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Abstract: In this paper, a Ni and diamond-like carbon (DLC)-modified TiO2 nanotube composite
electrode was prepared as a glucose sensor using a combination of an anodizing process, elec-
trodeposition, and magnetron sputtering. The composition and morphology of the electrodes were
analyzed by a scanning electron microscope and energy dispersive X-ray detector, and the electro-
chemical glucose oxidation performance of the electrodes was evaluated by cyclic voltammetry and
chronoamperometry. The results show that the Ni-coated DLC-modified TiO2 electrode has better
electrocatalytic oxidation performance for glucose than pure TiO2 and electrodeposited Ni on a TiO2

electrode, which can be attributed to the synergistic effect between Ni and carbon. The glucose test
results indicate a good linear correlation in a glucose concentration range of 0.99–22.97 mM, with
a sensitivity of 1063.78 µA·mM−1·cm−2 and a detection limit of 0.53 µM. The results suggest that
the obtained Ni-DLC/TiO2 electrode has great application potential in the field of non-enzymatic
glucose sensors.

Keywords: composite electrode; DLC film; TiO2 nanotube; Ni; non-enzymatic glucose sensor

1. Introduction

The accurate detection of glucose is of great importance to blood glucose control,
biochemical analysis, and food safety for diabetic patients [1]. The widely used enzymatic
glucose detection is limited by the biochemical characteristics of the enzyme and is very
sensitive to temperature, pH, humidity, and other conditions. In order to improve the
accuracy of enzyme sensor detection, the development of new non-enzymatic glucose
sensors has become a research focus in recent years [2,3]. Varied materials have been
employed as substrates in glucose sensors. TiO2 nanotubes (TNTs), as a new functional
material in the field of biosensors, can be prepared at low temperatures and their tube
length and diameter are easy to accurately control, which makes them an excellent carrier
electrode for nanometer-sensitive materials [4]. Moreover, anodized TNTs are non-toxic
with a good biological affinity and large specific surface area. In addition, their directional
tubular and ordered hollow structures can provide sufficient adsorption space [5]. However,
the low electron conduction efficiency of TiO2 nanotubes due to their semiconductor nature
significantly restricts their wide application, where additional modifications are generally
required to increase the conductivity.

As for the catalytic materials for glucose oxidation, metal nanoparticles have been
widely studied due to their high reactivity and simple preparation among non-enzymatic
sensors. Among them, the earth-abundant and non-toxic Ni has a low cost and a strong
specific catalytic ability to oxidize glucose, particularly in alkaline environments, com-
pared with Pt, Au, and Cu [3,6]. At present, most Ni-based sensors constructed from
Ni nanomaterials are mainly used to form a higher valence hydroxide (NiOOH) in al-
kaline media to carry out the catalytic oxidation process. Ni nanomaterials are usually
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loaded on graphene, carbon nanotubes, carbon nanofibers, disordered graphite carbon,
diamond, and other carbon-based carrier electrodes using chemical or electrochemical
deposition [7–12]. Compared with the Ni plate, Ni nanoparticle-modified electrodes can
significantly improve glucose detection sensitivity. For instance, Zeng et al. [13,14] and
Liu et al. [15–17] loaded Ni nanoparticles and Ni/Cu nanoparticles on TiO2 nanotubes by
electrodeposition, respectively, with excellent detection limits and sensitivity. However,
when metal nanomaterials are loaded on the electrode by chemical or electrochemical
deposition, the chemical bonding between the metal nanoparticles and carbon substrates is
generally not so strong, resulting in a high interfacial migration energy barrier of electrons.
Moreover, the metal nanoparticles are prone to migrate with aggregation, which greatly
affects the activity and stability of the electrode [18]. Diamond-like carbon (DLC) film has
excellent biocompatibility and chemical stability. It is a biologically inert material, which
has good mechanical and friction resistance properties. Diamond-like carbon (DLC) thin
films composed of sp2- and sp3-hybridized carbon show relatively high hardness, excellent
biocompatibility, chemical inertness, and high corrosion resistance. By introducing impure
elements, such as N and Ni, the doped DLC films can possess sufficient conductivity for
electrochemistry, low double-layer capacitance, large potential window, low background
current, high stability in challenging environments, and comparative resistance to deacti-
vation by fouling [19]. Experimental results suggest that modified diamond-like carbon
electrodes with a wide electrochemical window and low background current can be used as
non-enzymatic glucose detection sensors [19–21]. In the meantime, DLC films can reduce
internal stress to improve the quality of the films, and their performance can be efficiently
improved and enhanced. More importantly, DLC can be prepared at low temperatures,
has a very wide selectivity to the substrate, and does not require special treatment of the
substrate, making it possible to further modify the TiO2 nanotubes without damaging the
original TiO2 nanotube structure. In addition, metallic nanoparticles (NPs) or nanoclus-
ters (NCs) loaded on the electrode surface represent obvious differences in physical and
chemical properties from both substrate materials and isolated bulk metals and drastically
increase the catalytic activity and sensitivity of the electrodes, resulting in the enhancement
of the performance of biosensors [22–24]. Large surface areas and good electronic properties
of dispersive metallic particles, such as Au and Ni, can accumulate charges and improve the
electrochemical response of carbon electrodes in electrochemical glucose sensors [25–28].

