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Abstract: In this article, the upgrading process of the structure-based virtual screening (SBVS) protocol
targeting acetylcholinesterase (AChE) previously published in 2017 is presented. The upgraded
version of PyPLIF called PyPLIF HIPPOS and the receptor ensemble docking (RED) method using
AutoDock Vina were employed to calculate the ensemble protein–ligand interaction fingerprints
(ensPLIF) in a retrospective SBVS campaign targeting AChE. A machine learning technique called
recursive partitioning and regression trees (RPART) was then used to optimize the prediction accuracy
of the protocol by using the ensPLIF values as the descriptors. The best protocol resulting from this
research outperformed the previously published SBVS protocol targeting AChE.

Keywords: PyPLIF HIPPOS; AutoDock Vina; receptor ensemble docking; machine learning; drug
discovery; acetylcholinesterase

1. Introduction

The discovery of AChE inhibitors is one of the promising strategies for Alzheimer’s dis-
ease (AD) treatment [1–3]. The AChE inhibitor donepezil has served as the leading drug in
the market since 1996 for dementia treatment in AD patients [4–6]. A structure-based struc-
ture virtual screening (SBVS) protocol to identify potent inhibitors for acetylcholinesterase
(AChE) was introduced in 2017 [7]. The protocol was employed to design chalcone deriva-
tives as AChE inhibitors [7], which were subsequently synthesized and verified in vitro [8].
The protocol was then also employed to screen natural products, which inspired the design
of short peptides as AChE inhibitors [9,10]. The prospective screening campaigns of the
short peptides [9] have hit peptides AEKY, AERW, AEYQ, AEYT, and AEYTR [11]. The
following molecular dynamics simulations and the in vitro test have verified the peptide
AEYTR as a potent AChE inhibitor [12]. The snapshots of complex AChE-AEYTR resulting
from the molecular dynamics offer the possibility to perform receptor ensemble docking
(RED) [13]. On the other hand, several in silico studies involving docking and molecular
dynamics to successfully recommend and discover novel AChE inhibitors were recently
reported [14–17].

The flexibility of the AChE was not taken into account in the development of our
previously published SBVS protocol [7]. Referring to the lock-and-key theory [18], the
SBVS protocol uses a flexible key with particular features to match the rigid lock [7]. There
are several methods to include the flexibility of the receptor in SBVS protocols, e.g., the
induced-fit docking (IFD) by assigning some residues as flexible [13,19], and the RED
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by employing selected snapshots from molecular dynamics (MD) simulations [13,20,21].
Employing receptor flexibility could enhance the SBVS protocol [20–22].

Software to identify protein–ligand interaction fingerprints (PLIF) called PyPLIF [23]
was employed to identify the PLIF, which were derived into ensemble PLIF (ensPLIF) in
the development of the SBVS targeting AChE [7]. The descriptor ensPLIF was introduced
to circumvent the selection of ligand reference [24] and the possibility of multiple poses
of the ligands in the binding pocket [25]. Seven years after the public release of PyPLIF,
the upgraded version called PyPLIF HIPPOS was made publicly available in 2020 [26].
PyPLIF HIPPOS was reported 10 times faster compared to its predecessor and had the
feature to focus on the interaction with the residue atoms only by neglecting the interaction
with the main chain atom of the protein [26]. The research presented in this article aimed
to upgrade the SBVS protocol to identify AChE inhibitors [7,10] with better prediction
accuracy by taking into account the flexibility of the enzyme. Since PyPLIF HIPPOS was
not developed to identify PLIF from docking poses resulting from AutoDock Vina flexible
docking [26,27], the RED approach was selected instead of the IFD approach to consider
the protein flexibility in this research. The availability of PyPLIF HIPPOS [26] and the
AChE-AEYTR complexes resulting from the molecular dynamics simulations [12] were
beneficial to attaining the aim.

