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Abstract: In this review, we discuss Friedel-Crafts-type aromatic amidation and acylation reactions,
not exhaustively, but mainly based on our research results. The electrophilic species involved
are isocyanate cation and acylium cation, respectively, and both have a common *C=0 structure,
which can be generated from carboxylic acid functionalities in a strong Brensted acid. Carbamates
substituted with methyl salicylate can be easily ionized to the isocyanate cation upon (di)protonation
of the salicylate. Carboxylic acids can be used directly as a source of acylium cations. However,
aminocarboxylic acids are inert in acidic media because two positively charged sites, ammonium
and acylium cation, will be generated, resulting in energetically unfavorable charge-charge repulsion.
Nevertheless, the aromatic acylation of aminocarboxylic acids can be achieved by using tailored
phosphoric acid esters as Lewis bases to abrogate the charge-charge repulsion. Both examples tame
the superelectrophilic character.

Keywords: superelectrophile; isocyanate cation; acylium cation; amidation; acylation; aminocarboxylic
acid; phosphoric acid esters; charge-charge repulsion

1. Introduction: Acylium Ions

The Friedel-Crafts reactions are reactions of cationic carbon electrophilic species with
an aromatic compound, enabling carbon substituents to be introduced onto the aromatic
ring. [1] Indeed, the aromatic acylation reaction [2] is one of the most useful reactions in
organic synthesis, particularly in medicinal chemistry, because many medicines contain
an aromatic system that participates in hydrophobic interactions. In aromatic acylation,
the cationic electrophilic species that reacts with the aromatic compound is an acylium ion.
This is usually generated from carboxylic acid derivatives such as carboxylic anhydride
and acid chloride under strongly acidic conditions, such as in the presence of aluminum
trichloride and sulfuric acid. The structures of some acylium ions have been determined by
means of NMR spectroscopy [3,4] and X-ray crystallography [5,6].

Effenberger et al. examined the reactivity of isolated and purified acylium ion salts
with alkylbenzenes to give 3 (Scheme 1) [7]. They showed that the acylium ion salt (2)
is in equilibrium with the trifluoromethanesulfonate form (1) in the reaction solvent (1,2-
dichloroethane) (Scheme 1). When the electron density of the carboxylic acid is high
(1, R = MeO, Scheme 1) the equilibrium is biased towards the acylium ion (2) and the
electrophilicity is lower. On the other hand, when the electron density of the carboxylic acid
is low (1, R = NO,, Scheme 1), the contribution of the acylium ion (2) in the equilibrium is
small, but the electrophilicity is greater.
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Scheme 1. Aromatic acylation reaction using triflate salt (2) as a substrate.

Another recent study [8] concluded that acylium ion salts are the active species in
the aromatic acylation reaction, even though the acylium ion precursor (a complex of acid
chloride and Lewis acid) is observed as the main component in the solvent.

Nevertheless, the electrophilicity of acylium ions is not high and thus they react effi-
ciently only with electron-rich benzenes, but not with non-activated aromatic compounds
such as benzene and halobenzenes. Therefore, in order to improve the electrophilicity of
acylium ions, research has been focused on superacids, [9] which have higher acidity than
100% sulfuric acid.

It is well known that the reactivity of acylium ions increases with increasing acidity
of the reaction solution. Ohwada and Shudo et al. also reported a relationship between
the acidity of the reaction medium and the efficiency of the aromatic acylation reaction
(Scheme 2) [10]. In the reaction of an isolated acylium ion salt (4) with benzene, they found
that the yield of the target aromatic ketone (5) was low in TFA (acidity function —Hj = 2.7),
but increased as the acidity of the reaction medium was increased (Scheme 2).

Solvent
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+.0 triflic acid / TFA
_C*7 - - o 5/95 (-Hy =8.5): 27%
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Scheme 2. Acidity dependence of the aromatic acylation reaction of 4.

The acylium dication has been proposed to play a role in the high efficiency of this re-
action (Scheme 3). That is, the monocation (4) is converted to a dication (6) or protosolvated
form (7) by further protonation or hydrogen bonding, thereby increasing its electrophilicity.

Superacid +..0” +C’/O_ --H*
or Me/

7
protosolvation

Scheme 3. Reactive species (6 or 7) in the aromatic acylation reaction under very strongly acidic conditions.

Such multivalent cations with enhanced electrophilicity have been called superelec-
trophiles, and various kinds of superelectrophile species have been reported [11,12].

Thus, in the aromatic acylation reaction, higher acidity of the reaction medium gen-
erally accelerates the reaction. However, there are still some cases in which the desired
acylation does not proceed even when the acidity is increased. Two examples are dis-
cussed below.
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Klumpp et al. reported the reactivity of cinnamic acid (8) in very strong acids
(Scheme 4) [13]. They found that if the aromatic moiety of cinnamic acid (8) has an
electron density higher than that of halobenzene, the aromatic acylation reaction does not
proceed to give the aromatic ketone (10), but benzene reacts at the 3-position of the olefin
and the resultant saturated carboxylic acid undergoes an intramolecular aromatic acylation
reaction to give the cyclized product (9). This is because the acylium ion is conjugated to
the styrene moiety, so that the cationic carbon is switched from the carbonyl carbon (Cc=0)
to the benzyl (3-)carbon (C), as in 12 (Scheme 5) [14]. Therefore, the desired aromatic
ketone formation does not proceed because the aromatic ring reacts with the benzyl carbon
atom first.

O
Excess.
NNoH ———
triflic aC|d ‘/\)‘\‘
8 25 °C,12h
9: 68 % 10: <1%
Scheme 4. Aromatic acylation reaction using cinnamic acid (8) as a substrate.
Cp: 143.2 ppm Cp: 183.3 ppm
\ l ..-SbFg
- .0
A SbF5-80, o
/ \ _70 °C T ~~Cc.o: 157.0 ppm
Co-0: 167.2 ppm Ca: 69.4 ppm

Ca: 116.9 ppm

11

12

Scheme 5. Cinnamic acid cation.