In this work, we use the sputtered DLC layer to act as a fixed tool that is supposed to
trap the Ni nanoparticles. The metal particles could be evenly dispersed and fixed within
the carbon film, and the smooth surface can reduce the adsorption oxidation products.
Sputtering at a substrate could form a local chemical combination of a two-phase interface,
reducing the electron transfer resistance and improving the catalytic activity [29].

Therefore, we prepared TiO2 nanotubes (TNTs) using the anodic oxidation process
and then modified the Ni-doped DLC film layer on the surface of the TiO2 electrode
using magnetron sputtering technology to prepare the Ni-doped DLC-modified TiO2
nanotube composite structure electrodes (Ni-DLC/TNTs). Their structural composition
and electrocatalytic oxidation performance of glucose were systematically investigated.

2. Results and Discussion
2.1. Electrode Characteristics

Figure 1 shows the SEM morphology of the TNTs, Ni/TNTs, and Ni-DLC/TNTs. As
can be seen in Figure 1a, the TiO2 nanotubes have an opening at the top and are arranged
vertically on the Ti surface in an orderly manner, with a diameter of less than 100 nm.
As can be seen in Figure 1b, after the deposition of Ni nanoparticles, the Ni NPs were
dispersed and uniformly distributed on the surface of the TiO2 nanotubes. This is because
the periodic variation in the pulse electroplating current was conducive to eliminating
the cathode concentration polarization and greatly improving the nucleation rate. On
the other hand, the current was turned on and off during the pulse electrodeposition
process. Such periodic alternation is very beneficial to the adsorption and desorption
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of ions in the electrolyte and the recrystallization of particles [30], which reduces the
possibility of nanoparticles, reunion, and fine grains. As can be seen in Figure 1c, after the
sputtering deposition of Ni-doped DLC film on the surface of the nanotubes, the opening
end of the nanotubes decreased and the surface retained the morphology and roughness of
the substrate.
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Figure 1. SEM morphology of different electrode surfaces: (a1,a2) TNT; (b1,b2) Ni/TNT; and (c1,c2)
Ni−DLC/TNT membrane layers. The elemental analysis in Figure 2 demonstrates the successful
deposition of Ni with an atomic ratio of 4.1% for Ni/TNTs and 6.13% for Ni−DLC/TNTs, respectively,
after magnetron sputtering. The three red small box identifier showed that after the deposition of
Ni nanoparticles, the Ni NPs were dispersed and uniformly distributed on the surface of the TiO2

nanotubes. As can be seen in Figure 1c, after the sputtering deposition of Ni−doped DLC film on the
surface of the nanotubes, the opening end of the nanotubes decreased and the sur-face retained the
morphology and roughness of the substrate.
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Figure 2. EDX energy spectra 1, 2, and 3 correspond to the regions (red rectangle) marked on the
surfaces of the TNT (a2), Ni−TNT (b2), and Ni−DLC/TNT (c2) electrodes in Figure 1, respectively.
The illustration shows the types and contents of elements.

The element composition of the electrode was analyzed by EDX spectroscopy. Figure 2
shows the EDX results of the tube on the surfaces of TNTs, TNT-Ni, and TNT-Ni/DLC.
EDX can collect the element information at a depth of 1 µm, which is collected in the
area of the tube openings, respectively (as marked in Figure 1). Only Ti and O were
detected on the surface of the samples without electrodeposition and Ni was detected after
electrodeposition. As can be seen in Figure 2, element C was detected on the surface of the
TNT-Ni/DLC composite electrode, and it was found that the content of element Ni was
greatly increased because the deposited DLC film was doped with Ni at the same time,
which improves the performance of the electrode compared to the TNT-Ni electrode.

