patterns of TCP and 0.55rTCP ceramics calcined at 1100 °C and kept in the saline
solution for 21 days.

The accumulative release amount of Ca?* ions from TCP ceramic after soaking in
the saline solution for 21 days was measured by the ICP-OES. The average accumulative
release amount was 0.025 & 1 g/L. This value is below the values of ionized calcium in the
blood serum, which is 0.088-0.104 g/L [70]. This result is comparable to previous data on
the 3-TCP ceramics [22] soaked in a TRIS buffer solution, which means that the solubility
of ceramics does not significantly depend on the type of solution.

The phase composition of the 0.55rTCP sample did not change after 21 days in the
saline solution, and no new phases were detected in the sample. However, in PXRD
pattern of 0.55rTCP (with respect to TCP), the split of the main diffraction reflexes is absent
(Figure 6) due to the inhibition of the a-TCP phase formation by the Sr>* substitution, as
was shown earlier in [55,58]. Previously, it was also shown that the Ca;P,O7 phase retired
the phase transformation: 3-TCP — «-TCP [71]. Since the CayP,O7 phase is absent in all
our ceramic samples, the inhibition effect is related to the Sr** ions. Additionally, 0.5SrTCP
sample is characterized by a slower dissolution rate in comparison with TCP sample, since
the Ap-phase was not observed in the sample after 21 days of soaking (Figure 6).

The results of the PXRD study are in agreement with the ICP-OES data. The slower
dissolution rate of 0.55rTCP sample in comparison with pure TCP ceramic was confirmed
by measurements of Ca?* concentration in solutions after 1, 3, and 21 days of soaking. The
average accumulative release amount of Ca?* from 0.5SrTCP ceramics was 0.017 + 1 g/L in
the solution soaked for 21 days. Therefore, 0.55rTCP sample is more resistant to dissolution
compared to TCP. The Sr2* jons released from 0.5SrTCP after soaking for 1, 3, and 21 days
are shown in Figure 7.
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Figure 7. The solubility of 0.5SrTCP ceramic in the saline solution.

2.3.2. SEM Investigation

According to the obtained SEM results (Figure 8), after 21 days of soaking the ceramics
in the saline solution, their microstructure changed. In the case of TCP, the angular-shape
particle size of the TCP increased, and the new Ap-phase formed (Figures 6 and 8a,b),
whereas, in the case of 0.55rTCP, the spherical-shape particle size decreased without any
phase transformation. This experimental evidence may likely be explained by the presence
of Sr. The small particles observed on the surface of the samples were likely formed due
to the recrystallization of the OCP phase. Additionally, some changes in the chemical
composition of the TCP ceramics after soaking can be observed in Table 2. Indeed, the
concentration of Ca?* ions on the ceramics’ surfaces decreased, confirming that the Ca®*
ions released from the bulk of the ceramic samples were in accordance with the obtained
ion release results.

TCP

after

Figure 8. SEM images of TCP and 0.55rTCP ceramic microstructure before (a,b) and after soaking in
saline solution for 21 days (c,d).
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2.4. Results of In Vitro Experiments

It was revealed that the rate of expansion of the human osteosarcoma MG-63 cells on
the surface of ceramics after 8 days of cells’ seeding either did not differ from the control
or slightly exceeded the control sample values. Thus, for 0.55rTCP ceramic on the sixth
and eighth day of the experiment, the optical density values of the formazan solution
statistically significantly exceeded the ones of the control (see Table 3 and Figure 9).

Table 3. Optical density values of the formazan solution (MTT test) and the percentage of viable cells
(PVC) during the growth of MG-63 cells on TCP and 0.5SrTCP ceramic samples.

OD Value (a.u.) and PVC (%)

Samples Days
1 4 6 8

control 0.253 + 0.014 0.973 + 0.022 1.387 4 0.036 1.991 + 0.021
100.0 100.0 100.0 100.0

TCP 0.281 + 0.007 0.906 + 0.019 1.285 + 0.038 1.881 + 0.065
111.0 93.1 926 94.5

0.252 + 0.015 1.013 + 0.052 1.626 +0.029* 2218 + 0.036 *

0.55rTCP 99.1 104.6 1172 1114

* statistically significant difference with control (p < 0.05).

Control

.i

TCP 0.5SrTCP

py %

Ao

8 days 4 days 1 days

Figure 9. Population of MG-63 cells grown on control and on TCP and 0.5SrTCP ceramics. The scale
bars correspond to 300 pum.

