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Abstract: Predicting products of organic chemical reactions is useful in chemical sciences, especially
when one or more reactants are new organics. However, the performance of traditional learning
models heavily relies on high-quality labeled data. In this work, to utilize unlabeled data for better
prediction performance, we propose a method that combines semi-supervised learning with graph
convolutional neural networks for chemical reaction prediction. First, we propose a Mean Teacher
Weisfeiler—-Lehman Network to find the reaction centers. Then, we construct the candidate product
set. Finally, we use an Improved Weisfeiler-Lehman Difference Network to rank candidate products.
Experimental results demonstrate that, with 400k labeled data, our framework can improve the
top-5 accuracy by 0.7% using 35k unlabeled data. When the proportion of unlabeled data increases,
the performance gain can be larger. For example, with 80k labeled data and 35k unlabeled data, the
performance gain with our framework can be 1.8%.

Keywords: chemical reaction prediction; semi-supervised learning; Mean Teacher Weisfeiler-Lehman
Network

1. Introduction

The use of machine learning methods can help researchers to make progresses in
various fields. They have shown great potential in chemistry, including quantum chemistry,
density functional analysis, drug design, reaction prediction, and retrosynthesis analysis [1].
Some researchers used machine learning to carry out retrosynthesis research on 12 anti-
COVID-19 drugs that are still in the research stage [2], trying to use cheap and readily
available raw materials for drug synthesis. Staszak et al. [3] used machine learning to
explore the relationship between chemical structure-biological activity, etc. The prediction
accuracy of the current mainstream single-step retrosynthesis reaction models still has the
potential to improve. For example, the top-1 accuracy through the machine translation
model [4] on the USPTO test set is 58.3%. When it is difficult to improve the performance of
the single-step retrosynthesis reaction model, it is particularly critical to use a set of reliable
forward organic chemical reaction prediction algorithms to screen out the unreasonable
reactions recommended in the single-step retrosynthesis reaction model. In this research
work, we focus on the application of chemical reaction prediction.

Chemical reaction prediction has the purpose to predict the corresponding products
with given reactants, reagents, solvents, etc. Chemical reaction prediction is one of the key
steps in the preparation of organic materials; however, predicting organic compounds and
their retrosynthetic analysis with high accuracy and efficiency is still a challenging problem.

Currently, methods for chemical reaction prediction can be classified into three cate-
gories: rule-based expert systems, quantum mechanical simulations, and machine learning-
based systems. Several computer assistance synthetic design [5-7] systems have appeared
since the 1960s, such as Logic and Heuristics Applied to Synthetic Analysis (LHASA) [8].
However, traditional methods use rules formulated by a large number of experts to judge
the feasibility of a certain path, and do not achieve completely satisfactory results [9].
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First-principles-based quantum mechanical simulations can obtain accurate prediction
results [10], but the results of such methods are closely related to theoretical models and
calculation parameters.

With the enrichment of chemical reaction data entries, combined with recently de-
veloped deep learning methods, researchers have developed product prediction methods
based on chemical reaction templates. For example, Wei et al. [11] were the first to con-
ceptually demonstrate the feasibility of deep learning to predict reaction products. For a
given reactant and reagent, 16 similar chemical reaction templates are generated by using
the simulation data, so as to deduce the corresponding products. Segler et al. [12,13] used
experimental data and extended this method, using nearly 10,000 templates generated
by the algorithm to deduce the probability distribution of the product; then, the product
was evaluated, and the compound with the highest evaluation score was regarded as the
main product.

Although the above template-based reaction prediction models can predict the main
products with high accuracy, the products are limited to the predicted range of known
templates. This limits the possibility of machine learning models predicting new products.
To overcome such limitation, template-free chemical reaction prediction models are pro-
posed. One is the Sequence-to-Sequence (Seq2sep) model [14,15]. The idea of this model
for chemical reaction prediction is to convert the reactants and reagents represented in the
simplified molecular-input line-entry system (SIMILES) to products in SIMILES as well.
This model consists of two distinct recurrent neural networks (RNN) and integrates the
attention mechanism, which is useful for predicting atom-to-atom mapping. Bort et al. [16]
first attempted to use a combination of condensed reaction maps, generating topological
maps and sequence-to-sequence autoencoders to generate new chemical reactions.

Using graph convolutional neural networks to predict atom and chemical bond
changes is also a machine learning strategy for reaction prediction. Coley et al. [17]
used a molecular graph to represent reactant molecules. The probabilities of chemical bond
changes between each atom pair were calculated by a graph convolutional neural network,
and candidate products were enumerated in combination and the probability distribution
of the main products was re-predicted by another graph convolutional network.