Figure 3 shows the Raman spectrum of the Ni-DLC/TNT electrode, where a typical
diamond-like wide peak with two asymmetric broad peaks can be found. The D peak near
the low wavenumber of 1360 cm−1 can be derived from the respiration mode of the ring
sp2 C–C bond, whereas the G peak near the high wavenumber of 1580 cm−1 is derived
from the stretching vibration mode of the chain-like sp2 C–C bond or annular sp2 C–C
bond [31], indicating the successful deposition of the DLC layer on the electrode surface.
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2.2. Performance of Electrode Electrocatalytic Oxidation of Glucose

Studies have shown that the catalytic mechanism of a Ni-based sensor is mainly due to
the formation of a higher valence hydroxyl compound in alkaline media (NiOOH), which
carries out the catalytic oxidation process. The specific reaction is as follows:

Ni + 2OH− → Ni(OH)2 + 2e− (1)

Ni(OH)2 + OH− → NiO(OH) + H2O + e− (2)

NiO(OH) + glucose→ Ni(OH)2 + glucolactone (3)

Therefore, before the electrochemical detection of glucose at the electrode, Ni/TNTs
and Ni-DLC/TNTs were treated with 25 consecutive cyclic voltammetry (CV) cycles at
a scanning rate of 50 mV s−1, and Figure 4 shows the CV curve of the Ni-DLC/TNT
composite electrode. With the increase in the number of cycles, the oxidation peak current
also increased gradually and the oxidation peak potential shifted positively, suggesting the
formation of NiOOH.

Figure 5 shows the CV curves of the three electrodes, (a) TNTs, (b) Ni/TNTs, and (c) Ni-
DLC/TNTs, in background electrolyte 0.5 M NaOH and 1 mM glucose
(0.5 M NaOH) solutions, respectively, with a scan rate of 50 mV s−1. It can be seen that
pure TiO2 nanotubes showed no redox activity. After modification with Ni nanoparticles,
the Ni/TNT electrode had a Ni2+/Ni3+ redox peak. However, after modification with
Ni-doped DLC film, the current of the redox peak greatly increased. This illustrates that the
conductivity of the Ni-DLC/TNT electrode was further improved with the incorporation of
DLC. This is because the deposition of the uniformly distributed Ni on the DLC increased
the catalytic capacity and the steric resistance of the film, inhibiting the formation of the
sp3 bond and increasing the proportion of sp2 [31–33]. When 1 mM glucose was added
to the NaOH solution, the TNT electrode showed no response as pure TiO2 nanotubes
have no catalytic activity for the oxidation of glucose, whereas the peak currents of the
Ni/TNT and Ni-DLC/TNT electrodes increased. This is because, in the alkaline solution,
the glucose was rapidly and specifically oxidized to gluconolactone in the presence of the
Ni catalyst. To be specific, Figure 5b,c shows that the electrocatalytic oxidation response
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current of the Ni/TNTs was 0.07 mA, which increased to 0.21 mA for the Ni-DLC/TNTs,
indicating enhanced activity of the Ni-DLC/TNTs.
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In order to further explore the mass transfer characteristics in the process of electro-
chemical glucose oxidation, CV tests were carried out at a scanning rate of 10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 110, 120, 130, 140, and 150 mV/s, respectively, whereas the Ni-TNT
electrode and Ni-DLC/TNT composite electrodes were treated with a mixture of 0.5 M
NaOH and 1 mM glucose solution (0.5 M NaOH), respectively. As shown in Figure 6, with
the increase in the scanning rate, the oxidation peak current and reduction peak current
increased gradually with reversibility. Moreover, the oxidation peak potential shifted posi-
tively, whereas the reduction peak potential shifted negatively, and the potential difference
(4Ep) between the oxidation peak potential and reduction peak potential increased gradu-
ally. This is because, at a higher scanning rate, the electrode required a larger overpotential
to achieve the same electron transfer rate [34]. The oxidation peak current and reduction
peak current in the CV curve were plotted as a function of the square root of the scanning
rate, where a good linear relationship was found, as seen in Figure 6b,d, indicating that
both the Ni-TNT electrode and Ni-DLC/TNT composite electrode detected glucose as a
typical electrochemical process of diffusion mass transfer [35].
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Figure 6. The CV curves of the Ni−TNT electrode (a,b) and (c,d) the Ni−DLC/TNT composite
electrode at a scanning rate of 10−150 mV/s, the linear fitting graphs of the corresponding anode
(Ipa) and cathode oxidation peak current (Ipc), and the square root of the scanning rate v1/2. TNT
electrodes have no catalytic activity.