2. Results

The upgrading of the SBVS targeting AChE started with the replication optimization
of the retrospective SBVS campaigns. This step reperformed the protocol in the previous
SBVS protocol version [7] but used AutoDock Vina [27] instead of PLANTS [28]. The
complex for this optimization was the crystal structure 1E66.pdb [29], and the active and
decoy compounds for retrospective validation were obtained from the Directory of Useful
Decoys, Enhanced (DUD-E) [30]. In the optimization for the upgraded SBVS protocol, the
F-measure (F1) values with 1-time, 2-time, 3-time, 4-time, and 5-time replications were
0.088, 0.112, 0.241, 0.241, and 0.237, respectively. Since the 3-time replication provided the
optimum predictive activity compared to others, the retrospective SBVS campaign for each
clustered AChE-AEYTR was performed three times.

The clustering of the MD snapshots [12] resulted in two AChE-AEYTR complexes for
further construction of the SBVS protocol. The complexes were split into the protein (AChE)
and the ligand (AEYTR), and then prepared for the docking simulations. The prepared
files in the pdbqt format were zipped and are provided here as Supplementary Material S1
(clusters.zip).

The retrospective SBVS campaigns were performed three times for each cluster. Em-
ploying the same docking score-based pose selection as the previously published proto-
col [7] to optimize the prediction quality of the SBVS protocol reached an F1 value of 0.412
at −8.7 kcal/mol as the maximum cutoff docking score. The F1 value came from the true
positive (TP), false negative (FP), true negative (TN), and (false positive) values of 124, 329,
26225, and 25, respectively. The ensPLIF values from the selected poses of the retrospective
SBVS campaign with −8.7 kcal/mol as the maximum cutoff docking score are provided
in a zipped csv file as Supplementary Material S2 (bestdg.ensplif.nobb.zip). Further opti-
mization of the SBVS protocol by fine-tuning the prior probabilities in running recursive
partitioning and regression trees (RPART) on Supplementary Material S2 identified that
prior probabilities of 0.9:0.1 resulted in the highest balanced accuracy (BA) value (0.729)
among other runs with the F1 value of more than 0.413. The optimized protocol had the
enrichment factor (EF), F1, and BA values of 34.068, 0.415, and 0.729, respectively. These
values came from the TP, FN, TN, and FP values of 214, 239, 25886, and 364, respectively.
Overfitting, cross-correlation, and chance correlation were not observed in the decision tree
model (Figure 1) resulting from the optimized RPART run.



Molecules 2022, 27, 5661 3 of 9Molecules 2022, 27, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 1. The decision tree resulted from the RPART run with the prior probabilities of 0.9:0.1. 

Based on Figure 1 and Table 1, there are five branches leading to the identification of 
active compounds as AChE inhibitors. These branches reflect five “keys” to open the 
AChE “lock”. There are 11 ensPLIF descriptors that play an important role, i.e., ensPLIF-
22, -28, -92, -99, -158, -239, -240, -295, -325, -358, and -374. In AChE, these ensPLIF de-
scriptors related to the hydrophobic interaction to Asp72, the ionic interaction with Asp72 
as the anion, the hydrophobic interaction to Asn85, the hydrophobic interaction to Pro86, 
the H-bond with Ser112 as the donor, the hydrophobic interaction to Trp279, the aromatic 
face-to-face interaction to Trp279, the hydrophobic interaction to Phe330, the aromatic 
edge-to-face interaction to Tyr334, the hydrophobic interaction to His440, and the aro-
matic edge-to-face interaction to Tyr442, respectively (Table 1). The decision tree (Figure 
1) indicates that the hydrophobic interaction to Asp72, the ionic interaction with Asp72 as 
the anion, the hydrophobic interaction to Asn85, the hydrophobic interaction to Pro86, 
and the H-bond with Ser112 as the donor, are unfavorable interactions. Both the previous 
version [7] and the version developed here have 11 ensPLIF descriptors. The following 
are the descriptors from the previous version [7]: ensPLIF-29, -193, -204, -208, -297, -302, -
316, -337, -358, -365, and -386, which are related to the hydrophobic interaction to Gln74, 
the H-bond to Tyr130 (protein as the donor), the hydrophobic interaction to Ser200, the 
H-bond to Ser200 (protein as the acceptor), the aromatic edge-to-face interaction to 
Phe330, the hydrophobic interaction to Phe331, the hydrophobic interaction to Leu333, the 
hydrophobic interaction to Trp432, the hydrophobic interaction to His440, the hydropho-
bic interaction to Gly441, and the hydrophobic interaction to Ile444, respectively. 