Another example is aminocarboxylic acid. Olah et al. examined the structure of amino
acids in very strong acids, and they found that an amino acid (13) with a sufficiently long
carbon chain between the amino and carboxyl groups could form a dication (14), that is,
protonation of the amino nitrogen atom and ionization to the acylium ion both occurred
(Scheme 6a) [15]. On the other hand, when an x-amino acid (15) such as valine was used,
a dication was formed, but protonation took place at the amino group and the carboxyl
group, and ionization to afford the acylium ion (17) did not occur due to charge-charge
repulsion (Scheme 6b) [16-20]. While protonation of the amino nitrogen atom and the
carbonyl oxygen atom can occur, ionization to form the acylium ion (17) in superacid
depends strongly on the energy requirement for C-O bond cleavage during acylium ion
formation, due to the repulsion between the positive charges (Scheme 6b). Therefore, the
aromatic acylation reaction of aminocarboxylic acids has been little studied so far.

Aromatic ketones, the products of aromatic acylation reactions, are components of var-
ious bioactive substances and pharmaceuticals, and are also useful as synthetic intermedi-
ates [21]. Therefore, if we can overcome the problem of charge-charge repulsion and control
the reaction, we can expect to achieve concise syntheses of a variety of useful compounds.
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(a) Dehydration reaction from 5-amino valenic acid.
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(b) Diprotonation to valine

HoN

15

@)

0] 45°C,4h 14 (@)
FSO3;H-SbF5-SO,
OH > ﬁ OH ._._y.. » 4 +
—-60 °C 3 HsN™ "Cs
+O~|_| O
16 17

Scheme 6. Acylium ion formation from amino acids. Distance dependency: (a) ionization of the
carboxylic acid 13 to acylium ion 14; (b) ionization of the carboxylic acid 15 to acylium ion 17 is
prohibited. Only 16 is formed.

Here, we review our efforts to solve these problems, focusing especially on activation
of the carboxylic acid functionality. We discuss aromatic amidation and acylation reactions.
The electrophilic species involved are isocyanate cation and acylium cation, respectively,
and both have a common *C=0 structure, which can be generated from carboxylic acid
functionalities in a strong Brensted acid. Carbamates substituted with methyl salicylate can
be easily ionized to the isocyanate cation upon (di)protonation of the salicylate. Carboxylic
acids can be used directly as a source of acylium cations. However, aminocarboxylic acids
are inert in acidic media because two positively charged sites, ammonium and acylium
cation, will be generated, resulting in energetically unfavorable charge-charge repulsion.
The activation of the leaving group by using methyl salicylate was not valid to the aromatic
acylation of aminocarboxylic acids. Nevertheless, the aromatic acylation of aminocarboxylic
acids can be achieved by using tailored phosphoric acid esters as Lewis bases to abrogate
the charge-charge repulsion. Both examples tame the superelectrophilic character.

2. Aromatic Amidation
2.1. Utility of Methyl Salicylate as a Leaving Group in Generation of Electrophiles

In the aromatic acylation reaction, carboxylic acids are converted to acid chlorides or
anhydrides, and then the acyl group is introduced into aromatic compounds via acylium
ion formation under acidic conditions. However, acid chlorides and acid anhydrides have
limited chemical stability. In contrast, Olah et al. employed chemically stable methyl esters
in the aromatic acylation reaction [22]. In their method, methyl esters are activated under
strongly acidic conditions to produce acylium ions. This is a practical approach from the
viewpoint of synthetic chemistry. However, because it requires heating in strong acid,
which may result in the decomposition of other functional groups, there is still a need for
further improvement of the methodology.

Salicylic acid has long been known as a good leaving group [23]. Olah et al. focused
on the intramolecular hydrogen bond formation of salicylic acid and examined protonation
of the phenolic oxygen atom (as in 18, Scheme 7). They found that acetylsalicylic acid was
diprotonated to give the dication 19 at —40 °C (Scheme 7) [24]. However on warming to
0 °C, the dication 19 was transformed to monocation 20 and acyl cation 21 (Scheme 7). This
suggests that salicylic acid can form an intramolecular hydrogen bond and serve as a good
leaving group to form the acylium ion 21. This aromatic acylation reaction has the potential
to be a versatile synthetic method.
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Scheme 7. Ionization of acetylsalicylic acid in magic acid.

2.2. Aromatic Amidation Reaction Using Methyl Salicylate as a Leaving Group

Our group has reported a method for generating isocyanate cations by using methyl
salicylate as a leaving group (Scheme 8) [25,26]. The carbamate functional group consisting
of isocyanate and methyl salicylate is chemically stable [27] and poorly reactive, but under
strongly acidic conditions, the isocyanate cation (23 or 27) is quickly generated at room
temperature by the cleavage of methyl salicylate (Scheme 8) [28-30]. The formed isocyanate
cation reacts intramolecularly with the aromatic moiety to afford the aromatic lactam
24 [31,32]. Furthermore, when 25 and 26 react intermolecularly, the aromatic amide (28)
can be generated through the isocyanate intermediate (27) via a similar process (Scheme 8).

(a) Intramolecular cyclization reaction

Triflic acid (10 eq.) Q
20 °C, 30 min

O
OJ\N
H
COOMe Isocyanate cation
22 23 24 97%
(b) Intermolecular reaction
Me Triflic acid (11.3 eq.) Me O
o) CH,Cl, o
+ OJLN 20°C, 15min °C
H H
COOM
Me OOMe Isocyanate cation .
25 26 27 97 %

Scheme 8. Formation of isocyanate cation and application to aromatic amide synthesis. (a) In-
tramolecular cyclization of isocyanate cation (23) to give lactam (24). (b) Intermolecular aromatic
amidation of isocyanate cation (27) to give open-chain amide (28).