The accuracy of the predicted products of the above methods heavily relies on the
labeled datasets. However, obtaining a large amount of labeled data is expensive. To
address the difficulty of data acquisition, Hao et al. [18] used an active semi-supervised
graph convolutional neural network to predict molecule properties by combining labeled
and unlabeled data. Chen et al. [19] used a combination of mean teacher and graph
convolutional neural networks for chemical toxicity prediction. Schwaller et al. [20] used a
transformer network to learn atomic mappings between reactants and products of chemical
reactions without any human labeling or supervision. These methods demonstrate that
unlabeled data can also positively impact model performance.

To reduce the demand for fully labeled data while keeping the performance of predic-
tion algorithms, we propose to use a semi-supervised framework for template-free graph
convolutional neural networks to predict chemical reactions. First, we convert the reactants
to a graph, and then apply some perturbations to the reactant graph. The perturbed graph
is input into the student model, and the unperturbed graph is input into the teacher model.
Next, we iteratively update the parameters of the student and teacher models to get the
reaction centers. A set of candidate products is obtained by enumerating all cases in the
set of reaction centers. Finally, these candidate products are input into another graph
convolutional neural network to obtain a probability distribution of the candidate products,
and then find the final products.

The contributions of this work is as follows.

*  We propose to integrate chemical product prediction models with a mean-teacher
framework to improve the performance in predicting unknown chemical reactions.

*  We propose a novel perturbation method with random atom feature removal for
the framework.
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*  Experiments demonstrate the effectiveness of our approach that, with the help of
unlabeled data, further improves the prediction accuracy.

We use the United States Patent and Trademark Office (USPTO) dataset [21] and the
Schneider dataset [22] to validate our model. To the best of our knowledge, this is the first
work in which a semi-supervised approach has been used to predict chemical reactions.

2. Experiments
2.1. Datasets

In these experiments, we use the USPTO dataset as the labeled dataset and the Schnei-
der dataset as the unlabeled dataset with reaction products removed. Although our
approach is applicable on many chemical reaction datasets, in this experiment, we choose
the popular USPTO dataset for the ease of comparison with other approaches [15,17,23].
We apply the default split of the USPTO dataset, which divides the dataset into three parts,
400k /40k /30K, as the train set/test set/validation set, respectively. The default split for the
training set, test set and validation set has the same proportion as reaction of various types.
We checked that the Schneider dataset and the USPTO dataset do not have the same items,
so we use Schneider as the unlabeled dataset. We use tensorflow2.4 and rdkit for python in
our research.

2.2. Find Reaction Center

The task of this model is to output a set of reaction centers. The label is also a set
of reaction centers. Let TR(p) be the true reaction center set, R(p) be the reaction center
predicted by the model. If R(p) contains all elements in TR(p), we consider this is a correct
prediction. We set hyperparameters for this model with depth = 3, the initial learning rate
is 0.01, and it is reduced by 5% for every 10,000 training steps. With the help of unlabeled
data, the accuracy of finding reaction centers is 87.3% higher than for the WLN+I-WLDN
model for which it is 87.0%. This means that the unlabeled data can improve the accuracy
of the model.

After predicting the reaction centers, we want to generate a set of candidate products.
We analyzed the dataset as shown in Figure 1. Because most of the reactions contain
five or fewer reaction centers, we choose the top-5 reaction centers to construct candidate

products. The number of candidate products is therefore y>_; (:) , Where () is the

binomial coefficient. Therefore, there are only 31 candidate products for each reactant.

2.3. Candidate Products Ranking

The final step is to select the true product from the candidate product set. We choose
some reaction centers, and then construct products based on the reactants and reaction
centers. We compare these products with the real product, and if any of them can match,
then one prediction is correct. Next, we compare our work (MT-WLN+I-WLDN) with
other reaction prediction methods and the comparison results are shown in Table 1. We
improved the top-5 accuracy by 0.7% with the help of unlabeled datasets. We also found
that the accuracy of the model increases as the unlabeled data increase. With the increase
of unlabeled data, the accuracy of the model continues to rise, which also shows that the
unlabeled data can improve the performance of the model.
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Figure 1. The number of reaction centers gained from the USPTO train/test/validation datasets.
There are only few reactions which include 6 reaction centers.

Table 1. Prediction accuracy of some methods. Top-k accuracy means that, if an algorithm proposes k
potential products with the highest confidences, the probability that the corresponding ground-truth
product is within these k products.