  

Figure 1. The decision tree resulted from the RPART run with the prior probabilities of 0.9:0.1.

Based on Figure 1 and Table 1, there are five branches leading to the identification
of active compounds as AChE inhibitors. These branches reflect five “keys” to open the
AChE “lock”. There are 11 ensPLIF descriptors that play an important role, i.e., ensPLIF-22,
-28, -92, -99, -158, -239, -240, -295, -325, -358, and -374. In AChE, these ensPLIF descriptors
related to the hydrophobic interaction to Asp72, the ionic interaction with Asp72 as the
anion, the hydrophobic interaction to Asn85, the hydrophobic interaction to Pro86, the
H-bond with Ser112 as the donor, the hydrophobic interaction to Trp279, the aromatic
face-to-face interaction to Trp279, the hydrophobic interaction to Phe330, the aromatic
edge-to-face interaction to Tyr334, the hydrophobic interaction to His440, and the aromatic
edge-to-face interaction to Tyr442, respectively (Table 1). The decision tree (Figure 1)
indicates that the hydrophobic interaction to Asp72, the ionic interaction with Asp72 as
the anion, the hydrophobic interaction to Asn85, the hydrophobic interaction to Pro86,
and the H-bond with Ser112 as the donor, are unfavorable interactions. Both the previous
version [7] and the version developed here have 11 ensPLIF descriptors. The following are
the descriptors from the previous version [7]: ensPLIF-29, -193, -204, -208, -297, -302, -316,
-337, -358, -365, and -386, which are related to the hydrophobic interaction to Gln74, the
H-bond to Tyr130 (protein as the donor), the hydrophobic interaction to Ser200, the H-bond
to Ser200 (protein as the acceptor), the aromatic edge-to-face interaction to Phe330, the
hydrophobic interaction to Phe331, the hydrophobic interaction to Leu333, the hydrophobic
interaction to Trp432, the hydrophobic interaction to His440, the hydrophobic interaction
to Gly441, and the hydrophobic interaction to Ile444, respectively.
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Table 1. The ensPLIF descriptors in the decision tree resulted from the RPART run with the prior
probabilities of 0.9:0.1.

Variable No. Descriptor Corresponding
Residue Corresponding Interaction Type 1

V22 ensPLIF-22 Asp72 hydrophobic
V28 ensPLIF-28 Asp72 ionic (residue as the anion)
V92 ensPLIF-92 Asn85 hydrophobic
V99 ensPLIF-99 Pro86 hydrophobic

V158 ensPLIF-158 Ser122 H-bond (residue as the donor)
V239 ensPLIF-239 Trp279 hydrophobic
V240 ensPLIF-240 Trp279 aromatic (face-to-face)
V295 ensPLIF-295 Phe330 hydrophobic
V325 ensPLIF-325 Tyr334 aromatic (edge-to-face)
V358 ensPLIF-358 His440 hydrophobic
V374 ensPLIF-374 Tyr442 aromatic (edge-to-face)

1 Refers to [23,26].

Figure 2 presents ChEMBL15056 and C49071124 as the representative of active and
decoy compounds, respectively. Based on the docking poses, the ensPLIF-22, -28, -92, -99,
-158, -239, -240, -295, -325, -358, and -374 values of ChEMBL15056 were 0.467, 0.033, 0, 0, 0.3,
0.4, 0.033, 0.933, 0.433, 0.3, and 0.533. These ensPLIF values indicate that ChEMBL15056
is one of the Key #1 to open the AChE lock (Figure 1). On the other hand, the ensPLIF-22,
-28, -92, -99, -158, -239, -240, -295, -325, -358, and -374 values of C49071124 are 0.267, 0.1,
0, 0, 0.067, 0.1, 0.1, 0.767, 0.4, 0.567, and 0.133, respectively. These ensPLIF values do not
correspond to any key to open the AChE lock (Figure 1).
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Figure 2. The representative of the active compound ChEMBL15056 (a) and the decoy compound
C49071124 (b). The representative docking results of ChEMBL15056 (carbon atoms are in orange) and
C49071124 (carbon atoms are in magenta) in the AChE binding pocket are presented in (c) and (d),
respectively. Figures (c,d) were prepared by employing PyMOL version 2.5.2 (https://pymol.org/2/;
accessed on 23 May 2022).

