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Abstract: The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy des-
orption is of high significance for reducing carbon emissions, which yet remains a great challenge.
This work proposes a facile construction strategy of amino-functional dynamic covalent materials
for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and
aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed
spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepen-
tamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic
nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g−1) from simulated flue
gas at 75 ◦C. This dynamic imine assembly strategy endowed the dynamic covalent materials with
facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild
and controllable approach for the development of competitive CO2 adsorbents.

Keywords: CO2 capture; dynamic covalent polymer; imine exchange; amino functionalization

1. Introduction

Excessive CO2 emissions from the burning of fossil fuels have caused a series of ecolog-
ical and environmental problems [1,2]. Post-combustion capture of CO2 from flue gases has
been considered as one of the potential strategies for reducing carbon emissions [3,4]. Vari-
ous CO2 capture techniques, mainly including liquid ammonia absorption [5], membrane
separation [6], and adsorption [7], have been widely developed. In particular, CO2 adsorp-
tion by solids has the advantages of high recycling rate, simple operation, low equipment
corrosion, and low energy consumption; thus, it is of high promise for low-energy CO2 cap-
ture [8–10]. It is, therefore, of great significance for developing high-efficiency adsorbents
with low cost, high capacity, and easy desorption, which yet remains a great challenge.

Great efforts have been made toward developing diverse kinds of CO2 adsorbents, e.g.,
inorganic porous materials, covalent organic materials, and supramolecular organic materi-
als [11]. Inorganic materials (e.g., zeolite [12], activated carbon [13], mesoporous silica [14],
and mesoporous fibers [15]), despite having the advantages of high mechanical stability
and regular porosity, mainly suffer from difficult structural functionalization and intrinsic
acidic sites unfavorable for CO2 adsorption [16]. Organic porous materials (e.g., polymers)
have much more superior structural tunability compared to inorganic materials [17,18],
but still suffer from complex preparation processes and high cost [19,20]. Alternatively,
supramolecular organic materials, such as metal organic framework materials (MOFs) [21],
hydrogen-bonded organic framework materials (HOFs) [22], covalent organic framework
materials (COFs) [23], and coordination polymers [24], are generally constructed through
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dynamic covalent and/or noncovalent bonding interactions. The dynamic noncovalent
nature endows supramolecular organic materials with remarkable features such as simple
preparation process, adjustable structure, and easy functionalization. In particular, dy-
namic covalent bonding (DCC) combines the stability and dynamic reversibility of covalent
bonding, thus allowing the resultant dynamic covalent functional materials assembled to
possess facile preparation, high stability, and promising functionalization [25–28].

Amino functionalization of porous material has been considered as an efficient tool for
improving CO2 adsorption performance by taking advantage of the interaction between the
amino group and CO2 [29–33]. Traditionally, amino functionalization is mainly achieved
through covalent grafting [34] and impregnation [35]. The former method often requires
synthesis and activation of the as-prepared support (e.g., silica or zeolite) prior to grafting,
complex chemical synthesis during the grafting process, and removal of solvent and/or
unreacted reactants to activate pores [36]. The wet impregnation method tends to induce
pore blockage and leaching of active component (e.g., organic amine or ionic liquid), and
the liquid nature of active component increases both the viscosity of the composite material
and the transfer resistance of CO2, thus generally inducing a relatively low CO2 adsorption
and/or low stability [37]. Moreover, the control over the content of functional sites and the
nature of textural structures, which highly affects the CO2 adsorption performance of the
amine-functionalized materials, suffers from high challenges in both methods. Therefore,
it is critical to explore a green and efficient approach for preparing amino-functionalized
materials to promote CO2 adsorption.

Herein, this work proposes a facile construction approach of functional dynamic
covalent polymers through the dynamic imine assembly of N-site rich motif and aldehyde-
based spacers for high-efficiency CO2 capture. By virtue of the dynamic noncovalent
nature, the structure of the dynamic covalent polymers can be facilely regulated through
the assembly process control, thus offering a feasible approach for promoting the CO2
adsorption ability. Most importantly, amino-functional units can be facilely introduced
through the imine exchange method, thus offering a mild and controllable approach for the
development of competitive CO2 adsorbents.

