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Abstract: Solid-phase analytical derivatization (SPAD) is a promising hybrid sample preparation
technique combining the clean-up and preconcentration of the sample in a single step. In this work, a
novel SPAD method based on the preparation of trimethylsilyl (TMS) derivatives of steroid hormones
(testosterone, estrone, DHT, estriol, estradiol, and progesterone) in Phenomenex Strata C18-E (100 mg,
1 mL) cartridges has been developed and applied for their GC-MS/MS determination in human urine
samples. The proposed procedure allows the detection and quantification of steroids with limits
of 1.0–2.5 and 2.5–5 ng/mL, respectively. These characteristics are comparable with those obtained
with a conventional liquid–liquid extraction, while the recovery of analytes in the proposed SPAD
procedure is higher. The major advantages of SPAD are a short derivatization time, high efficiency,
and the possibility to automatize the procedure. However, its cost-effectiveness in routine practice is
still questionable.

Keywords: steroid hormones; androgens; estrogens; LLE; SPAD; GC-MS/MS; sample preparation

1. Introduction

Steroid hormones are endogenous compounds synthesized from cholesterol in gonads,
placenta, and adrenal glands that play an important role in regulatory functions. They
are present in the body at low concentrations, and their changes are sometimes associated
with such diseases as depression, cancer, and even diabetes [1]. Steroids are also an
important part of an athlete biological passport according to the World Anti-Doping Agency
(WADA) regulations [2–5]. Thus, the accurate determination of steroids is considered an
important task to prevent false results and explore the mechanism of diseases associated
with steroid hormones.

Immunoassay (IA) and gas or liquid chromatography hyphenated with mass spec-
trometry are the major techniques used for steroid quantification. The main advantage of
IA is an easy and quick implementation of the method in a laboratory with high sensitiv-
ity, but it has a substantial limitation connected with a single analyte measurement at a
time and insufficient selectivity (in the case of “hook effect” occurrence) [6–9]. Therefore,
high-performance liquid chromatography coupled with mass spectrometry (LC-MS) and
gas chromatography-mass spectrometry (GC-MS), especially with triple quadrupole mass
spectrometry (MS/MS), and high-resolution mass spectrometry (HRMS) techniques have
become preferable [10–19]. The application of LC-MS(/MS) is complicated due to the
presence of isobaric compounds, limited separation efficiency and selectivity of HPLC or
UHPLC columns along with strong matrix effects in the case of electrospray ionization (ESI).
GC-MS(/MS) detection allows a significantly higher separation efficiency and provides
much more accurate results as compared to LC-MS(/MS), but the sample preparation
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for GC-MS detection is often cumbersome. Modern methods of chromatography and
mass spectrometry combined with ion-mobility spectrometry (IMS) have opened a new
era for their measurement with high sensitivity and specificity and have made extended
steroidomic research possible [20–22].

Considering a wide list of potential analytes, nowadays, the most common sample
preparation techniques are dilute-and-shoot, liquid–liquid extraction (LLE) [23–25], dis-
persive liquid–liquid microextraction (DLLME) [26–29], as well as solid-phase extraction
(SPE) [30–32] coupled with mineral or enzymatic hydrolysis. As a rule, hydrolysis is ap-
plied in the case of urinalysis, since steroid hormones are mostly present in the conjugated
form (as glucuronides or sulfates) in this matrix and cannot be detected directly by GC-
MS(/MS). Moreover, the determination of conjugated steroid hormones does not allow the
assessment of the total content of some steroids, e.g., testosterone, etiocholanolone, etc.,
having important diagnostic value in doping control and clinical diagnostics.

Since concentrations of steroid hormones in urine vary by several orders of magni-
tude (from units to hundreds of ng/mL), their quantification is often accompanied by a
derivatization step after LLE or SPE concentration. For GC-MS(/MS) detection, a mixture
of dithiothreitol (DTT), N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), and NH4I
is a commonly used derivatization reagent. This reagent allows the silylation of even
enol groups thus resulting in an increase in the intensity of a molecular ion and conse-
quently in higher sensitivity of analysis. In the case of HPLC determination of steroids,
the use of derivatization reagents is less common; however, when their application is
required, hydroxylamine can be used [33] as a simple and efficient reagent compatible with
aqueous media.