In order to compare the electrocatalytic activity of the TNT electrode, Ni-TNT elec-
trode, and Ni-DLC/TNT composite electrode for glucose, chronoamperometry was em-
ployed. The obtained i-t curve results are shown in Figure 7 with an applied potential of
0.55 V. The solution was kept in a state of constant agitation during the test. It can be seen
from the i-t curve that the current response of the TNT electrode is a straight line, which
indicates that pure TiO2 nanotubes do not have the ability to catalyze the oxidation of
glucose, whereas the Ni-TNT and Ni-DLC/TNT composite electrodes have a relatively
larger response current. The current response of the catalytic oxidation of glucose at each
electrode is as follows: Ni-DLC/TNTs > Ni-TNTs > TNTs, which is consistent with the CV
results in Figure 5.
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Figure 7. The i-t curves of the TNT electrode, Ni/TNT electrode, and Ni-DLC/TNT composite
electrode when different concentrations of glucose solution were continuously added. The illustration
shows the enlarged view at low concentrations.

The performance of the Ni-DLC/TNT composite electrode for the electrocatalytic
oxidation of glucose was further analyzed as shown in the i-t curve. It can be seen in
Figure 8 that the current response can reach a stable state within 5 s, indicating that the
electrocatalytic oxidation of glucose by the Ni-DLC/TNT composite electrode is rapid.
With the increase in the concentration of glucose in the solution, the current response of
the electrode also increased step by step. As can be seen from the illustration in Figure 7,
when the glucose concentration was lower than 5 µM, the electrode still generated an
obvious current response, indicating an excellent sensitivity of the Ni-DLC/TNT composite
electrode at a low concentration of glucose.
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A comparison of the obtained electrodes and literature on similar non-enzymatic
glucose sensors can be seen in Table 1. Based on this comparison, the composite electrode
has better selectivity and stability than other similar electrodes in the literature.

Table 1. Comparison of the performance of the proposed sensor and those of similar ones described
in the literature.

Electrode Material Linear Range
Detection

Limit
(µM)

Sensitivity
(µA·mM−1·cm−2) Ref.

Ni-NDa/BDD 0.2–12 µM;
31.3 µM–1.06 mM 0.05 120; 35.6 [36]

NiNPs/GNc 5 µM–0.55 mM 1.85 865 [12]
NiONPs/GOd/GCE 3.13 µM–3.05 mM 1 1087 [37]
NiO/Pt/ErGO/GCE 50 µM–5.66 mM 0.2 668.2 [38]
Ni-MWCNTe/GCE 3.2 µM–17.5 mM 0.89 67.19 [39]

Ni(OH)2graphene/GCE 1–10 µM; 10 µM–10 mM 0.6 494; 328 [40]

NiCoO/CNTf 0.01–0.93 mM;
0.93–12.12 mM 5 66.15; 15.43 [41]

NiNPs/BDD 10 µM–10 mM 2.7 1040 [42]
NiNPs/CNFg 2 µM–2.5 mM 1 420.4 [7]
Ni-Rgo/GCE 1–110 µM - 813 [18]
Au/DLC:P 0.5–25 mM 300 37 [19]
Au-DLC:N 0.5–25 mM 120 - [20]

CuO 0.005–7.95 mM 1 622.2 [22]
AuNi/NX/MWCNT-21 1–60 mM 0.063 662.93 [43]

60–1900 mM 0.285 147.22
Ni-NPs/GRE 2–800 mM 0.4 1387 [44]

Cu-Ni/NF 1−600 mM 2 11,340.25 [45]
Ni-DLC/TiO2 0.99–22.97 mM 0.53 1063.78 This work

Taking the concentration of glucose in solution as the abscissa and the corresponding
current response as the ordinate, Figure 8 was plotted. Linear fitting was performed to
obtain two linear fitting curves in the ranges of high and low concentrations:

(1) When the concentration of glucose ranged from 0.99 mM to 3.00 mM, the linear
fitting equation was as follows: I (µA) = 265.944 Cglucose(mM) + 89.506, and the linear
correlation coefficient was R2 = 0.9981.

