
Citation: Liang, S.-Y.; Shi, F.; Zhao,

Y.-G.; Wang, H.-W. Determination of

Local Anesthetic Drugs in Human

Plasma Using Magnetic Solid-Phase

Extraction Coupled with

High-Performance Liquid

Chromatography. Molecules 2022, 27,

5509. https://doi.org/10.3390/

molecules27175509

Academic Editors: Julia Martín,

Esteban Alonso and Constantinos

K. Zacharis

Received: 31 July 2022

Accepted: 24 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Determination of Local Anesthetic Drugs in Human Plasma
Using Magnetic Solid-Phase Extraction Coupled with
High-Performance Liquid Chromatography
Shan-Yan Liang 1,†, Fang Shi 2,†, Yong-Gang Zhao 3,*,† and Hong-Wei Wang 4,*,†

1 Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
2 Department of Chemistry, Zhejiang University, Hangzhou 310027, China
3 College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
4 Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
* Correspondence: zhyg91213@163.com (Y.-G.Z.); wanghw1022@163.com (H.-W.W.)
† These authors contributed equally to the work.

Abstract: In this work, magnetic tetraethylenepentamine (TEPA)-modified carboxyl–carbon nan-
otubes were synthesized, characterized, and used as adsorbents to conduct magnetic solid-phase
extraction (MSPE) for the preconcentration of seven local anesthetic drugs (procaine, lidocaine,
mepivacaine, oxybuprocaine, bupivacaine, tetracaine, and cinchocaine) from human plasma. The
separation and determination of analytes were performed on high-performance liquid chromatog-
raphy with UV detection. Several factors affected the extraction efficiency, such as the amount of
adsorbents used, extraction time, sample pH, and optimization of elution conditions. Under optimal
conditions, satisfactory linear relationships were obtained in the range of 0.02–5.00 mg/L, with the
limits of detection (LOD) ranging from 0.003 mg/L to 0.008 mg/L. The recoveries of analytes for
spiked human plasma were in the range of 82.0–108%. Moreover, the precision with intra-day and
inter-day RSD values were obtained in the range of 1.5–7.7% and 1.5–8.3%. The results indicated that
this method could determine the concentration of seven local anesthetic drugs in human plasma with
high precision and repeatability and provide support for the clinical monitoring of the concentration
of local anesthetic drugs in human plasma.

Keywords: HPLC; MSPE; local anesthetic drugs; human plasma

1. Introduction

In recent years, more and more local anesthetic drugs have been used to reversibly
block nerve function [1], and some local anesthetic drugs have also been applied for
postoperative analgesia and anti-arrhythmia. Structures of seven local anesthetic drugs
are shown in Figure S1 from Supplementary Materials; the local anesthetic drugs can be
divided into two categories (ester-type and amide-type) according to different functional
groups [2]. Clinically, local anesthetic drugs are classified into short-acting, medium-acting,
and long-acting local anesthetics according to the duration of action. Although local
anesthetic drugs are widely used, their most common complications, including central
nervous system (seizures) and cardiac (conduction disorders, cardiac arrests) toxicity,
cannot be ignored. The toxicity of local anesthetic drugs and the plasma concentration
appear to have some correlation, and various fatal toxication cases of local anesthetic
drugs have been reported [3–5]. Furthermore, as emerging pollutants, their presence in
effluent and environmental water is of considerable interest because of the potential for the
contamination of groundwater and drinking water supplies, which may produce health
risks. Therefore, the challenges that need to be resolved are the low concentrations of
studied analytes and interfering substances in the complex matrix. Therefore, there is an
increasing demand for a sensitive, accurate, and rapid method to determine local anesthetic
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drugs. Up to now, analysis methods to determine the anesthetic drugs from several sample
matrices have been reported [6–9]. In order to improve the sensitivity of detection, various
pretreatment methods were developed to extract local anesthetic drugs or create a cleanup
matrix, such as solid-phase extraction (SPE) [10], liquid–liquid extraction (LLE) [11–13],
and microextraction in a packed syringe (MEPS) [8,14,15].