2. Results and Discussion
2.1. Characterization of Dynamic Covalent Materials

A series of functional dynamic covalent nanomaterials were constructed via the self-
assembly of 3,3′-dithiobis (propionyl hydrazine) (DTPH) and polyaldehyde at the ethyl
acetate/water interface at 30 ◦C. Upon the self-assembly of DTPH and p-phthalaldehyde
(PA), white powers were typically afforded (Scheme 1). To verify the successful imine as-
sembly, the resultant samples were characterized by FT-IR technology. As shown in Figure 1,
the N–H vibration peaks of DTPH at 3285 and 3326 cm−1 disappeared in the dynamic cova-
lent polymers [38], and a new peak assigned to C=N bond appeared at 1670 cm−1 [39,40],
indicating that DTPH was successfully assembled with PA.

Scheme 1. Schematic diagram of the synthesis of PAP at the ethyl acetate/water interface at 30 ◦C.
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Figure 1. FT-IR spectra of PA, DTPH, and the resultant dynamic covalent materials PAP-X (X = 1, 2, 3).

Solid-state 13C-NMR characterization was used to further verify imine assembly. As
shown in Figure 2, the characteristic signal at 163 ppm corresponded to the chemical shift
of the C=N bond in PAP−1 [41,42]. In addition, the peak of the benzene ring derived from
PA at 135 ppm and the peaks of C–C derived from DTPH at 35 ppm can observed. The
phenomena above proved the successful assembly of PA and DTPH through imine bonding.

Figure 2. Solid-state 13C-NMR spectrum of PAP-1.
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SEM observation revealed that nanoflowers with spongy pores were formed in the
PAP samples with various molar ratios of PA and DTPH (Figure 3a,b), and the porous
structures were considered of high promise for gas adsorption.

Figure 3. SEM images of (a,b) PAP-1, (c,d) PAP-2, and (e,f) PAP-3.

Similarly, the self-assembly of DTPH and 4,4′-biphenyldicarboxaldehyde (BPDA)
could also be achieved (Scheme 2 and Figure 4). When the molar ratio of BPDA/DTPH was
1:0.5, porous nanospheres were formed (Figure 5a,b). With increasing content of DTPH, of
great interest, nanospheres evolved into hollow nanotubes (Figure 5e,f). It can be noted
that spongy porous structures were spread on the surface of the nanotubes, which was also
beneficial for gas capture.

Scheme 2. Schematic diagram of the synthesis of PBP at the ethyl acetate/water interface at 30 ◦C.

The thermodynamic and kinetic analysis of supramolecular polymerization is of vital
importance for understanding the pathway of structural regulation [43]. The effect of
reaction time on the formation of the polymers was studied by taking PAP-3 as an example.
It was found that powders could be formed within a quite short time. SEM characterization
verified that a regular nanoflower morphology was formed within 0.5 h (see Figure 6). It
can be seen that the dynamic imine assembly of PA and DTPH was under thermodynamic
control rather than kinetic control [44,45].
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Figure 4. FT-IR spectra of BPDA, DTPH, and the resultant dynamic covalent materials PBP-X (X = 1, 2, 3).

Figure 5. SEM images of (a,b) PBP-1, (c,d) PBP-2, and (e,f) PBP-3.

The crystal structures of the dynamic covalent polymers PAP and PBP were analyzed
by X-ray diffraction (XRD). As can be seen from Figure 7, all the polymers had two broad
diffraction peaks around 17◦ and 25◦, indicating that the dynamic covalent polymer had an
amorphous structure [46].
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Figure 6. SEM images of dynamic covalent material PAP-3 formed at 0.5 h (a) and 3 h (b).

Figure 7. XRD spectra of (a) PAP and (b) PBP.

The maximum weight loss temperatures of PAP-1 and PBP-1 were both 292 ◦C, as
shown in Figure 8, indicating the excellent thermal stability of the materials. The generation
of imine from the reaction of amine and aldehyde is a reversible reaction that operates under
thermodynamic control, through which the kinetically competing intermediate products are
replaced by the thermodynamically most stable product after sufficient assembly time [47].
That is, imine assembly can afford a dynamic covalent material with excellent thermal
stability under mild conditions.

Figure 8. TGA and DTG curves of (a) PAP-1 and (b) PBP-1.