However, the efficiency of the reaction was drastically reduced for chemical species
with a cationic charge in the vicinity. This suggests that the reaction between carbamate and
the aromatic compound does not proceed via the A,.2 mechanism, in which the aromatic
ring reacts with the carbamate functional group and generates a tetrahedral intermediate,
but rather via the A,.1 mechanism, in which the electrophilic species (isocyanate cation)
produced by the elimination of methyl salicylate from the carbamate reacts with the
aromatic ring. In the case of dicarbamate (29), one methyl salicylate was not cleaved, and
the mono-amide (31) was formed in 32% yield, probably because the cleavage of salicylate
from the intermediate 32 to form the acylium cation 33 was slow (Scheme 9). This is likely
due to charge-charge repulsion between the protonated amide and the forming isocyanate
cation 33 [26].
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Scheme 9. Inhibition of isocyanate cation (33) formation due to charge-charge repulsion.

Thus, we next synthesized carbamate (35) (Scheme 10), whose cleavage ability was
improved by introducing electron-withdrawing o, p-bis(methyl salicylate). We found that
the reaction with an aromatic compound (36) in a strong acid gave diamide 37 in 66%
yield (Scheme 10) [26]. These experimental results suggest that it is possible to control the
reactivity of carbamates by regulating their cleavage capacity.

Triflic acid
OMe CHQCIQ Me
COOMe OMe
20 °c 17 h K,N OMe
(0]
COOMe 36 37 66 %

Scheme 10. Synthesis of aromatic diamides (37) using electron-withdrawing groups.

2.3. Aromatic Acylation Reaction Using Methyl Salicylate as a Leaving Group

If the good cleavage ability of methyl salicylate is applicable to esters, the formation
of acylium ions can be expected (Scheme 11). Therefore, we acetylated the phenolic
hydroxyl group of methyl salicylate. Indeed, the ester 38 reacted rapidly with the aromatic
compound in a strong acid to afford the desired aromatic ketone (39) in 83% yield at 0 °C
(Scheme 11) [33]. The rate of elimination of methyl salicylate from the ester 38 is greater
than that from the corresponding carbamate (40). At 0 °C, the carbamate (40) was stable
for at least 90 min at 0 °C and the starting carbamate was recovered in 89% yield, while at
20 °C, the corresponding amide 41 was formed in 85% yield after 60 min (Scheme 11). This
result indicates that the chemoselectivity of this reaction can be kinetically controlled by
adjusting the temperature. Mechanistically charge-charge repulsion of the intermediate
dications B and D was weakened by separation of the cationic centers (Scheme 11).

2.4. Difference in Cleavage Ability

The difference in the reactivity of carbamates and esters having methyl salicylate
as a leaving group (Scheme 11) can be explained on the basis of the DFT calculations
(Scheme 12). We believe the real active cationic species are dictations B and D in which the
two cationic centers are separated and distal, but in these calculations, the equilibrating
monocations A and C were calculated (Scheme 11).
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Scheme 11. Aromatic acylation and amidation reactions. Possible electrophilic species can be
generated by the elimination of methyl salicylate from ester and carbamate compounds through the
intermediates (A-D). Charge-charge repulsion was weakened by tuning hydrogen bonding in the
dications (B,D).
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Scheme 12. Energy plots of methyl salicylate cleavage from ester (38) and carbamate (40).
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The formation of acylium ion (43) from the protonated ester (42) requires cleavage of
the C-O bond between the carbonyl carbon and the phenolic hydroxyl group of methyl
salicylate through the TS (44). In this case, the intramolecular hydrogen bond of methyl
salicylate reduces the activation energy required for C-O bond cleavage, resulting in
rapid acylium ion formation (AG¥osx = 13.1 [kcal/mol], AH* = 13.7 [kcal/mol]). On
the other hand, the carbamate (45) forms Y-type conjugation [27] around the carbonyl
carbon atom, which increases the activation energy of C-O bond cleavage between the
carbonyl carbon and the phenolic hydroxyl group of methyl salicylate through the TS
(47) (AG*p9gx = 16.1 [keal /mol], AH* = 17.1 [kcal /mol]). Therefore, isocyanate cation (46)
formation from the carbamate (40) is slower than acylium ion formation from the ester [33].

The DFT calculations also showed that in strong acids, carbamate is most stable in an
8-membered ring structure (40) with intramolecular hydrogen bonding between the methyl
ester group carbonyl oxygen atom of methyl salicylate and the carbamate. However, in the
case of the ester, the structure with intramolecular hydrogen bonding between the phenolic
oxygen atom and the methyl ester carbonyl oxygen atom of methyl salicylate (42) appears
to be more stable than the 8-membered ring structure (38). Therefore, in the case of the ester
group, the acylium ion is rapidly formed from the intramolecular hydrogen-bonded state,
but in the case of the carbamate group, the total activation energy is increased because it
takes extra energy to convert the 8-membered ring state to the structure 45.

2.5. Tandem Reactions

The cleavage capacity was found to affect the rate of generation of the electrophilic
species (isocyanate cation and acylium cation). The reaction of the electrophilic species
with aromatic compounds proceeds rapidly, suggesting that the electrophilic reaction can
be controlled by varying the rate of generation of the electrophilic species, i.e., by differ-
ences in cleavage capacity. This idea can be extended to the tandem reactions (Scheme 13)
of indole [34], indene [35,36], dihydroindene [37], indanone [38], fluorene [39—41], car-
bazole [42-44], diphenylmethane-triphenylmethane [45,46], naphthoquinone [47-51], and
so on. While the focus is on skeleton formation [52], the ability to link sub-skeletons in this
reaction is attractive.