https://pymol.org/2/
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3. Discussion

The SBVS protocol targeting AChE released in 2017 [7] played an important role in
the discovery of the pentapeptide AEYTR as a potent AChE inhibitor with IC50 value of
0.462 ± 0.079 nM [9–12]. The backbone of the protocol is PLANTS docking software [28]
and PyPLIF [23]. In the previous SBVS protocol [7], every compound is docked five times
independently, resulting in 250 poses to derive ensPLIF descriptor for the corresponding
compound [7]. Since the RED approach uses more than 1 receptor coordinate [20,21],
the replication should be optimized to avoid redundancy in the SBVS protocol, which in
turn optimizes the computational cost of the SBVS protocol. The optimization employing
the same protocol with [7] but using AutoDock Vina [27] and PyPLIF HIPPOS instead
of PLANTS and PyPLIF, respectively, concluded that the replication of three times is the
optimum one.

The discovery process of AEYTR as a potent AChE inhibitor involved MD simula-
tions [11,12], which provided snapshots of AChE-AEYTR complex. The clustering of the
production runs snapshots performed in this research resulted in 2 different AChE-AEYTR
complexes, which indicated the stability of the AChE-AEYTR complex. This is in line
with the results presented previously [11,12]. Together with the optimized 3-times of the
docking replication, these 2 AChE-AEYTR complexes require in total 6-times independent
runs for each screened compound.

The residues Phe330 and His440 are suggested as the molecular determinant of the
AChE inhibitor binding since both residues play an important role in the previous [7] and
the upgraded protocol. The importance of the residue Phe330 in the AChE inhibitor binding
was recently reported also by Liu et al. [15], Daoud et al. [14], and van der Westhuizen [16],
while the importance of the residue His440 was reported by van der Westhuizen [16]. This
reflects the hydrophobic and aromatic nature of the ligand reference in the complex used
in the SBVS development. The previous version uses a crystal structure 1E66.pdb with
huprine X (HUX) as the co-crystal ligand [7,29,30], while this upgraded version uses AChE-
AEYTR resulted from the MD simulations [12]. Both HUX and AEYTR have aromatic
moiety in their structures. Notably, for Phe330, the interaction type in the decision tree
in the previous version is the aromatic (edge-to-face) [7], but in the upgraded version is
hydrophobic. All hits in the previous prospective screening on small peptides [9] have
aromatic moiety in their structure [11]. Moreover, the marketed AChE inhibitor donepezil
has two aromatic moieties in its structure [5,12]. Therefore, it is highly suggested in the
prospective screening campaign targeting AChE or in the hit-to-lead optimization to focus
on compounds with aromatic moiety.

Based on Table 2, the upgraded version of the SBVS protocol developed here has
the F1 value of 0.415, which is slightly better compared to the previous version (0.413).
Nevertheless, the upgraded version outperforms the previous version in terms of the BA
and the sensitivity values. The BA values of the previous and the upgraded version are
0.636 [7] and 0.729, respectively, while the sensitivity values are 0.274 [7] and 0.472, respec-
tively. During the preparation of the manuscript, SBVS protocols targeting AChE, which
were retrospectively validated using the DUD-E dataset, were published and successfully
identify novel inhibitors [16]. The EF, F1, and BA values of the upgraded SBVS protocol
developed in this article are better compared to those values of the best SBVS protocol in
van der Westhuizen et al. [16].
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Table 2. Prediction abilities of some SBVS protocols to identify AChE inhibitors using ligand and
decoys from DUD-E [30].