Despite the efficiency of the above-described approaches, they have a few shortcom-
ings, the foremost of which is a time-consuming sample preparation using qualified labor.
In this way, the sample preparation consisting of LLE with subsequent derivatization for
GC-MS(/MS) detection requires more than 120 min, and steroid recoveries are strongly
dependent on the extractant and pH of the medium. In addition, such sample preparation
has limited capabilities for automation.

The details and characteristics of some representative methods for the determination
of steroids are presented in Table 1.

Table 1. An overview of some methods for the determination of steroids.

Analyte Matrix Sample Preparation Method LOQ (LOD),
ng/mL Reference

101 steroids Tissue

Homogenization of 100 mg of the
sample, centrifugation followed by

lyophilization and dissolving in
150 µL of water–methanol (1:1) mixture

UHPLC-MS/MS
(QqQ, ESI) 0.5–500 [34]

13 steroid
glucuronides Artificial urine Enzymatic hydrolysis, SPE clean-up,

evaporation, residue dissolution
UHPLC-MS/MS

(QqQ, ESI) 1–500 [35]

7 steroids Urine
Alkaline hydrolysis, LLE (MTBE),

derivatization with
MSTFA/DTT/NH4I mixture

GC-MS 1–4 [36]

13 steroids Serum

LLE with ethyl acetate–n-hexane,
incubation in ice for 10 min,
centrifugation, evaporation,

residue reconstruction

UHPLC-MS/MS
(QqQ, ESI) 0.08–7.81 [37]

4 steroids Urine
Protein precipitation with acetonitrile,

SPE, evaporation and
residue reconstruction

UHPLC-MS/MS
(QqQ, ESI)

1.9–21.4
nmol/L [38]

MTBE—methyl tert-butyl ether, DTT—dithiothreitol, MSTFA—N-methyl-N-(trimethylsilyl)trifluoroacetamide.
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This cutting-edge research is aimed to provide new information about steroidome
and discover new potential disease markers. However, the development of novel quick,
easy, and efficient sample preparation methods for steroid determination is still an actual
and important task in the routine practice. Solid-phase analytical derivatization (SPAD)
is a promising sample preparation techniques. The main advantage of this method is the
coupling of clean-up, preconcentration, and derivatization in one step. Some aspects of
this method were previously described in [27,39,40], but a few blind spots still exist in this
technique in comparison with conventional sample preparation methods.

The aim of this research was to investigate the possibilities of SPAD sample pretreat-
ment for GC-MS/MS determination of trimethylsilyl (TMS) derivatives of steroid hormones
in urine and compare its efficiency and selectivity with a conventional liquid–liquid extrac-
tion (LLE) sample preparation method.

2. Results
2.1. Optimization of Sample Preparation Conditions

To optimize derivatization conditions, first, the influence of the derivatization reagent
concentration on the formation of trimethylsilyl-derivatives was evaluated. For this, 100 µL
of either undiluted or 2-, 5-, 10-, 20-fold diluted derivatization reagent with acetonitrile was
used to react with analytes on a cartridge. The results have revealed that an increase in the
dilution factor of the derivatization reagent led to decreased analyte peak areas; therefore,
100 µL of the undiluted derivatization reagent was used in subsequent experiments.

Then, the temperature of the SPE cartridge during the solid-phase preparation of TMS
derivatives was optimized. The temperature effect was studied at ambient temperature
(22 ◦C), 40 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, and 80 ◦C. Higher temperatures were not tested in
order to avoid the possible deformation of SPE cartridge polymer parts. A temperature
of 80 ◦C was selected as optimal for the future experiments as it provided the highest
analyte responses.