Porosity is a crucial factor for gas adsorption. The porous structures of PAP and PBP
samples were characterized using N2 adsorption-desorption. As shown in Figure 9a, the
N2 adsorption-desorption curves of the PAP samples presented a typical H4-type hysteresis
loop, reflecting that the samples were composited of mesopores and/or macropores, which
could be further confirmed by the analysis of pore volume (Table 1). This result is con-
sistent with the SEM observation. H4-type N2 adsorption-desorption curves with highly
enlarged hysteresis loops could be observed for the PBP samples, especially for PBP-3. This
phenomenon implies a relatively increased pore size in PBP-3, which was probably caused
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by the formation of hollow structures. It can be seen that the specific surface area of PAP-2
was higher than that of PAP-1 and PAP-3. Compared to PAP-1 and PAP-3, the molar ratio
of DTPH:PA in PAP-2 was 1:1, enabling DTPH and PA to react completely to form PAP,
which was helpful for a high porosity. Moreover, there was no excess branch chain from
DTPH and PA blocking the pore channels, which was also helpful for a higher specific
surface area of PAP-2 than that of PAP-1 and PAP-3. For PBP-3, the relatively higher specific
surface area was possibly contributed by the specific hollow nanotube structures covered
with spongy pores, which had much higher pore volume than PBP-1 and PBP-2.

Figure 9. N2 adsorption and desorption curves of PAP (a) and PBP (b) samples.

Table 1. Specific surface area and pore volume of PAP and PBP samples.

Sample SBET
a (m2·g−1) Vtotal

b (cm3·g−1) Vmeso
c (cm3·g−1)

PAP-1 72.57 0.27 0.27
PAP-2 77.91 0.36 0.36
PAP-3 58.20 0.28 0.28
PBP-1 17.27 0.09 0.19
PBP-2 33.12 0.16 0.16
PBP-3 63.12 0.32 0.32

a BET surface area. b Single-point pore volume calculated at relative pressure p/p0 of 0.99. c Vtotal − Vmicro.

2.2. CO2 Adsorption Performance

To mimic the post-combustion CO2 capture, the CO2 adsorption performances of the
materials were detected from a simulated flue gas (a mixture of CO2 and N2 with 15 vol.%
CO2) at 75 ◦C in a fixed-bed flow system equipped with a gas analyzer (see Figure 10a).
On the whole, all samples presented a rapid adsorption within a short time and reached
saturated adsorption within 300 s (Figure 10b). For PAP samples, the CO2 capacity was
increased following the order of PBP-1 < PBP-2 < PAP-1< PAP-3 < PAP-2 < PBP-3, which
was overall positively correlated with their specific surface areas (see Table 1). Amongst
these samples, PBP-3 presented the maximum CO2 capacity (0.84 mmol·g−1) although its
surface area was somewhat lower than those of PAP-1 and PAP-2 (see Table 2). This result
was probably due to the competitive effect of physisorption and chemisorption [48]. On one
hand, the low specific surface area was not in favor of physisorption. On the other hand,
however, chemisorption was gradually enhanced caused by the relatively high content of
N-site rich motif DPTH, which could counteract the decrease in physisorption.
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Figure 10. (a) Schematic diagram of the fixed-bed flow system. (b) CO2 adsorption curves of PAP
and PBP samples from a gas mixture of CO2 (15 vol.%)/N2 at 75 ◦C. (c) Ten cycles of CO2 capacity of
TEPA-PBP from a gas mixture of CO2 (15 vol.%)/N2 at 75 ◦C.

Table 2. CO2 adsorption capacity of different adsorbents.

Entry Adsorbent CO2 Capacity (mmol·g−1) CO2 Capacity (wt.%)

1 PAP-1 0.38 1.67
2 PAP-2 0.63 2.77
3 PAP-3 0.42 1.85
4 PBP-1 0.16 0.70
5 PBP-2 0.22 0.97
6 PBP-3 0.84 3.70
7 TEPA-PBP 1.27 5.59