Carbon nanotubes have been widely applied to preconcentrate, extract, and adsorb
organic and inorganic analytes because of their unique features, such as large surface
area and unique electrical, mechanical, and thermal properties [16–18]. Single-walled
CNTs (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are the two main types
of carbon nanotubes [19]. Additionally, carbon nanotubes can be modified by covalent
or non-covalent functionalization, resulting in the introduction of carboxyl (–COOH),
hydroxyl (–OH), and carbonyl (–C=O–) groups. Surface-functionalized carbon nanotubes
can improve dispersion performance and provide reaction sites to broaden their application
range [20]. Magnetic solid-phase extraction (MSPE), a new mode of SPE, is a pretreatment
method based on a magnetic adsorbent. The magnetic adsorbent used in MSPE does not
need to be packed in any type of device and can be collected easily by an extra magnetic
field. Due to the introduction of a magnetic adsorbent, the MSPE procedure became
simpler. In addition, high recovery, simple separation, less solvent consumption, and easy
surface functionalization of adsorbent are other characteristics of MSPE [21]. In recent
years, the applications of MSPE in the analysis of drugs from different matrices have been
reported [22–26].

In this work, magnetic tetraethylenepentamine (TEPA)-modified carboxyl–carbon nan-
otubes (Mag-CCNT-TEPA) were synthesized by a one-pot reaction based on a previously
published solvothermal method [27]. In this method, the carboxyl–carbon nanotubes can
provide a large number of reaction sites, and magnetic nanoparticles can provide a simple
and quick magnetic separation at the same time. MSPE based on using Mag-CCNT-TEPA
as adsorbent followed by HPLC with UV detection was developed to extract, separate, and
determine seven local anesthetic drugs (procaine, lidocaine, mepivacaine, oxybuprocaine,
bupivacaine, tetracaine, and cinchocaine) from human plasma.

2. Results and Discussion
2.1. Preparation and characterization of Mag-CCNT-TEPA

The morphological characterization of Mag-CCNT-TEPA was conducted by SEM, as
shown in Figure 1. It could be observed in the SEM image that the Fe3O4 nanoparticles
had immobilized on the CCNT substrates. XPS was utilized to determine the chemical
composition of Mag-CCNT-TEPA, and the results are shown in Figure 2. As we can
see in Figure 2a, the characteristic signals detected at 285.0 eV, 530.8 eV, and 711.2 eV
were attributed to carbon (C 1s), oxygen (O 1s), and Ferrum (Fe 2p), respectively. At
400.2 eV, a peak was observed, which was attributed to nitrogen (N 1s) introduced by the
-NH and -NH2 groups from TEPA. The spectra of C1s, N1s, O1s, and Fe2p are shown in
Figure 2. Four peaks observed in C1s spectra (Figure 2b) corresponded to C–C (284.80 eV),
C–N (285.84 eV), and C–O (286.62 eV). Two peaks observed in N1s spectra (Figure 2c)
corresponded to C–NH2 (400.07 eV) and O=C–N (401.80 eV). As shown in the O1s spectra
(Figure 2d) and Fe2p spectra (Figure 2e), two peaks at the position of 530.41 eV and
531.86 eV belonged to C=O and C–O, and two peaks at the position of 710.99 eV and
724.62 eV belonged to Fe 3/2p and Fe 1/2p. The results were proof of successful TEPA
modification, amino functionalization, and magnetic nanoparticle immobilization.
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Figure 1. The SEM image of Mag-CCNT-TEPA. 
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Figure 1. The SEM image of Mag-CCNT-TEPA.
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Figure 2. X-ray photoelectron spectroscopy (XPS) analysis of Mag-CCNT-TEPA: XPS survey (a), C 
1s (b), N 1s (c), O 1s (d), and Fe 2p (e). 