Aromatic ketone formation MeO 0
M o) @ I
’ eo @ Triflic acid N“~0
— COOMe
COOMe LooMe 0 °C, 10 min
49:1 oq DL, 5o

HO l O OMe

O OMe COOMe

/

@ © S
N +° ‘ FsC
‘ COOMe

COOMe

51: 1 eq H o Triflic acid HN.O
20 °C, 20 min Triflic aC|d Me 20°C,15h @ Me
Aromatic amide formation @ Aromatic amide formation Me

@ € H o (aromatic lactum formation)
T
HO/, "ER o NH
52 o) COOMe 53: 56 % i

Scheme 13. Tandem reaction using sequentially generated electrophile species in a one-pot reaction.

When the ester (48) and carbamate (49), containing o-methyl salicylate as a leaving
group react in a strong acid at 0 °C, o-methyl salicylate is selectively removed from the ester
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group and reacts with the aromatic ring present in the carbamate (49) in an intermolecular
reaction to give the aromatic ketone (50) (Scheme 13). Subsequently, another carbamate
(51) bearing an aromatic ring is added to the reaction solution, and when the temperature
is raised to room temperature (20 °C), o-methyl salicylate is cleaved from the carbamate
(50) and reacts intermolecularly with the aromatic part B of the carbamate (51) to give
an aromatic amide (52) (Scheme 13). After a sufficient reaction time (15 hr), isocyanate
cation is also formed from the carbamate (52) incorporating p-methyl salicylate to give an
aromatic amide via intramolecular cyclization (53) (Scheme 13). These three electrophilic
reactions can be conducted sequentially in one pot by adjusting the leaving group, reaction
temperature and reaction time [33].

2.6. Limitations of the Present Reaction System

In the reaction using o-methyl salicylate as the leaving group, aromatic ketone (55) is
rapidly synthesized from the active ester (54), even at low temperature (Scheme 14).

MeO
(0]
. | ®
)L MeO N MeO
0~ “Me PR . Me
triflic acid, CH,Cl,
COOMe MeO

0 °C, 3 min
54 55: 83%
O NH,
@ g @% @
COOM triflic aci
° 20 °C, 20 min COOM
56 56: 81%

Not formed (recovery)

Scheme 14. Aromatic acylation reaction using methyl salicylate as a leaving group.

However, when methyl salicylate is used as a leaving group, the efficiency of cleav-
age from anthranilic acid, which has an amino group in the ortho position, is not high
(Scheme 14). Even when the ester (56), a condensation product of anthranilic acid with
o-methyl salicylate, was reacted with benzene in TfOH, the desired aromatic ketone (57)
was not formed, and only the starting material was recovered (Scheme 14). The reason for
this is thought to be inhibition of acylium ion formation by the protonated amino nitrogen
atom, that is charge-charge repulsion [16].

3. Aromatic Acylation Reaction with Phosphoric Acid Esters and Strong Bronsted Acid
3.1. Phosphoric Acid Esters

Phosphoric acid esters have high oxygen affinity and are commonly utilized by en-
zymes such as glutamine synthetase [52-55] and aminoacyl-tRNA synthetase [56-59] to
activate carboxylic acids in living organisms. Acyl phosphates [60-66] can react with a
variety of nucleophiles, are highly reactive with carboxylic acids, and can mediate effi-
cient functional group conversion reactions, as exemplified by synthetic reagents such as
polyphosphate [67], Eaton reagents [68,69], DPPA reagents [70], and BOP reagents [71].

Therefore, by utilizing phosphoric acid esters with high oxygen affinity, aromatic
acylation reactions with various carboxylic acids can be expected, even where the reactivity
is reduced due to charge-charge repulsion. However, phosphoric acid esters themselves
are chemically stable [72-74] and require electrophilic activation.

Salicylic acid or methyl salicylate has been used for electrophilic activation of phos-
phoric acid esters (Scheme 15), and Bender et al. attributed the high hydrolysis re-
action rate of salicylic acid-linked phosphoric acid monoesters (54) to the presence of
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the intramolecular hydrogen bond between the carboxyl and phenolic hydroxyl groups
(Scheme 15a) [75]. Brown et al. also reported that the reaction of phosphoric acid diesters
(57) with methyl salicylate-bound methanol under strongly acidic conditions proceeded
rapidly (Scheme 15b) [76]. They attributed the high reaction rate to the coordination of the
yttrium cation to methyl salicylate and the non-bridged oxygen atom of the phosphoric
acid ester (58), which enhanced the cleavage capacity of methyl salicylate (Scheme 15b). As
described above, salicylic acid and methyl salicylate are electrophilically active chemical
species that enhance the cleavage capacity by forming noncovalent bonds to protons and
cationic species, making the phosphoric acid ester electrophilic. Kirby et al. also reported
the high reactivity of a phosphoric acid diester (61) with two salicylic acids attached,
proposing intramolecular nucleophilic reaction of the carbonyl oxygen atom of salicylic
acid, which is not a leaving group, to phosphorus (Scheme 15c) [77]. The intermediate (62)
formed by the intramolecular nucleophilic reaction accelerates the cleavage of salicylic acid.
Thus, salicylic acid and methyl salicylate not only serve as good leaving groups, but may
also enhance the cleavage capacity of other ester linkers [78,79].

(a) Intramolecular Hydrogen Bonding

Q
O- P o
‘“‘.“O
HY p o= P o
O 54
(b) Intramolecular Metal Chelation
@ B BE:
MeO-P-O° 0
| Yb(OTf); I o 0
0 MeO- =R -0 OMe|—= MeO-P-G + Yb%}
HCIO,, MeOH Meo 0. % O OMe 0
O \Yb; OMe
+
OMe = 58 = 59 60
57

(c) Intramolecular Substitution with Assistance of Hydrogen Bonding

oA -
HO O O”|_ o O
Cv
0@ 62 63 64
o)

Scheme 15. P-O bond cleavage using salicylic acid (or methyl salicylate). P-O bond cleavage
driven by (a) intramolecular hydrogen-bonding (b) intramolecular metal chelation (c) intramolecular
nucleophilic attack with assistance of hydrogen bond formation.