Generally, a material can be considered cytocompatible if the viability of cells percent-
age exceeds 70%. In our case, based on the results shown in Table 3, both the ceramics—TCP
and 0.5S5rTCP—are cytocompatible, with the difference being that only at the first experi-
mental time point (1 day) TCP is slightly better, while for the rest of the experiment (4, 6,
and 8 days), the cytocompatibility of 0.5SrTCP ceramics is higher than that of TCP ceramic
and of the control sample.

The high viability of MG-63 cells on TCP and 0.55rTCP ceramics was also confirmed
by the live/dead-cell study after 24 h of cell seeding on the prepared materials (Figure 10).
From the presented images it can be observed that almost the entire population of cells,
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both on the control and on TCP and 0.5SrTCP ceramics, is alive, and only the presence of
some single dead cells is detected (Figure 10).

Phase contrast Fluorescence microscopy

microsco
i (living cells) (dead cells)

&y, A
N\ 7
R

Control

TCP

0.5SrTCP

Figure 10. Fluorescence microscopy of living (green) and dead (red) MG-63 cells in direct contact
with TCP and 0.55rTCP ceramics (live/dead assay, 24 h of cell growth).

Spreading and adhesion of the osteoblast-like MG-63 cells on TCP and 0.55rTCP
ceramic surfaces were evaluated after 24 h of cell seeding (Figures 11 and 12). The shape
and area of spreading of cells were studied by means of fluorescence microscopy. As one
can observe from Figures 11 and 12, the MG-63 cells vary in their shape; the cells are larger
in size and of a polygonal osteoblast-like shape in the control group and smaller in size and
mainly of a polygonal shape on the surfaces of the TCP and 0.5SrTCP ceramics. The area
of spreading is almost twice as much as for the control sample (Figure 11). A comparison
of the results obtained for TCP and 0.55rTCP ceramics (Figure 11) shows that the cell
spreading area was the same for both the ceramic materials, but the cell osteoblast-like
shape (Figure 12) was more characteristic for the 0.55rTCP ceramic.

Cell area (um?)

2000
T
I
1500
1000
—Iﬁ T
500
0
Control TCP 0.5SrTCP

Figure 11. Spreading of MG-63 cells on control, TCP, and 0.5S5rTCP ceramics (24 h of cell growth).
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Control 0.5SrTCP

Figure 12. Confocal fluorescence microscopy of MG-63 cells in direct contact with TCP and 0.55rTCP
ceramics (24 h of cell growth, monochrome images of FITC conjugated Phalloidin (green) and DAPI
(nuclei, blue)).

3. Materials and Methods
3.1. Synthesis of Strontium Substituted Tricalcium Phosphate Powders and Ceramics Preparation

Sr2*-substituted tricalcium phosphates Caz_,Stx(POy), (SfTCP) with x = 0.1 and 0.5
(3.33 mol.% and 16.67 mol.%, respectively) were synthesized using the mechano-chemical
activation method, as described earlier in [5]. The raw materials of «chemical grade» purity
were used: CaO (Sigma-Aldrich, St. Louis, MO, USA) and SrO (Sigma-Aldrich, St. Louis,
MO, USA) calcined at 950 °C and (NH4),HPO,4 (Khimmed, Moscow, Russia). The chemical
reaction can be described by the following Equation (7):

3 — xCaO + xSrO + 2(NHy),HPO, — Caz_,Sry(POy), -+ 3H,0 + 4NH; @)

where x is 0 (0 mol.%), 0.1 (3.33 mol.%), and 0.5 (16.67 mol.%). The sample with x = 0 (pure
TCP) was used as a reference.

The stoichiometric quantities of the initial reagents were ground in a planetary mill
in a Teflon drum with 200 g of zirconium oxide grinding bodies at a rotation speed of
1500 min~! for 30 min. After that, 200 mL of distilled water was added to the drum,
and the grinding was continued for another 30 min. Then, the resulting suspension was
filtered in a Buchner funnel, washed with distilled water, and dried at 110 °C for 12 h. The
resulting products were preheated at 400 °C to remove water and ammonia residues and
then annealed at 900 °C for 2 h to obtain TCP and SrTCP powders.

For ceramic samples preparation, the preheated at 400 °C powders were first pressed
in a steel mold under 100 kg/ cm? and then sintered in a furnace at 1100 °C for 2 h.