To further improve the CO2 performance of the dynamic covalent samples, amino-
functional molecule tetraethylenepentamine (TEPA) was further introduced on PBP. It can
be noted that the direct assembly of TEPA and DTPH failed to afford any solid powder. By
virtue of the dynamic nature of imine assembly, TEPA can be facilely grafted on PBP or
even replace DPTH through imine exchange [49,50]. Benefiting from the many more active
sites in TEPA than that in DPTH, as expected, the CO2 capacity of the TEPA-modified PBP-3
sample (named TEPA-PBP) could reach up to 1.27 mmol·g−1 (Figure 10b), 1.5 times that of
bulk PBP-3. The high adsorption capacity for TEPA-PBP was mainly caused by the porous
property and good affinity of amino/acylamide groups. The amino groups could act as
chemisorbed sites to react with CO2 to form ammonium carbamate [51], and acylamide
and imine groups could adsorb CO2 under the effect of hydrogen bonding and electrostatic
attraction, respectively (see Scheme 3) [51].

The cyclic stability was also crucial for the industrial application of an adsorbent. The
cyclic stability of TEPA-PBP was investigated by performing 10 cycles of CO2 adsorption
at 75 ◦C. It can be seen that the CO2 adsorption capacity of TEPA-PBP remained constant
in each cycle (Figure 10c), reaching 1.21 mmol·g−1 of CO2 uptake after 10 cycles, verifying
the excellent adsorption reversibility of TEPA-PBP.
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Scheme 3. Mechanistic diagram of CO2 absorption on dynamic covalent material TEPA-PBP.

The CO2 adsorption performance of the designed material TEPA-PBP was compared
with typical reported adsorption materials. As shown in Table 3, TEPA-PBP exhibited
competitive CO2 adsorption capacity from flue gas. Superior to most reported adsorbents,
moreover, the material developed in this work exhibits facile preparation, low cost, and a
metal-free nature, thus promoting its availability in practical application.

Table 3. Comparison of the CO2 adsorption performance of TEPA-PBP with advanced adsorbents.

Entry Adsorbent Adsorption
Temperature (◦C)

CO2 Capacity
(mmol·g−1) Ref.

1 TEPA-PBP 75 1.27 This work
2 OC700 25 1.36 [52]
3 0.44PEI@AOMC 75 1.14 [53]
4 PEI-MgO 30 0.54 [54]
5 SA-PEI-TEA 70 0.61 [55]
6 PE/PP-g-PVBC-EDA 50 2.7 [56]

3. Materials and Methods
3.1. Materials

Dimethyl 3,3′-dithiobispropionate (98%) and tetraethylenepentamine (98%) were pur-
chased from Shanghai Titan Technology Co., Ltd., Shanghai, China. p-Phthalaldehyde
(PA, 98%) and 4,4′-biphenyldicarboxaldehyde (BPDA, 98%) were purchased from Innochem
Chemical Co., Beijing, China. CO2 (99.99%) and N2 (99.99%) were purchased from Taiyuan
Steel Co., Shanxi, China.

3.2. Synthesis of Materials
3.2.1. Synthesis of 3,3′-Dithiobis(Propionyl Hydrazine)

Dimethyl 3,3′-dithiodipropionate (12.01 g, 50.4 mmol) was added to anhydrous
methanol (90 mL), followed by the addition of hydrazine hydrate (20.59 g, 403.2 mmol). Af-
ter stirring at room temperature for 24 h, a white solid (3,3′-dithiobis(propionyl hydrazine),
DTPH) was obtained by centrifugation, washed with methanol (30 mL × 2) and diethyl
ether (30 mL × 2), and then dried in vacuum at 50 ◦C for 12 h. 1H-NMR (δppm, 400 MHz,
DMSO-d6): 9.09 (s, 1H), 4.20 (m, 2H), 2.88 (m, 2H), 2.40 (m, 2H).
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3.2.2. Synthesis of PAP-X

PA (0.78 g, 3.3 mmol) was dissolved in 15 mL of ethyl acetate at 30 ◦C, and the solution
was slowly added to 15 mL of DTP aqueous solution (0.45 g, 3.3 mmol). The two-phase
system was sealed and left standing at 30 ◦C for 24 h. White powder was collected by
centrifugation, washed with water (30 mL × 3) and ethyl acetate (30 mL × 3), and then
dried in vacuum at 70 ◦C for 12 h. The samples with different molar ratios of PA/DTP
(i.e., 1:0.5, 1:1, and 1:2) were prepared and named PAP-1, PAP-2, and PAP-3, respectively.