These results suggest that by using salicylic esters, which are chemically stable and
easy to synthesize, as phosphate linkers, various electrophilic activation pathways can be
generated in the phosphoric acid ester. This enables the reaction with the carboxylic acid to
proceed rapidly to afford the acylium ion, followed by aromatic acylation.
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3.2. Aromatic Acylation of Aminocarboxylic Acids

The reaction of benzoic acid (65) with benzene in trifluoromethanesulfonic acid (TfOH)
in the presence of phosphoric acid triester (67), a triester of o-methyl salicylate, at room
temperature for 20 min gave the desired aromatic ketone (68) in a yield of 92% (Scheme 16,
Table 1, Entry 1) [80]. In a control experiment in the absence of 67, the desired aromatic
ketone (68) was not obtained after reaction for 20 min. When the reaction time was extended
to 24 h, the aromatic ketone (68) was produced even in the absence of 67, but in only 48%
yield (Table 1, Entries 2 and 3). Thus, it was suggested that phosphoric acid triester
(67) promotes the reaction of benzoic acid (65) with benzene, and can be regarded as an
organocatalyst. When a much weaker acid, trifluoroacetic acid (TFA) was used, the desired
aromatic ketone (68) was not formed, but ester 70 was produced (Table 1, Entry 4). Thus,
the aromatic acylation reaction requires a strong acid.

Conditions O H O H

HOJ\‘ © (see Table 1) ©)\‘ .\ ,\O
67 COOMe

(1 mmol)

65

O NH,

HO

(1 mmol)

66

(3 mmol) (1 mmol) 68 70

Acid (2 mL)

Conditions O NH, O NH,
© (see Table 1) @)‘\‘ + O)k‘
.\ >

67 COOMe

(3 mmol) (1 mmol) 69 71

Acid (2 mL)

O\ . COOMe

e

oy

COOMe
MeOOC

Phosphate Ester 67

Scheme 16. Aromatic acylation reactions of 65 and 66 with the aid of phosphoric acid triester 67.

Table 1. Aromatic acylation with the aid of phosphoric acid triester 67.

Entry Carboxylic Acid  Phosphate Ester Acid Temp. Time Yield of 68 or 69  Yield of 70 or 71
1 H (65) 67 TfOH 20°C 20 min 92% (68) <1% (70)
2 H (65) - TfOH 20°C 20 min <1% (68) <1% (70)
3 H (65) - TfOH 20°C 24h 48% (68) <1% (70)
4 H (65) 67 TFA 20°C 48h <1% (68) 81% (70)
5 NH, (66) 67 TfOH 20°C 20 min 88% (69) <1% (71)
6 NH, (66) - TfOH 20°C 24h <7% (69) <1% (71)
7 NH; (66) - TfOH 20°C 20 min <1% (69) <1% (71)
8 NH, (66) 67 TfOH + TFA?  20°C 20 min 10% (69) 38% (71)
9 NH, (66) 67 TFA 20°C 20 min <1% (69) <1% (71)

a TfOH/TFA= 53/47 (w/w).
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Anthranilic acid (66), which bears an amino group at the ortho position, is also
available as a substrate. While anthranilic acid (66) in TfOH produced the ketone 69
in less than 7% yield even after 24 hr (Scheme 16, Table 1, Entries 6 and 7), the reaction
proceeded in 88% yield in the presence of 67 (Table 1, Entry 5) [80]. When the acidity was
lowered (acidity function Hy = —11.8) by mixing TfOH with the weaker acid TFA, the
yield of aromatic ketone (69) decreased to 10 % and an ester (71) was formed in 38% yield
through the reaction of methyl salicylate with anthranilic acid (Table 1, Entry 8). When the
acidity was further reduced (trifluoroacetic acid; Hy = —2.7), the aromatic ketone (69) was
not formed and 67 was recovered in 99% yield.

These reactions are noteworthy, because the acylium cation is difficult to form from
anthranilic acid, as shown in Scheme 16. The aromatic amine is basic enough to be pronated
in the acid media, and the subsequent ionization of the carboxylic acid functionality to the
acylium cation is blocked due to charge-charge repulsion (Scheme 17) [16-20]. Thus, the
promoting effect of phosphoric acid triester 67 plays a key role.

+_0
COOH c”
+H*
——

65 - H,O

COOH CcC”
+H* )
& i @
NH; - H0 NH;
66 charge-charge repulsion
anthranilic acid

Scheme 17. Charge—charge repulsion in the case of anthranilic acid.

3.3. Characterization of Phosphoric Acid Esters of Methyl Salicylate

The reactivities of various phosphoric acid esters were examined (Scheme 18) [80]. A
combination of o-methyl salicylate (72) and methyl 4-hydroxybenzoate (73) changed the
promoting activity in the aromatic acylation reaction of benzoic acid (65) with benzene in
TfOH to give the ketone 68. As the amount of para-isomer (73) moieties increased in the
phosphoric acid triesters in the order 67 — 74 — 75 — 76, the chemical yield of the ketone
(68) decreased; that is, the promoting effect decreased (Scheme 18). The tri-p-isomers 68
showed no promoting effect on the aromatic acylation.

The yield of aromatic ketone (68) was greatly increased when the phosphoric acid
ester contained two (74) or three (67) methyl salicylate linkers rather than a single methyl
salicylate (75). In other words, the ortho ester group of methyl salicylate, which is a potent
leaving group, functions to promote P-O bond formation with an external carboxylic acid,
65, leading to ester exchange (Scheme 19).
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Phosphoric acid triester

COOH (1.0 equiv.) o
©/ * © triflic acid

65 (3.0 equiv) 20 °C, 20 min 68
(1.0 equiv.)
Phosphoric acid triester
i i Q
MeOOC O—P- COOMe MeOOC O—P- COOMe MeOOC O—P-
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° ° o _1@L
MeOOC . COOMe
67 74 COOM 75 COOMe
0,0,0 : 92% (68) p,0,0 : 76% (68) p,p,0 : 10% (68)
O
O P\
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HO HO
MeOOC . COOMe ‘
COOMe COOMe
72 73
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Scheme 18. Promoting effect of various phosphoric acid triester compounds containing o-methyl
salicylate (72) or methyl 4-hydroxyl benzoate (73) moieties. Comparison of yields of product (68).