The derivatization time was varied between 1 and 90 min to find the optimum. Ac-
cording to the obtained results, thermostating at 80 ◦C for 10 min was sufficient for the
preparation of all TMS derivatives by using an undiluted derivatization reagent. The
obtained yields of the derivatization reactions are similar for all steroids used in this work,
as shown in Figure 1.
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2.2. Chromatographic Separation and Mass Spectrometric Detection Conditions

The separation of testosterone, estrone, DHT, estriol, estradiol, and progesterone was
obtained under the following temperature gradient program: an initial temperature of
150 ◦C was held constant for 2 min; then, it increased to 315 ◦C at the flow rate of 7 ◦C/min
and was held constant for 25 min. Carrier gas (helium) flow rate was set at 1 mL/min, split
ratio—1:5, septum purge—3 mL/min. A triple quadrupole mass spectrometer equipped
with an electron ionization ion source operated in multiple reaction monitoring (MRM)
mode. The optimized conditions of MRM detection are shown in Table 2. Collision gas
(argon) pressure was 1.2 mTorr; cycle time—0.3 s.

Table 2. Optimized MRM-transitions for steroid hormones determination.

Analyte Precursor Ion, m/z Product Ion, m/z Collision Energy, eV tR, min

17α-Estradiol 416.3
232.3 20

24.84284.8 * 10
326.8 5

Estrone 414.3
231.2 * 30

25.03283.4 25
399.9 15

Dihydrotestosterone 434.3
168.6 15

25.17195.3 * 30
291.2 20

Testosterone 432.3
168.8 25

25.51403.8 15
417.5 * 10

Methyltestosterone (IS) 446.4
195.0 30

26.53301.1 * 20
356.4 10

Estriol 504.4
414.2 10

27.60311.1 * 15
255.0 30

Progesterone 458.4
157.0 15

27.88208.1 25
443.4 * 10

* Quantifier ion.

The preparation of urine samples for analysis strongly affects the results of the quan-
tification of steroids. Considering that optimum pH values in LLE extraction (Figure 2) are
different for steroid hormones of different classes, their recoveries can be insufficient when
unified LLE conditions are used. To overcome this drawback, the application of either SPE
with hydrophobic cartridges or sample preparation under different LLE conditions can be
considered. To achieve a higher sensitivity of GC-MS steroid detection, an extraction step
is typically followed by derivatization using diverse reagents. Among the derivatization
reactions, silylation is the most commonly used. The use of a derivatization reagent mixture,
namely MSTFA/NH4I/DTT, allows the detection of highly abundant molecular ion peaks
for analytes. However, it usually takes approximately 40 min to complete the reaction. As
a result, the sample preparation includes a large number of time-consuming and tedious
steps and can result in analyte losses.

To overcome these limitations, a combination of SPE with analytical derivatization can
be used. A comparison of conventional procedures for steroid determination with SPAD is
presented in Table 3.
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Table 3. Comparison of different methodologies for sample preparation used for steroid determination.

Procedure Advantages Disadvantages

Liquid–liquid extraction
Cost-effective;

High solvent capacity;
Easy to use

Requires toxic solvents;
Time-consuming;

pH-dependent character of
extraction efficiency

Solid-phase extraction Quick; Easy to use;
Can be partially automated

Expensive; Requires
toxic solvents;

Sorbent capacity evaluation is
required before analysis;

Losses of analytes if solvent is
evaporated after elution

Solid-phase analytical
derivatization

Quick; Easy to use;
Time-effective;

Can be fully automated

Expensive; Sorbent
capacity evaluation is required

before analysis

2.3. Analytical Figures of Merit of the Proposed Method

Blank urine samples obtained according to the procedure described in Section 4.3.
“Urine samples” were spiked with the selected analytes to obtain the final concentrations
within the range of 1.0–250 ng/mL. The experiment was carried out under the optimized
conditions; the internal standard (methyltestosterone) concentration was 50 ng/mL. An-
alytical figures of merit of the developed SPAD procedure are presented in Table 4. The
detection limit (LOD) corresponded to the lowest detected analyte concentration with
the signal-to-noise ratio of 3, while the quantification limit (LOQ) was determined at the
signal-to-noise ratio of 10.