3.2.3. Synthesis of PBP-X

PBP-1 was synthesized following a similar procedure with PAP-1 under the reaction
of BPDA and DTP at a molar ratio of 1:0.5. The samples with different molar ratios of
BPDA/DTP (i.e., 1:0.5, 1:1, and 1:2) were prepared and named PBP-1, PBP-2, and PBP-3,
respectively.

3.2.4. Synthesis of TEPA-PBP

Tetraethylenepentamine (TEPA, 0.03 g, 158 mmol) was dissolved in 15 mL of methanol
and stirred at room temperature for 2 h. Then, 0.50 g of PBP-3 was added to the above
solution under stirring at room temperature for 8 h. The precipitate was collected by
centrifugation, washed with methanol (5 mL × 2) and water (5 mL × 2) in turn, and dried
at 60 ◦C for 12 h.

3.3. Characterizations

The microscopic structures of samples were observed by scanning electron microscopy
(SEM) on a ZEISS MERLIN CoMPact (Zeiss, Jena, Germany). Fourier-transform infrared
(FT-IR) spectra were recorded on a Tensor 27 spectrometer (Bruker, Billerica, MA, USA) over
a KBr pellet in the region of 4000–400 cm−1. X-ray diffraction (XRD) patterns were acquired
in the range of 2θ = 10◦–80◦ with scanning rate of 5◦/min on PANayltical Empyrean
(Almelo, The Netherlands). Thermogravimetry analysis (TGA) was conducted using an
STA 449 F3 Jupiter® instrument (Netzsch, Selb, Germany) at a heating rate of 10 ◦C/min in
N2 atmosphere. The specific surface areas and pore structures of samples were measured
on a Brunauer-Emmett-Teller (BET) apparatus (JW-BK200, Beijing, China). The micropore
size distribution was calculated using the t-plot method, the mesopore size distribution
was calculated using the BJH method, and the specific surface area was analyzed using the
BET equation.

3.4. CO2 Adsorption Capacity Evaluation

The CO2 adsorption performances were determined in a fixed-bed flow system
equipped with a gas analyzer (Gasboard-3100, Wuhan Cubic Optoelectronics Co., Ltd.,
Wuhan, China.). Typically, 0.5 g samples were placed in a column with diameter of 0.8 cm
and heated to 100 ◦C in N2 (99.999%) at a flow rate of 100 mL·min−1 for 1 h. Then, the
column was cooled to 75 ◦C, and a gas mixture of CO2 (15 vol.%) and N2 flowed through
the column. The total pressure was 1 bar, and the CO2 pressure was 0.15 bar. The CO2
concentration was recorded every 1.0 s until returning to 15 vol.%. After adsorption, the
column was heated to 120 ◦C for 1 h in N2 (99.999%) at a flow rate of 100 mL·min−1 to
achieve CO2 desorption. The CO2 adsorption capacity (qm, mmol·g−1) of the samples at a
certain time (t, s) was calculated using Equation (1) [57].

qm =
Q

Mad

∫ t

0
(C0 − Ct) dt× T0

T
× 1

Vm
(1)

where Q is the flow of the mixture (mL·min−1), Mad is the mass of adsorbents, t is the
adsorption time (s), C0 and Ct are the CO2 concentrations at the inlet and outlet, T is the
adsorption temperature (K), and Vm is the standard molar volume (22.4 L·mol−1, T0 = 0 ◦C).
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4. Conclusions

Through dynamic covalent assembly, N-site rich polymers were successfully con-
structed via the self-assembly of 3,3′-dithiobis (propionyl hydrazine) and polyaldehyde at
the ethyl acetate/water interface at 30 ◦C. By regulating the type and ratio of polyaldehyde,
nanospheres and hollow nanotubes with spongy pores were controllably formed. The
dynamic covalent materials presented good thermal stability with a maximum decomposi-
tion temperature of ca. 292 ◦C. Tetraethylenepentamine with rich amino-functional groups
was successfully grafted onto PBP at room temperature and provided rich chemisorp-
tion sites, such that the functional dynamic covalent polymer had a high CO2 capacity
(1.27 mmol·g−1) in flue gas at 75 ◦C. This strategy has the advantages of a simple, green,
and efficient preparation process, and it provides a new idea for the controllable design of
highly active CO2 adsorbent.
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