3.2. PXRD Analysis

PXRD patterns were obtained on Thermo ARL X'TRA powder diffractometer (Bragg-
Brentano geometry, Scintillator detector, CuKo radiation, A = 1.5418 A, Thermo Fisher
Scientific, Waltham, MA, USA). The PXRD data were collected at the 5°—65° 2theta range,
with a 0.02° step. The PXRD experiments were performed at room temperature. The Le
Bail decomposition [72] was applied in the JANA2006 software (JANA, Inc., Universal
City, TX, USA) [73] for the refinement of the unit cell parameters and the volume of the
synthesized powders. The phase analysis was carried out by means of the Crystallographica
Search-March program (version 2.0.3.1) and the JCPDS PDF#2 and PDF#4 databases. The
Rietveld method using the JANA2006 software (JANA, Inc., Universal City, TX, USA)
was applied for the determination of the 3-TCP, Ap- and Ca,P,0O7 phase quantities in
the investigated powder samples. Crystallographic data of space group (SG), unit cell,
and atomic coordinates of 3-Caz(PQOy), (PDF#2 No 70-2065) [59], Ca19(PO4)6(OH), (ICDD
183744, PDF#2 73-1731) [74], and Ca;P,O7 (PDF#4 No 04-009-3876) [75] were used as the
initial parameters. The fifteenth-order polynomial fit was applied to refine the background
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and the modified Pseudo-Voigt function (the peak profiles). The atomic coordinates were
fixed as in the card (PDF#2 or PDF#4), whereas the unit cell parameters were refined.

3.3. SEM Investigation

SEM observations of the powder samples as well as TCP, 0.1SrTCP, and 0.55rTCP
ceramics were performed using a Tescan VEGAS3 (Tescan, Czech) scanning electron micro-
scope equipped with an Oxford Instruments X-Max 50 silicon drift energy-dispersive X-ray
spectrometry (EDXs) system with AZtec (Oxford Instruments NanoAnalysis, France) and
INCA software (JANA, Inc., Universal City, TX, USA) (Base Product package). Samples
were coated with a thin layer of carbon for the SEM examinations. SEM images were
acquired using secondary electron and backscattered electron imaging techniques. The
EDX analysis results were based on the Cag, Srk, and Pk edge lines. The oxygen content
was not quantified by EDX.

3.4. Three-Point Bending Method

The strength of 5 ceramic samples with a 4 x 4 x 40 mm size of each type was
measured by the three-point bending method, as described in [76]. An Instron 3382 (Instron
Corp. ElectroPuls E3382, Norwood, MA, USA) mechanical testing machine with the speed
of movement of the movable traverse of 5 mm/min was applied. The press head and the
two reference points were rounded to avoid shear loading and cutting. The sample was
positioned horizontally, centered on the supports, and the clamping force was directed
vertically to the middle part of the sample. Each sample was loaded at a constant rate
of 0.05 mm/sec until destruction. The strength of the samples was determined as the
maximum load during destruction.

3.5. Solubility of SrTCP Ceramics in Model Liquid

The solubility of ceramics in saline solution was investigated by following the concen-
tration of Ca?* ions. The composition of the saline solution was 0.9% NaCl in a TRIS buffer
with a pH of 7.4. The sintered ceramic (1 g) was placed in a container with 50 mL of saline
solution and placed in a thermostat at a physiological temperature of 37 °C for 21 days. The
accumulative release amount of Ca?* ions was measured using inductively coupled plasma
optical emission spectroscopy (ICP-OES, 720-ES axial spectrometer (Agilent Technologies,
NY, USA)). The obtained data were reported as mean =+ standard deviation.

3.6. In Vitro Investigation of MG-63 Cell Adhesion and Cytocompatibility of S*TCP
Ceramic Surface

To evaluate the adhesion of the standard human osteosarcoma MG-63 cell line (Ther-
moFisher, Waltham, MA, USA) to the surface of pure TCP ceramics and samples containing
Sr, the area of cell culture after 24 h of cultivation on samples and on polystyrene (control
sample) was determined. For this purpose, sterilized granules of the prepared materials
were placed in the wells of a 24-well plate (Costar). After that, the cell suspension with a
density of 15 x 10° cells/cm? was added to each well containing the ceramic samples and
the control.

After 24 h, the cells adhered to the granules were fixed with 4% formaldehyde solution
for 10 min at room temperature and then washed three times with phosphate-buffered
saline (PBS) (Sigma-Aldrich, St. Louis, MO, USA). Then, the cells were treated with 0.05%
Triton X-100 (TX100) for 10 min at room temperature and washed three times in PBS.

The cytoskeleton was stained with the Falloidin-iFluor 488 (Abcam, Waltham, MA,
USA) diluted in the ratio of 1:1000. The cells were incubated for 1.5 h at room temperature,
according to the manufacturer’s recommendation.

After washing the cells from unbound dye, they were stained with nuclei dye DAPI
(Invitrogen, Waltham, MA, USA).