0 00
MeOOC T cooMe MeOOG 1 >—® COOMe
COOH O0-P-o H* P~0 OH
© + o) ol +
65 MeOOC MeOOC 72
67

Scheme 19. Ester exchange of 67 as the key initial step in the reaction.

3.4. Structure of Phosphoric Acid Ester in Strong Acid

A strong acid is needed for the reaction to proceed (Table 1, Entries 1 and 4). There-
fore, we investigated the structure of the phosphoric acid ester (67) under strongly acidic
conditions [80].

The 'H NMR spectrum of 67 in trifluoromethanesulfonic acid showed a peak at low
field (about 15 ppm), that was assigned to a proton forming an intramolecular hydrogen
bond between the phenolic oxygen atom of one methyl salicylate and the carbonyl oxygen
atom of the ortho ester group [25]. On the other hand, the NMR signal of the proton
bound to the phosphate non-bridged oxygen atom is difficult to observe due to fast proton
exchange with the solvent (CF3503;-H) [25].

In the 3!P NMR spectrum, the peak of 67 was observed at about —19 ppm in CDCl3
and in TFA, whereas in TfOH the signal shifted significantly toward high field at about
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—78 ppm. Olah et al. [81] reported that a significant change in 3!P NMR peak values is
usually not observed upon protonation of phosphoric acid esters at unbridged oxygen
atoms. In addition, the 3'P NMR peak values of the positional isomers 74 (—19 ppm) and
75 (—19 ppm) in CDCl; are similar to those in TfOH (74: —21 ppm, 75: —24 ppm). Thus, we
consider that the significant shift in the 3P NMR peak values of 67 in TfOH is attributable
to a structural change (Scheme 20).

H \+ [ O
MeO 0! "o MeO: /@ MeO. N /
Pl s , |§O
ip 10-75 -0 o-*l~
OO ~N O' l\o O/ \O
4 0 4 - MeO—z” | §
MeO H—O OMe MeO O : ~ (e} H+
H-O" "OMe ~0” OMe
o
- 7/
o/l
P "P_;O
0 o—"
. U/
Tetrahedral Trigonal bipyramidal Octahedral
(-19 ppm) (-72 ppm) (-124 ppm)

78

79 80

Scheme 20. Possible structures of diprotonated phosphoric acid triester.

Possible structures of the phosphoric acid triester (67) include tetrahedral (78), trigonal
bipyramidal (79), and octahedral (80) forms (Scheme 20). The variety of structures is due to
the different possible interactions of the carbonyl oxygen atom(s) of the ortho ester group
with the phosphorus atom [82,83].

The 3'P NMR chemical shifts were calculated for the diprotonated form, which is proto-
nated at the non-bridged oxygen atom and in one methyl salicylate, of each of the structures
shown in Scheme 20. The calculated 3!P chemical shift of the trigonal bipyramidal structure
(79) was closest to the experimental value (3!P NMR = —78 ppm). Therefore, there are
two possible reaction pathways leading to P-O bonding of carboxylic acid 65 (Scheme 21):
path a involves dissociation of methyl salicylate first from dication 79, followed by addition
of the carboxylic acid (65), while path b involves addition of the carboxylic acid (65) to
dication 79, followed by dissociation of methyl salicylate. Experimentally, the presence
and intermediacy of 77 were confirmed (see the following section), but distinguishing the
two pathways is not easy. The DFT calculations suggest that path b is marginally more
favorable than path a.

3.5. Experimental Evidence for the P-O Bond Formation of Carboxylic Acid

In order to detect the intermediate 77, kinetic analysis using 3'P NMR was carried
out during the reaction of phosphoric acid triester (67) and benzoic acid (65). Scheme 22
shows the 3'P NMR spectral changes of a mixture of 67 and 65 in TfOH, obtained at
2-min intervals. Note that 85% H3POy is used as a standard. In the presence of benzoic
acid (65), a new peak appears at around —6 ppm along with a decrease in the peak of 67
(*'P NMR = —78 ppm). This new peak was assigned to acyl phosphate (77) formed by the
reaction of 67 and benzoic acid (65) (Scheme 22).
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Scheme 21. Two possible pathways leading to P-O bond formation of carboxylic acid.

Phosphoric acid triester 67 + PhCOOH (1 eq.) in TfOH
85% H3PO4 ag.

- 420 min

J\“ ./
J —* " 0 min "\\6\0
0 5 -0 -5 2 25 -® 3B 0 45 & -85 60 -6 - 75  ppm
O
] (oXe)
MeOOC o g COOMe MeOOC N @ Ph.H 0
& TfOH O— P 3.0 eq. Ph
/‘ ©/ ~0 0 °C, 20 min ‘
. 20 °C, 20 min
MGOOC MeOOC’.
67 1.0 eq. 65 1.0 eq. 68: 63%

ESI-MS [M+Na*]: 493.0668, (calcd.; 493.0659)
calcd. 3'P NMR : -6 ppm (H3PO,4 = 0 ppm)

Scheme 22. Tracking the reaction of phosphoric acid triester (67) with carboxylic acid (65).

The structure of 77 was confirmed by high-resolution mass spectroscopy. Furthermore,
after structural optimization by the DFT method, the NMR chemical shift value of the
monoprotonated acyl phosphate 77 was calculated to be —6 ppm. This supports the view
that the new peak at around —6 ppm is due to acyl phosphate (77) formed by the reaction
of benzoic acid (65) and phosphoric acid triester (67).