(2) When the concentration of glucose ranged from 3.00 mm to 22.97 mM, the linear
fitting equation was as follows: I (µA) = 138.723 Cglucose(mM) + 443.569, and the linear
correlation coefficient was R2 =0.9921.

Since the sensitivity is the ratio of the slope of the linear fitting curve to the elec-
trode area and the physical surface area of the electrode was 0.25 cm2, the sensitivity
of the electrode was estimated to be 1063.78 µA·mM−1·cm−2 with a glucose concentra-
tion range between 0.99 mM and 3.00 mM, whereas the sensitivity of the electrode was
554.89 µA·mM−1·cm−2 and in the range of 3.00–22.97 mM. The reason the sensitivity of the
electrode decreased in a high concentration range can be attributed to the following reasons:
The intermediate products generated by the oxidation of glucose were adsorbed on the
surface of the composite electrode during the electrochemical testing process, leading to
the obstruction and inhibition of the adsorption and diffusion of glucose molecules to
the surface of the electrode [46]. In addition, according to the background current sig-
nal measured by the electrode in a blank solution 11 times, the standard deviation was
0.18 µA·cm−2. According to the calculation formula of the detection limit, LOD = 3σ/S,
with S the sensitivity and σ the relative standard deviation, and with a principle of S/N = 3,
the detection limit of the Ni-DLC/TNT composite electrode was calculated to be 0.53 mM.

Another major problem faced by non-enzymatic sensors is the interference of other
organic substances in the blood because these substances can be oxidized with a potential
similar to glucose; therefore, we further investigated the anti-interference performance of
the TNT-Ni/DLC composite electrode. In solution, the chronoamperometry method was
used and the applied potential was 0.55 V, glucose (1 mM), DA (0.1 mM), UA (0.1 mM),
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AA (0.1 mM), galactose (0.1 mM), and glucose (1 mM) were added in turn to study their
influence on the current response and the results are shown in Figure 9a.
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It can be seen from the results that other than glucose, the interferential current signals
compared to the current signal of glucose were almost negligible, suggesting a strong
anti-interference of the electrode. Under a 0.55 V voltage, the electrodes only showed weak
oxidation ability to other interfering substances in the blood of the human body, which
ensured accuracy in the process of biological detection.

The long-term stability of the electrode is also an important index to determine whether
the electrode has application potential. The current response of the Ni-DLC/TNT compos-
ite electrode in a 1 mM glucose solution was tested by the time current method once a week
for four consecutive weeks. During the test, the solution was kept in a state of constant
agitation in the supporting electrolyte and the applied potential was 0.55 V. Moreover,
the electrode was stored at room temperature in air during the non-test period, and the
stability of the electrode was checked over time from the SEM image of the electrode
after experiments. The test results are shown in Figure 9b. It can be seen that in each
continuous 1 h test process, the current response showed hardly any reduction, and the
current response of the composite electrode remained at 82.6% of the initial current re-
sponse after one month, indicating that the Ni-DLC/TNT composite electrode had good
long-term stability. Compared with the electrodeposited nanoparticles and the matrix by
adsorption or another physical combination, the Ni in the Ni-DLC/TNT electrode prepared
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in this paper was closely bound to the DLC, which was firmly fixed in the film by the
DLC and formed a uniform distribution. In addition, the hollow TiO2 carrier electrode
played the role of stable fixation for the DLC film. This avoids the shedding and loss of
electrodeposited nanoparticles and the reduction in the current response of the electrode in
the electrochemical test, which greatly improves the long-term stability of the electrode.

3. Materials and Methods
3.1. Reagents

Potassium chloride (0.5 mol/L, 99.97%) and sodium hydroxide (0.5 mol/L, 99.5%)
were all purchased from Tianjin Recovery Technology Development Co., Ltd., Tianjin,
China, glucose (0.99–3 mM, 99.5%), dopamine (0.1 mM, ≥95%), ascorbic acid (0.1 mM,
99%), uric acid (0.1 mM, 98%), and lactose (0.1 mM, 99.6%) were all purchased from Sigma-
Aldrich Co., Ltd., St. Louis, MO, USA. All reagents were analytically pure without any
further purification. All solutions were prepared using ultra-pure water (18.2 MΩ ∗ cm).
The supporting electrolyte was a 0.5 M NaOH solution.