Images of human MG-63 sarcoma cells, stained by phalloidin conjugated to the Alexa
Fluor 488 and DAPI, were obtained by means of a confocal system AIR, installed on
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the microscope Nikon Ti (Nikon, Japan). A Water Immersion Nikon CFI Plan Fluor 20 x
MImm DIC N2 x 0.75 NA lens (Nikon, Japan) was used. Wavelengths of excitation/emission
were ex = 405 nm/em 450 (50) nm (DAPI) and ex = 488 nm/em 525 (50) nm (FITC, Alexa
Fluor 488). The images were processed by means of the NIS Elements ver. 4.51 (Nikon,
Japan) program.

The cytocompatibility of the obtained ceramic samples was accessed by direct contact
of the test cell culture—MG-63 human osteosarcoma cells—with the surface of investigated
ceramics. Sterile ceramic samples were placed in a 24-well plate (Costar, Antioch, CA, USA)
(4 samples of each type of material for each experimental duration: 3 of them for cytocom-
patibility investigation and 1 blank) and the cell suspension was added at a concentration
of 40.0 x 10? cells/cm? for each well (the seeding density was 20.0 x 103 cells/cm?). Cell
cultivation was carried out for 1, 4, 6, and 8 days with a regular (twice-a-week) change of
culture medium. Wells with cells growing on polystyrene served as controls. Cell viability
at different stages of cultivation was tested by the MTT method. The optical density of
formazan solution (formazan is a product of MTT-tetrazolium reduction) was measured
by means of a spectrophotometer Multiscan (Thermoscientific, Waltham, MA, USA) at a
wavelength of 540 nm. For each sample of investigated ceramic material at a certain time,
the percentage of cell viability (PVC) was calculated using the following equation:

VC = (mean OD sample/mean OD blank) x 100%

OD—the value of optical density of the formazan solution in the experiment and in
the negative control, respectively.

4. Conclusions

The TCP, 0.1SrTCP, and 0.5SrTCP powders were prepared by applying the mechano-
chemical activation method. The corresponding ceramic samples were obtained by pressing
and sintering powders at 1100 °C. The 3-TCP was the main phase in TCP and 0.55rTCP
powders, while the apatite phase was predominant in the 0.1S5rTCP powder. The mi-
crostructure of the prepared powders was represented by agglomerates with sizes up to
40 um for TCP and up to 85 um for 0.1SrTCP and 0.55rTCP.

The phase composition of the prepared ceramics was close to that of the original
powders calcinated at 900 °C. TCP and 0.55rTCP ceramics contained (3-TCP as the main
phase, while 0.1SrTCP was represented mainly by the Ap-phase. The heat treatment at
1100 °C led to the decomposition of the Ap-phase with the formation of 3-TCP.

The bending strength was 35 + 3 MPa for TCP ceramic and 27 £ 3 MPa for
0.5SrTCP ceramic.

After soaking in 0.9% NaCl in a TRIS buffer for 21 days, TCP ceramic was characterized
by an increase in the Ap-type phase quantity, while the composition of 0.55rTCP ceramic
did not change.

The dissolution behavior was different for the prepared ceramics. TCP ceramic showed
higher solubility, which was confirmed by the higher Ap-phase content after soaking,
compared to the 0.55rTCP ceramic. These results were confirmed by the ICP-OES mea-
surements. The average accumulative release amount of Ca?* from 0.5SrTCP ceramics was
0.017 £ 1 g/L, while for TCP, the measured value was 0.025 £ 1 g/L, showing higher
resistance to dissolution for 0.5SrTCP. The release of Sr?* ions in the solution increased
with time and reached 0.84 mg/L after 21 days of soaking. The impurities of OCP and
o-TCP phases were found in TCP ceramic accounting for the transformation according to
the scheme: 3-TCP — o-TCP, OCP — Ap. The 0.55rTCP ceramic showed higher resistance
to dissolution, and the incorporation of Sr?* into the B-TCP host structure suppressed the
formation of the metastable x-TCP phase. According to SEM results, the particle size in
0.5SrTCP ceramic decreased after soaking, compared to TCP, which was also caused by a
higher solubility of TCP resulting in the formation of large particles of the Ap-phase.

The cytocompatibility tests using the MG-63 cell line on the prepared TCP and
0.5SrTCP ceramics demonstrated that both ceramics are cytocompatible, but the cyto-
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compatibility of 0.55rTCP ceramic is higher than that of TCP and of the control. High
viability of cells on both ceramics was also detected. Partial release of Sr** ions into the
solution led to the retention of an osteoblast-like cell shape and improved the cytocompati-
bility. Moreover, the results obtained on cell adhesion and spreading evaluated after 24 h of
seeding allowed us to conclude that the prepared 0.55rTCP ceramic material is promising
for further study in model experiments in vivo.
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