Method Unlabeled Data Size Top-1 Top-2 Top-3 Top-5
Seq2sep [14,15] Ok 80.3% 84.7% 86.2% 87.5%
WLN+WLDN [23] Ok 79.6% - 87.7% 89.2%
WLN+I-WLDN [17] 0k 85.6% 90.5% 92.8% 93.4%
MT-WLN+I-WLDN 10k 85.7% 91.0% 92.7% 94.0%
MT-WLN+I-WLDN 20k 85.8% 91.1% 92.7% 94.1%
MT-WLN+I-WLDN 35k 85.9% 91.1% 92.8% 94.1%

We randomly select some of the labeled data for training, to see the performance of
our framework. We choose the WLN-+Improved WLDN model as the benchmark approach.
We use 20%, 50%, 70%, and 100% labeled data, respectively, from the USPTO dataset and
all the unlabeled data from the Schneider 35k dataset to train the models. The test results
are shown in Figure 2. We find that with fewer labeled data, the accuracy of our model
decreases less than the WLN+I-WLDN model, and the accuracy of our model is 1.8% higher
than WLN+I-WLDN at 20% labeled data. This shows that in the case of fewer labeled
data, unlabeled data play a greater role. We take the reaction of propylene oxide and
pyrroloquinoline as an example to explain our model. Figure 3 shows the attention score of
the reaction center. The darker the color of the atom, the higher the attention score. The
reaction center atom is marked in green and the attention score is marked in blue. The
attention score can reflect the connection of chemical bonds. In the product, the atom 14 C
is connected to the atom 1 N; so, this approach makes atom 14 C allocate more attention to
the atom 1 N. However, this approach can also assign a smaller attention to Atom 3 C and
Atom 10 N, which may result in by-products.
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Figure 2. The top-1, top-2, top-3, and top-5 accuracies with labeled data size from 20% to 100%.

Figure 3. Propylene oxide reaction with pyrroloquinoline. The C, N, O in the figure represent
chemical element symbols corresponding to Carbon atom, Nitrogen atom, and Oxygen atom, and the
number followed denotes atom indices.

3. Method

In this paper, we propose a novel Mean Teacher Weisfeiler-Lehman Network (MT-
WLN) for organic reaction prediction by using both labeled and unlabeled reactions. The
flowchart of the whole approach is depicted in Figure 4.

For the first step, we iteratively used the teacher and student models. Each of them is
a Weisfeiler-Lehman Network (WLN) [24]. In the student network, we use the perturbed
WLN to find the atom pairs most likely to react. In the teacher network, we use the
Exponential Moving Average (EMA) of the student model to update the parameters. Then,
we use the teacher model to assign pseudo-labels for the unlabeled dataset. This way,
the student model can learn from these pseudo-labels. After that, we apply the attention
mechanism with the goal of capturing the fact that atoms outside of the reaction center
may be necessary for the reaction to occur. For the second step, we select the top-K atom
pairs with the highest predicted reactivity scores. Then, we enumerate all possible bond
configuration changes in the set to obtain the set of candidate products. Finally, we use



Molecules 2022, 27, 5967

6 0f 9

A. Reactants with atom-map

9
. NH,
SH\./g\ﬁ Qs ~
T
]

4
1 12

[0}
EESE T/ AN
16 _ 13
5 14

HO
18

F. Top-1 products

the Improved Weisfeiler-Lehman Difference Network (I-WLDN) [23] to rank candidate
products, so that the main product has the highest score.

C. Train in the network

B. Convert reactants into graphs

e e@ Student network
e@‘@ % Student’s ema update teacher model
\ Teacher network ;

[
O "
~ m/ N

Hq N

S 1 asasas
HoN - 0

)=
Y
E. Candidates products

Update student model

Unlabeled

+

=

L(,'ross Entropy
labeled

HaN €

Q
HO
S
RS : N />
I—,
A

HS—/

D. Predict reaction center

Figure 4. The general framework of our model. We describe the reactants as a graph. The student
model learns reactant features to predict reaction centers. The teacher model uses the EMA of the
student model to update parameters, then constructs better labels for the student to learn. Next, the
candidate product set was constructed according to the reaction center. Finally, the score for each
product is calculated.