Table 4. Analytical figures of merit of the proposed method.

Analyte LOD, ng/mL LOQ, ng/mL Linear Range, ng/mL R2

17α-Estradiol 2.5 5 5–100 0.995
Estrone 2.5 5 5–100 0.993

Dihydrotestosterone 1.0 2.5 2.5–100 0.996
Testosterone 1.0 2.5 2.5–100 0.997

Estriol 1.0 2.5 2.5–100 0.995
Progesterone 2.5 5 5–100 0.998
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As can be seen from Table 5, the LOD and LOQ values are comparable for LLE
and SPAD sample preparation procedures with similar conditions of MS detection, which
makes the developed procedure suitable for doping control and clinical diagnostic purposes.
Recovery values were calculated as the ratio of peak areas obtained by analyzing standard
solutions of steroid hormone TMS derivatives to those of solutions that passed through the
sample preparation with equal final concentrations of the analytes.

Table 5. Analytical performance of SPAD and LLE procedures combined with GC-MS/MS determi-
nation of steroid hormones.

Parameter SPAD LLE

Sensitivity (LOQ), ng/mL 2.5–5 1.0–2.5

Sample preparation time, min 60 (including 40 min of
enzymatic hydrolysis)

180 (including 40 min of
enzymatic hydrolysis)

Recovery, % 92–95 65–90

2.4. Analysis of Real Samples

The chromatograms of real male and female urine samples are shown in Figures 3 and 4,
illustrating the applicability of the proposed SPAD method to the analysis of real samples.
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3. Discussion

In this study, a procedure containing the step of TMS-derivatives preparation is
presented. According to the reaction conditions, the presence of moisture in the cartridge
at the stage of the derivatization reagent loading should be avoided. This can be easily
achieved for conventional procedures by solvent evaporation from tubes, but it is harder
to control it in the case of the sorbent. The presence of the developed porous structure
makes it complicated and requires excessive drying time to prevent hydrolysis of MSTFA. It
should be noted that SPAD also requires the absence of residual silanols or other functional
groups on the sorbent surface, which can react with a derivatization reagent, so the use
of cartridges with end-capped alkyl silica is required. As a result, this methodology
cannot be used for extremely polar compounds with this combination of the non-polar C18
sorbent and a derivatization agent such as MSTFA. At the same time, this limitation based
on analytes retention could be used in further research as one of the instruments of the
selectivity control.

The main disadvantage of the proposed SPAD method is its relatively high cost of
analysis due to the use of SPE cartridges. This is an extremely important aspect for high-
throughput laboratories performing routine analysis. However, the negative effect of it can
be partly compensated for by the substantial decrease in sample preparation time [40] and
the increased number of analytes that can be determined in a single run.

4. Materials and Methods
4.1. Chemicals

Standards of testosterone (T), methyltestosterone (MT), dihydrotestosterone (DHT), es-
trone (E1), 17α-estradiol (17α-E), estriol (E2), progesterone (P), N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA), dithiothreitol (DTT), and NH4I were from Sigma-Aldrich
(St. Louis, MO, USA); β-glucuronidase from Escherichia coli (E. coli) was from Roche Diag-
nostics (Mannheim, Germany). Dipotassium hydrogen phosphate, disodium hydrogen
phosphate dihydrate, and sodium azide (all 99%) used for the preparation of a phosphate
buffer solution (pH 6.5) were obtained from Vecton (St. Petersburg, Russia). HPLC-grade
acetonitrile was obtained from Biosolve (Jerusalem, Israel).

4.2. Preparation of Solutions

Standard solutions of the analytes (17α-estradiol, estriol, estrone, testosterone, dihy-
drotestosterone, and progesterone) with a concentration of 1 mg/mL were prepared in
methanol. They were diluted in methanol to obtain calibration solutions within the range of
1.0–250 ng/mL. Methyltestosterone was used as the internal standard with a concentration
of 50 ng/mL in the final sample. Calibration solutions were stored at 4 ◦C; stock solutions
were stored at −20 ◦C.