SBVS Protocol
Confusion Matrix Statistical Significance

TP FN TN FP EF F1 BA

Mysinger et al. [30] 1 91 362 25988 262 20.1 0.225 0.595
Riswanto et al. [7] 124 329 26226 24 299.393 0.413 0.636

van der Westhuizen et al. [16] 1 127 326 25988 262 28 0.301 0.635
SBVS developed in this article 214 239 25886 364 34.068 0.415 0.729

1 Calculated from the best EF1% values reported in the article.

The upgraded version presented in this article would be employed further for prospec-
tive screening in the discovery of AChE inhibitors. Notably, the DUD-E dataset has been
recently optimized into the newest version called DUDE-Z [31], which offers an oppor-
tunity to benchmark the upgraded version of the SBVS targeting AChE presented here.
Moreover, the ensPLIF descriptor resulting from the combination of PyPLIF HIPPOS and
RED approach has become a routine in our ongoing research project on the discovery of
novel dipeptidyl peptidase IV (DPP4) inhibitors.

4. Materials and Methods
4.1. Materials

The AChE crystal structure with HUX as the co-crystalized ligand 1E66.pdb obtained
from https://www.rcsb.org/structure/1e66 (accessed on 31 March 2021) [29] was used in
the optimization of the docking replication number. The AchE-AEYTR complexes resulted
from the MD simulations snapshots were obtained from [12]. The active set of AchE
inhibitors (actives_final.ism) and the decoy set (decoys_final.ism) in the SMILES form were
downloaded from http://dude.docking.org/targets/aces (accessed on 31 March 2021) [30].
The computational simulations were performed in a 64-bit Linux (CentOS 7) server with
16 cores of Intel®Xeon®CPU E5-2620 v4 @ 2.10GHz and 16 GB of RAM. The main software
in this machine involved in this research was YASARA-Structure version 21.12.19 [32],
AutoDock Vina version 1.1.2 [27], PyPLIF HIPPOS version 0.1.2 (https://github.com/
radifar/PyPLIF-HIPPOS/releases/tag/0.1.2, accessed on 20 March 2021) [33], PLANTS
docking software 1.2 [28,34], SPORES 1.3 [35], ADFRsuite 1.0 [19], and RPART package [36]
in R statistical computing software version 3.6.0 [37].

4.2. Methods
4.2.1. Ligand Preparation

The files actives_final.ism (453 compounds) and decoys_final.ism (26250 compounds) were
downloaded from http://dude.docking.org/targets/aces (accessed on 31 March 2021) [30].
The second column of the file actives_final.ism was removed. The rest of SMILES structure lines
from actives_final.ism were appended to the file decoys_final.ism, and then the file was stored
as dude_aces.smi. A macro file in the same directory as the file dude_aces.smi was created to
convert the structures from SMILES to pdb. The following is the summary of the macro file:
“The simulation was run with YASARA. The SMILES for each line in dude_aces.smi was built
into its three-dimensional (3D) form. The pH system was set to pH 7.4, and the hydrogens
were updated. The compound was then energy minimized using NOVA as the FF [38]. The
optimized structure was saved as a pdb file.” The resulting pdb files were then subjected to the
module “prepare_ligand” from ADFRsuite to be converted into the in pdbqt files readily for
molecular docking simulations using AutoDock Vina [27]. During this pdb to pdbqt conversion
step using ADFRsuite, 20 pdb structures of the decoys could not be converted into their pdbqt
format. Since these compounds would not result in any docking poses, they were then predicted
as inactive (N) in the further analysis.

https://www.rcsb.org/structure/1e66
http://dude.docking.org/targets/aces
https://github.com/radifar/PyPLIF-HIPPOS/releases/tag/0.1.2
https://github.com/radifar/PyPLIF-HIPPOS/releases/tag/0.1.2
http://dude.docking.org/targets/aces


Molecules 2022, 27, 5661 7 of 9

4.2.2. Replication Optimization

The protein preparation and the predictive ability calculation for this replication
optimization followed the method reported in [7]. The modification of the method was in
the ligand preparation process, the molecular docking software, and the PyPLIF version
used in this step. The ligands here were prepared as presented previously (Section 4.2.1),
the molecular docking software used AutoDock Vina instead of PLANTS, while the PyPLIF
version was PyPLIF HIPPOS instead of PyPLIF.