3.2. Sample Preparation

Firstly, the polished Ti sheet (PT 99.99%, Hunan Xiangtian Titanium Industry Co.,
Ltd., Changsha, China) (5 × 5 × 1.5 mm) was soaked in the chemical polishing solution
NaF:HNO3:H2O = 2:18:80(m/m) for 1–3 min to remove the oxide layer. Then, the treated
Ti sheet was cleaned by sonication in deionized water for 5 min and dried. The treated Ti
sheet was used as the anode. The TiO2 nanotube array (TNTs) electrodes were obtained
by anodizing at 25 V for 1 h in glycerol solution containing 0.2–7 M NH4F using stainless
steel plates as the cathode placed 30 mm away from the anode. Secondly, Ni nanoparti-
cles were deposited on TiO2 nanotube arrays using the pulsed electrodeposition method
and were prepared according to the literature [47]. The experiment was carried out in a
three-electrode system, with the TNT electrode as the working electrode, nickel sheet as
the counter electrode, and Ag/AgCl/saturated KCl electrode as the reference electrode.
The electrolyte contained 300 g/L NiSO4·6H2O, 45 g/L NiCl2·6H2O, and 37 g/L H3BO3,
and the temperature was maintained at 38 ◦C. The cathode pulse current density and
time were −160 mA/cm2 and 8 ms, the anode pulse current density and time were set
at +160 mA/cm2 and 2 ms, the current turn-off time was 1000 ms, and the total deposition
time was 10 min. After electrodeposition, the sample was rinsed with deionized water and
dried. Finally, Ni-doped DLC films (Ni-DLC/TNTs) were prepared on the surface of the
TNT electrode using a radio frequency (RF) bias-assisted magnetron sputtering process.
The specific deposition process was as follows: The flow ratio of Ar gas (99.999%) and
C2H2 (99.999%) was 16:6 sccm, the deposition pressure was 1.0 Pa, the RF power was
200 W, the bias voltage was 25 V, and the sputtering time was 5 min. The steps in the
sample preparation are shown below in Figure 10.

3.3. Sample Characterization and Electrochemical Detection

The surface morphology of the samples was analyzed by field emission scanning
electron microscopy (FESEM, NOVA Nanosem230), the surface composition of the samples
was characterized by energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron
spectroscopy (XPS, ESCALAB 250Xi) was used to characterize and analyze the chemi-
cal composition of the surface of the samples. Laser Raman spectroscopy (Labram HR
800,532 nm, 10 mW) was used to characterize the proportion of sp2 and sp3 in the DLC sam-
ples. All the electrochemical performance characterization experiments were performed at
the electrochemical workstation CHI660E (CH Instruments, Shanghai Chenhua Instrument
Corp., Shanghai, China) at room temperature using a three-electrode system. The packaged
sample (5 × 5 mm2) was used as the working electrode, a platinum plate (10 × 10 mm2)
was used as the counter electrode, and an Ag/AgCl was used as the reference electrode.
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4. Conclusions

In this manuscript, TiO2 nanotubes were prepared by anodic oxidation, and the com-
posite electrode modified by Ni-DLC was prepared by Ni electrodeposition and subsequent
DLC sputtering. With TiO2 as the substrate electrode, the hollow porous structure im-
proved the stability of the modifying film by anchoring. At the same time, the synergistic
effect of Ni and DLC improved the stability and catalytic activity of Ni. The results of the
glucose catalytic oxidation of the composite electrode showed that there were two linear
ranges. The sensitivity of the composite electrode was 1063.78 µA·mM−1·cm−2 when the
glucose concentration range was 0.99 mM–3.00 mm, the sensitivity of the electrode was
554.89 µA·mM–1·cm–2, and the LOD was 0.53 µM (S/N = 3) in a glucose concentration
range of 3.00–22.97 mM. The composite electrode had good selectivity and stability, which
indicates that the electrode has positive application prospects in the determination of
non-enzymatic glucose.
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