To prepare the derivatization reagent, 60 mg of ammonium iodide and 45 mg of
dithiothreitol were dissolved in 30 mL of MSTFA and stored in the refrigerator at 4 ◦C for
up to 2 months.

4.3. Urine Samples

Urine samples obtained from volunteers (males and females aged between 20 and
45) were used to construct calibration curves. The samples were preserved with sodium
azide and stored at −20 ◦C before the analysis. To obtain a blank sample matrix for the
optimization of SPAD conditions, urine samples were passed through the Bond Elute C18
(3 mL, 100 mg) (Agilent, Santa Clara, CA, USA) SPE cartridge, and the eluate was collected
according to [35].

4.4. Instrumentation

A Thermo Trace 1310 gas chromatograph (Thermo Fisher Scientific, San Jose, CA,
USA) coupled with a Thermo TSQ Quantum XLS mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) operating with an electron ionization (EI) ion source was
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used. A capillary Thermo TG-1MT column (60 m × 0.25 mm × 0.25 µm) was used for the
separation of analytes. Thermo XCalibur 2.2 software (Thermo Fisher Scientific, San Jose,
CA, USA) was used for data collection and processing.

4.5. Liquid–liquid Extraction Procedure

A previously validated LLE procedure for steroids was used in a comparative study [41].
Briefly, 3 mL of urine was incubated in a 10 mL glass tube at 45 ◦C for 30 min with E. coli in
a phosphate buffer solution (pH 6.5) to achieve full deconjugation of the analytes. Then,
anhydrous sodium sulfate, 1 mL of carbonate buffer solution (pH 10), and 3 mL of diethyl
ether were added for steroid extraction. After 3 min of extraction on a vortex mixer, the
samples were centrifuged at 3000 rpm for 10 min. For phase separation, glass tubes were
put into a cryostat thermostated at −35 ◦C to freeze the aqueous layer. The diethyl ether
layer was transferred into another flask and evaporated in a dry block heater at 60 ◦C
under a nitrogen stream. A 100 µL aliquot of the derivatization reagent was added to the
dry residue, and the tube was incubated at 60 ◦C for 40 min. After cooling the tube to
room temperature, 0.4 mL of acetonitrile was added, and the solution was analyzed by
GC-MS/MS.

4.6. Optimum Solid-Phase Analytical Derivatization Conditions

Prior to the SPAD procedure, 2 mL urine samples were spiked with 0.6 mL of phos-
phate buffer (pH 6.5) containing β-glucuronidase from E. coli and thermostated for 30 min
at 45 ◦C for deconjugation of the analytes. This volume of urine sample was selected
according to the results confirming absence of breakthrough for the sample with volumes
of up to 2 mL loaded on the cartridge.

Phenomenex Strata C18-E (100 mg, 1 mL) SPE cartridges were used in this study.
These cartridges were preliminarily conditioned with 1 mL of acetonitrile and equilibrated
with 1 mL of water. Then, the sample was loaded on the cartridge followed by a cartridge
washing with 1 mL of a water–acetonitrile mixture (95:5, v/v). To prevent hydrolysis of the
derivatization reagent, the cartridge was dried under a stream of nitrogen for 10 min. Then,
100 µL of the derivatization reagent was passed through the cartridge with its subsequent
incubation in a dry block heater at 80 ◦C for 10 min. After cooling the cartridge to ambient
temperature, 0.5 mL of acetonitrile was used to elute analytes.

5. Conclusions

A procedure for GC-MS/MS determination of TMS derivatives of steroid hormones us-
ing the SPAD methodology has been proposed, discussed, and compared with conventional
methods. A comparison of the developed procedure with a conventional LLE has revealed
that they have similar sensitivity, but SPAD provides higher recovery rates. Moreover, the
complete sample preparation using SPAD requires less than an hour, while conventional
procedures usually require more than 3 h, which significantly limits the throughput of the
laboratory. Considering its simplicity and reproducibility, the proposed procedure can be
used in doping control and clinical laboratories.
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