4.2.3. Proteins Preparation

The AchE-AEYTR complexes resulted from the MD simulations snapshots obtained
from [12] in pdb formats were clustered using YASARA-Structure with the minimum
heavy-atom RMSD between different clusters of 2.0 Å. Each cluster was energy minimized
and split into a pdb file for the AchE part and a mol2 file for AEYTR part. These files were
converted to pdbqt using ADFRsuite and provided here as Supplementary Material S1.

4.2.4. Automated Molecular Docking Simulations Using AutoDock Vina

The configuration for the docking simulations was set as follows: num_modes = 5,
energy_range = 5, and cpu = 4, while the other options were left default. The pdb files
from Section 4.2.3 were converted to mol2 files using “complete” and followed by “reprot”
modules from SPORES [35]. Together with the mol2 files from Section 4.2.3, these mol2
files were used to define the binding pocket of each cluster. The center of the AEYTR of
each virtual target was set as the XYZ coordinate position, and the distance of 5 Å from
the surface of the residue was used to calculate the docking box size. The module “bind”
from PLANTS was used to obtain the values of the XYZ coordinate positions and the size
of the docking boxes. All prepared ligands were docked three times to all clusters using
AutoDock Vina [27] in parallel made use of the 16 processors from the server.

4.2.5. Ensemble Docking Scores and ensplif Calculations

The ensemble docking scores and ensPLIF calculations were performed in the server
using a similar method published by Istyastono et al. [33]. The configuration file to perform
PLIF identification by PyPLIF HIPPOS required a list of residues in the binding pocket [26].
Since the configuration file used for the docking results from different clusters, a consensus
list of residues was created by combining all unique residues identified by using the module
“bind” from PLANTS (see Section 4.2.4). The following was the consensus list of residues
used in the configuration file to run PyPLIF HIPPOS: Gln69, Tyr70, Val71, Asp72, Gln74,
Phe75, Phe78, Ser79, Gly80, Ser81, Glu82, Met83, Trp84, Asn85, Pro86, Trp114, Tyr116,
Gly117, Gly118, Gly119, Phe120, Tyr121, Ser122, Gly123, Ser124, Leu127, Val129, Tyr130,
Glu199, Ser200, Ala201, Gly202, Ser226, Trp233, Trp279, Phe288, Phe290, Asn324, Asp326,
Glu327, Gly328, Ser329, Phe330, Phe331, Leu332, Leu333, Tyr334, Val400, Trp432, Met436,
Ile439, His440, Gly441, Tyr442, Glu443, Ile444, and Glu445.

By employing the configuration files, the PLIF identifications were performed for
all docking poses resulted from the retrospective SBVS (see Section 4.2.4). The option
“nobb” to neglect the interaction with the backbone atoms of the protein was used [26].
Subsequently, employing the similar procedure presented by Istyastono et al. [33], ensPLIF
values were calculated. The results were then arranged in a table for each receptor to be
easily analyzed using the RPART package in R (Supplementary Material S2). The tables
started with the first column named “y” encoding the observed data (“1” for active; “0” for
decoy), followed by “name” for the name of the corresponding ligand, “dg” for the average
docking scores (kcal/mol) resulted from the docking simulations (see Section 4.2.4), and
then ensPLIF variables (“V1” for ensPLIF-1, “V2” for ensPLIF-2, until the whole ensPLIF
values were covered).
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4.2.6. Analysis Using RPART in R

The analysis to provide the best decision tree with the highest BA value was performed
using R version 3.6.0 in the server. The prior probabilities were optimized in this analysis.
The best decision tree resulting from the RPART analysis was then examined for possibilities
of overfitting [39], the cross-correlation between identified ensPLIF variables [40], and
chance correlation [33].

5. Conclusions

The upgraded version of the SBVS protocol targeting AChE using the PyPLIF HIPPOS
and RED approaches outperforms the previously published one in 2017. The upgraded
version should be used as a substitute for the previous one in performing prospective screen-
ing. Compounds with aromatic moiety are suggested to be the focus of the prospective
screening using the upgraded SBVS protocol.
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