In order to check the involvement of path a (Scheme 20), we also tried to iden-
tify the dicationic species 81 (Scheme 21) in a solution of 67 in TfOH. As the peak of
67 (*'P NMR = —78 ppm) decreased (Scheme 20), a new peak emerged at around —19 ppm
(Scheme 22). This peak was identified as a new phosphate cationic species [84] (81), which
is formed from 67 by the removal of one methyl salicylate 72. When the 3'P NMR chemi-
cal shift value was calculated for the DFT-optimized phosphorus cation species (81), the
predicted value was —19 ppm, in good agreement with the experimental value. Further-
more, treatment of the reaction solution with an excess amount of methanol under basic
conditions at —78 °C yielded equal amounts of methyl salicylate (72) and phosphoric acid



Molecules 2022, 27, 5984

16 of 27

methyl ester (82) in 46% yield (Scheme 23). Compound 82 is formed by the addition of
methanol to the cation 81. These experimental results indicate that the phosphoric acid
triester (67) releases one methyl salicylate in TfOH through 79 and is converted to the
cationic species (81), in which the phosphorus atom is stabilized by the carbonyl oxygen
atom of the ortho ester group of the neighboring methyl salicylate (Scheme 23). The results
suggest that the phosphorus cation 81 is rather stable, but reacts with an excess of methanol
to give the phosphoric acid triester (82). This latter process is similar to path a (Scheme 21),
in which the cation 81 reacts with the carboxylic acid (65). This indicates that path a is
experimentally plausible.

Phosphoric acid triester 67 in TFOH

85% H3PO4 ag.

o yous MJ\JL“H min
o) -5 -10 =15 —20 -25 -30 -35 -40 -45 -50 -55 -60 -65 =70 75 ppm
O H
MeOOC O—IIDI\O COOMe ) \9+
/
: T o B
® yc0oc D 207C. 20 min O oOMe
67 81 = .
(1.0 equiv.) 31P NMR: -19 ppm (85% H3PO,aq. = 0 ppm)

3P NMR: -78 ppm (solution:TfOH)
(85% H3PO,aqg. = 0 ppm)

(caled: 3'P NMR: -19 ppm (H3PO, = 0 ppm))

l N3.2CO3, MeOH

0 -78°C, 1h
I
MeOOC  o—P-oue COOMe

|

@ 3 HO

+
MeOOC
82 (46% yield) 72 (1.02 equiv.)

Scheme 23. Monitoring the formation of 81 from 67 in TfOH.

3.6. Reactivity of Acyl Phosphate

To understand the high reactivity of acyl phosphate itself, we synthesized acyl phos-
phates (83 and 85) using phenol without any substituent on the aromatic ring as a phosphate
linker [85] and examined the reaction with benzene in a strong acid (Scheme 24). [80] The
desired aromatic ketone (68) was obtained in 82% yield (Scheme 24). This experimental
result is similar to that obtained with the phosphoric acid triester (67), suggesting that
acyl phosphates themselves (83) have high reactivity and react quickly with aromatic
compounds under strongly acidic conditions to form aromatic ketones. Under similar
reaction conditions, the acyl phosphate (85) containing an anthranilic acid moiety reacted
with benzene in TfOH, but the chemical yield of the ketone (69) was only moderate (40%
yield). This is in sharp contrast to the results for the putative intermediate 77 (63% yield,
Scheme 22) and the phosphoric acid triester 67 (92% yield, Scheme 18).
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Scheme 24. Reactivity of acyl phosphates in strong acids.

3.7. Computed Reaction Profile of Acyl Phosphate Containing an Anthranilic Acid Moiety

The reason for the high reactivity of acyl phosphates is probably their high cleavage
capacity, in spite of charge-charge repulsion in the resultant cation in the case of acyl

phosphates of anthranilic acid (Scheme 17).

The reaction profiles of carboxylic acid (66), ester (86) using methyl salicylate as

the leaving group [86], and acyl phosphate (87)

to form the respective acylium ion were

examined by means of DFT calculations (Scheme 25). In the case of anthranilic acid, dipro-
tonation can occur at both amino nitrogen and carbonyl oxygen. However, dehydration
does not occur to generate the acylium cation due to charge-charge repulsion (Scheme 17).

AH (kcal/mol)
AGoggy (kcal/mol) /'/TS-B
, 15.8
(17.7)
TS-C
o Jo 0o
0) /(0) A0) MeO
66 86 7

TS-C

MeO
7

-0

e
HN-v o Q

Pl

Cojo
o
+H---O” “OMe

~y H
. TN o
(23.7) @/;f///H
d
89
16.3 89 Pome
(15.5)
90 OMe
+H-T o

Scheme 25. Comparison of the reactivity of carboxylic acid (66), ester (86), and acyl phosphate (87).
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One of the possible starting structures is intramolecularly hydrogen-bonded 66 (Scheme 25).
Another candidate is an ester of methyl salicylate (86), in which an intramolecular hydrogen
bond can be formed within methyl salicylate. In this case, a counter anion was placed in
the vicinity of the proton in order to avoid charge-charge repulsion in the product acylium
cation. We compared the reaction profiles of 66 and 86 with that of the acyl phosphate 87.
The activation energy was low in the case of acyl phosphate 87, probably due to stabilization
by the hydrogen-bonding network, in particular in TS-C structure (Scheme 25) [80].

The high reactivity of acyl phosphates, and thus the high cleavage capacity of phos-
phate diesters, can be explained in terms of resonance effects within the phosphate diesters.