3.1. Find Reaction Center

We represent a molecule as a graph, atoms as nodes, and bonds as edges. A chemical
reaction is represented as a transformation from graph G, to graph G,, where G, are the
reactants and G, is the product. Both reactants and product are atom-mapped so that we
can easily find the changing bonds and then find the reaction center. The reaction center
is represented by a tuple (atomy, atomy, bondyey), in which the bond between atom; and
atomy can be changed into one of the four types: no bond, single bond, double bond, and
aromatic bond. The MT-WLN workflow is depicted in Figure 5.

First, we need to perturb the input data. The input data include atom features f,
(including atomic number, mass, aromaticity, connectivity, and valence), bond features f;,
(including bond type, whether conjugated, whether cyclic), reactant graph G, (including
an adjacency list, representing neighbors of each atom), and a reactant bond graph G,
(including an adjacency list representing the bonds each atom is connected to). We input the
perturbed data to the student model to allow the student model to be resistant to noise, and
then learn more from the teacher model to enhance robustness. We define the perturbation
function as p(G;), where each atom has probability A of discarding that atom’s features.
The task of the teacher model is to construct better labels for student model to learn. The
network structure of the teacher model is the same as the student model. The differences
between the student and the teacher are in the input data and the parameter update method.
We choose unperturbed data as the input to the teacher network. Then, the set of reaction
centers is obtained by the following formula:

R(P)stu = WLNstu(Wstu/fa/fbr P(Gr)/ G), (1)
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R(p)tea = WLNtea(Wtea/fa/ fb/ Gy, Grb)/ (2)

where WLN(-) is a prediction function based on Weisfeiler-Lehman Network [24], R(p) is
a set containing predicted reaction centers, W is the weight matrix. Then, for the labeled
data, we compute the cross-entropy loss:

Lepr =— Y, yilog(s;) + (1 —y;)log(1 —s;), ®)
si€R(p)

where s; € R(p) is the ith reaction center predicted by student model. The cross-entropy
loss is a metric used to measure how a classification algorithm performs in machine learning.
The predicted class is compared with the ground truth class, and the cross-entropy loss is
computed. It is between 0 and 1, with 0 indicating a good prediction. Our goal is generally
to optimize the algorithm and minimize the cross-entropy loss. For both labeled and
unlabeled data, we train to minimize the mean-squared error between the teacher model

and the student model: .

1 . 4
LMSE = ; Z (siea - Slstu)z' (4)
sieaeR(p)tEﬂ

S;tuER(p)Stu

The mean-squared error (MSE) is defined as the average of the squares of the differences
between the ground-truth and the predicted values. The closer the value of MSE is to 0, the
closer the prediction of the student model is to the prediction of the teacher model. Then,
we combine the two losses to update the weight matrix of the student model:

Lsty = Lcer + wLymsk, ®)

where w can determine the weight of Lysg in the total loss. After updating the parameters
of the student model, we use the Exponential Moving Average of the student model to
update the weight matrix of the teacher model:

0 = a1 4+ (1 —a)6l, (6)

where 071 € Wi is the student parameter for the (i — 1)th iteration, 0. € Wi, is the
student parameter for the (i)th iteration, and 6} € W},, is the teacher parameter for the

tea
(i)th iteration.

3.2. Candidate Products Ranking

We select the top-k atom pairs with the highest reaction scores form the reaction center
set, and then enumerate each case in the set to form the candidate product set. The score of
every candidate product can be obtained by:

s(pi) = WLDN (W, rc(pi), fa, fo, Gr, Grp), 7)

where WLDN(+) is the Weisfeiler-Lehman Difference Network [23], rc(p;) is the set of reac-
tion centers from reactant r; to product p;, s(p;) is the product p;’s score. Then, we train the
model to minimize the softmax log-likelihood objective over scores {s(po),s(p1),--.,5(pm)},
where s(pp) is the true product’s score.
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Figure 5. The workflow of the Mean Teacher Weisfeiler-Lehman Network (MT-WLN) for predicting
reaction centers.

4. Conclusions

In this paper, we propose a framework that enables unlabeled data to be used for
training chemical reaction prediction algorithms which performs better than traditional
approaches using labeled data only. Experimental results verify that the unlabeled data
are not useless and the unlabeled data can enhance model performance. Nevertheless, our
model still has some limitations. For example, the graph convolutional network obtains
local and global information by iteratively gathering neighborhood information, which
may lead to over-smoothing, namely, all the nodes sharing similar features. In this work,
we do not consider the three-dimensional structure of chemical molecules either. Our
framework can improve the performance of traditional methods in terms of prediction
accuracy with the same amount of labeled data. We believe that this framework can help
chemists in discovering new chemical reactions in the future.
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