The magnetic hysteresis loop analysis conducted by VSM is shown in Figure 3a. The 
result illustrated that the saturation value of Mag-CCNT-TEPA was 37.2 emu/g. The in-
troduction of CCNT and TEPA did not have a significant impact on the paramagnetic 
properties of Fe3O4 nanoparticles, so this material can also provide rapid magnetic sepa-
ration. The XRD patterns of Mag-CCNT-TEPA (Figure 3b) showed that six characteristic 
diffraction peaks of Fe3O4 were 30.1°, 35.5°, 43.1°, 53.6°, 57.1°, and 62.6° indicating that 
chemical modification did not change the crystal phase property of Fe3O4. 
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Figure 2. X-ray photoelectron spectroscopy (XPS) analysis of Mag-CCNT-TEPA: XPS survey (a), C 1s
(b), N 1s (c), O 1s (d), and Fe 2p (e).
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The magnetic hysteresis loop analysis conducted by VSM is shown in Figure 3a. The
result illustrated that the saturation value of Mag-CCNT-TEPA was 37.2 emu/g. The
introduction of CCNT and TEPA did not have a significant impact on the paramagnetic
properties of Fe3O4 nanoparticles, so this material can also provide rapid magnetic sepa-
ration. The XRD patterns of Mag-CCNT-TEPA (Figure 3b) showed that six characteristic
diffraction peaks of Fe3O4 were 30.1◦, 35.5◦, 43.1◦, 53.6◦, 57.1◦, and 62.6◦ indicating that
chemical modification did not change the crystal phase property of Fe3O4.
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In conclusion, the successful preparation of Mag-CCNT-TEPA was proven by the
characterization conducted by SEM, XPS, VSM, and XRD.

2.2. Optimization of Extraction Conditions

In order to obtain maximum extraction recovery, several influential factors, includ-
ing the usage amount of adsorbent, extraction time, sample pH, and elution conditions,
were investigated. Samples spiked at a concentration of 1.0 mg/L were used to optimize
extraction conditions.

2.2.1. The Effect of the pH of Sample Solutions

An important factor with a remarkable impact on the adsorption of analytes was
the pH value of sample solutions. Various kinds of interactions existed between the
analytes and adsorbents, including π–π, hydrogen bond, dipole–dipole, and hydrophobic
interaction. The effect of pH on extraction efficiency was considered for the different
interactions between the analytes and adsorbents at different pH values. Therefore, the pH
value of the sample solution ranging from 3.5 to 10.5 was optimized. The pH of sample
solutions was adjusted by sodium hydroxide and hydrochloric acid. As shown in Figure 4a,
the results showed that the recoveries of seven local anesthetic drugs were improved
with pH values of sample solutions in the range of 3.5–6.5. High recoveries of most of
the studied local anesthetic drugs were obtained with a pH of 6.5, ranging from 78.2 to
93.1%. According to the results of the experiments, the pH value of sample solutions
was set as 6.5 for further studies. The pH of spiked human plasma was 6.5, so HCl and
NaOH were not used for pH adjustment. Different interactions between analytes and
adsorbents at different pH values lead to a difference in extraction efficiency. At a low pH,
the protonation of amino groups happened, so the amino groups of adsorbents and local
anesthetic drugs were transformed into -NH3

+ groups, and π–π interaction played a major
role in the extraction. With the increase in the pH value, deprotonation happened gradually,
and hydrogen bond and dipole–dipole interaction contributed to the extraction of local
anesthetic drugs. Additionally, the remaining unreacted carboxyl groups on the surface
of Mag-CCNT-TEPA had electrostatic interaction with the local anesthetic drugs under