3.8. Substrate Generality

The generality of substrate carboxylic acids was next examined (Scheme 26) [80].
In this reaction, the desired aromatic ketone can be rapidly synthesized from various
carboxylic acids. In particular, carboxylic acids bearing a basic amine group can serve
as substrates (Scheme 26). The reaction proceeds efficiently for amino acids having an
unprotected aromatic or aliphatic amino groups (91-100 and 102). Other carboxylic acids
such as conjugated carboxylic acids (101, 103-104) and other electrophilic functionalized
benzenic acid derivatives (106-109) also reacted well (Scheme 26).
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Scheme 26. Substrate generality of ketone formation with 67 (isolation yield).
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3.9. Application to 2,3-Benzodiazepine Skeleton Construction

A concise synthesis of the 2,3-benzodiazepine skeleton can be achieved by using the
aromatic acylation reaction with phosphoric acid triester (67).

The 2,3-benzodiazepine skeleton (Scheme 27) is an important scaffold in medicinal
chemistry, especially for drugs related to the central nervous system (CNS), because of its
pharmacological activity towards AMPA receptors [87]. There have been reports of side
effects such as drug-dependence [88], but this is a more serious problem with the struc-
turally isomeric 1,4-benzodiazepine derivatives [89]. Therefore, although some efficient
construction methods for the 2,3-benzodiazepine skeleton have been reported recently, new
methods remain of interest.

Tofisopam Girisopam Nerisopam
Scheme 27. Typical 2,3-benzodiazepine derivatives for medicinal use.

Recently reported methods for the construction of the 2,3-benzodiazepine skeleton are
illustrated in Scheme 28. Chan et al. constructed the skeleton by employing the Wacker
reaction to produce a diketone followed by cyclization with hydrazine (Scheme 28a) [90].
Zhu et al. applied the C-H activation reaction of an aromatic hydrazone compound with
rhodium (III) to form the 2,3-benzodiazepine skeleton (Scheme 28b) [91]. Okuma et al.
used a benzyne precursor and 1,3-diketone to form a diketone, which was cyclized with
hydrazine (Scheme 28¢) [92].

Further, the acylation reaction directly produces diketones or their derivatives, ben-
zopyrylium salts, from aromatic rings with a ketone group at the 3-position, and this is ex-
pected to provide a concise synthetic route from commercial reagents (Scheme 28d) [93,94].
However, synthetic methods using the aromatic acylation reaction generally produce ben-
zopyrylium salts quickly, and the synthesis of the 2,3-benzodiazepine skeleton is largely
dependent on the reaction of the benzopyrylium salt with hydrazine. In particular, the reac-
tion of benzopyrylium salts with hydrazine having an aliphatic alkyl chain attached to the
C1 carbon precedes the nucleophilic reaction at the C1 carbon to give the benzoisoquinolium
salt (Scheme 29) [95]. The conversion of benzoisoquinolium salts to 2,3-benzodiazepine
skeletons involves ring-opening reactions of the heterocyclic quinolium skeleton [96], which
is generally inefficient.
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Scheme 28. Typical syntheses of the 2,3-benzodiazepine skeleton. (a) Waker oxidation method,
Wang et al., 2017 [90]; (b) C-H activation method, Okuma et al., 2015 [91]; (c) Benzyne method,
Nikolyukin et al., 1990 [92]; (d) Pyrylium ion method, Bogza et al., 1995 [93].
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Scheme 29. Synthesis of 2,3-benzodiazepine skeleton via aromatic acylation reaction.

The aromatic acylation reaction proceeds quickly at room temperature in the presence
of phosphoric acid triester (67), so in this case, the acylation is expected to be complete
before the benzopyrylium salt is formed (see Scheme 29) [97].

When we tried to synthesize diketone (112) from an aromatic compound (110) and
4-aminobenzoic acid (111) using 67 in TfOH, we found that the diketone (112) gradually
decomposed during purification (Scheme 30, method (1)). The reason for this is thought to
be that the diketone (112) and pyrylium ion (113) are in equilibrium, and both compounds
are unstable [98]. Therefore, we examined the synthesis of nerizopam (114) by reacting
the crude product of the aromatic acylation reaction with hydrazine in ethanol solution
after aqueous work-up, and obtained the desired compound (114) in moderate yield (48%)
(Scheme 30, method (2)). Then, since the diketone (112) and pyrylium ion (113) seemed
to gradually decompose during work-up, we developed a method in which hydrazine is
added to the aromatic acylation reaction vessel together with base (Scheme 30, method (3)).
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Scheme 30. Optimization of the synthesis of nerizopam (114) by rapid aromatic acylation reaction in
the presence of phosphoric acid triester (67).

Method 3 (Scheme 30) gave nerizopam 114 in 73% yield. Next, the scope and lim-
itations of this method for synthesizing 2,3-benzodiazepine derivatives were examined
(Scheme 31).
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Scheme 31. Generality of Synthesis of 2,3-Benzodiazepines (115) using 67.
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4. Summary

The isocyanate cation and the acylium cation can be generated by the elimination of
methyl salicylate from the corresponding carbamate and ester compounds (Scheme 11).
Charge-charge repulsion was weakened in the dication intermediates (B and D) by tuning
hydrogen bonding (Scheme 11). If the reaction sites are multiple, charge-charge repulsion
determined the reaction order, which enabled the tandem reactions (Scheme 13). On the
other hand, the acylium cation is difficult to generate from anthranilic acid in a strong acid,
as shown in Scheme 14, because the aromatic amine nitrogen atom is sufficiently basic to be
protonated in acidic media. Thus, subsequent ionization of the carboxylic acid functionality
to the acylium cation is blocked due to charge-charge repulsion, even though the leaving
group ability was increased by using o-methyl salicylates (Schemes 14 and 17) [16-20].
However, phosphoric acid triester 67 works as a Lewis base to neutralize the cationic
character, enabling these reactions to be conducted efficiently. Both examples of aromatic
amidation and acylation, discussed here indicated taming superelectrophilicity is crucial to
activate electrophilicity and to reduce destabilization due to charge-charge repulsion at the
same time.
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