Molecules 2022, 27, 5509 5 of 13

suitable conditions. However, when the pH value increased excessively, the hydrogen bond
and dipole–dipole interaction between the analytes and adsorbents could be disturbed,
resulting in a decrease in recoveries. Therefore, in order to obtain satisfactory recoveries of
studied analytes, the pH value was fixed at 6.5 for further experiments.
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2.2.2. Effect of the Amount of Adsorbents

The amount of adsorbents was a vital factor that affected the extraction recoveries in
the MSPE procedure. In order to investigate the effect of the amount of adsorbent, seven
different masses ranging from 2 to 30 mg were chosen to further experiments (Figure 4b).
The results showed that the recoveries of seven local anesthetic drugs increased with
the increase in the amount of adsorbent (2–20 mg). This can be explained that with the
increase in the amount of adsorbent, the active sites on the adsorbents increased. When
the adsorbent amount achieved 20 mg, satisfactory recoveries of analytes were obtained in
the range of 78.9–96.0%. When further increasing the amount of adsorbent, no significant
improvements in the recoveries of the seven local anesthetic drugs were observed. The
amount of adsorbent was fixed at 20 mg for experiments.

2.2.3. Effect of the Extraction Time

The effect of extraction time on the extraction recoveries was studied in the range of
1–30 min. As results shown in Figure S2a from Supplementary Materials, as the extraction
time increased from 1 min to 30 min, the recoveries of analytes increased. Satisfactory
recoveries of seven local anesthetic drugs were obtained at 20 min. With the extention of the
extraction time, the recoveries do not increase much, but it extends the pretreatment time.
In order to obtain satisfactory recoveries and reduce the pretreatment time, the extraction
time was fixed at 20 min for further experiments.

2.2.4. Effects of the Elution Conditions

In the MSPE procedure, elution conditions such as the kind and volume of elution
solvent and elution time played a crucial role in the elution efficiency. Methanol (MA) and
acetonitrile (ACN) were chosen as elution solvents at first. Based on the results (Figure 4c),
acetonitrile has a better elution capacity than methanol, so acetonitrile was chosen to further
experiments. Because the amino groups could be easily protonated in acidic acetonitrile,
formic acid was added to acetonitrile to improve the elution efficiency of the local anesthetic
drugs studied. The effect of the formic acid ratio ranged from 0.05% to 0.2% (V/V) in
acetonitrile as the elution efficiency was optimized. The results of the effect of elution
solvent are shown in Figure 4c. By increasing the ratio of formic acid in acetonitrile, the
concentration of hydrogen ions in acetonitrile increased, and the protonation of amino
groups of analytes and adsorbents occurred, resulting in the damage of hydrogen bonds and
an increase of elution efficiency. When the ratio of formic acid was 0.1%, good recoveries
(80.6–94.6%) of studied local anesthetic drugs were obtained. There was no significant
change in recoveries with a further increase in the formic acid ratio. Finally, 0.1% formic
acid/acetonitrile (V/V) was selected as the elution solvent.

Furthermore, 0.25–1.5 mL of 0.1% formic acid/acetonitrile (V/V) was utilized to
evaluate the effect of the elution solvent volume, and the effect of elution time was studied
in the range of 1–20 min. The results shown in Figures S2b and S2c from Supplementary
Materials indicate that 1.0 mL 0.1% formic acid/acetonitrile (V/V) and 10 min of the elution
time were appropriate to obtain a higher elution efficiency. Therefore, 1.0 mL and 10 min
were selected as the elution solvent volume and elution time, respectively.

2.3. Regeneration and Reusability of Adsorbent

In order to evaluate the regeneration and reusability of adsorbent, after each absorp-
tion, the Mag-CCNT-TEPA-absorbed was regenerated with 5 mL of 1% ammonia solu-
tion/acetonitrile and 20 mL (10 mL × 2) of deionized water. The recoveries of analytes higher
than 70% obtained by recycled adsorbent were considered acceptable. As shown in Figure S3
from Supplementary Materials, under the condition optimized before, the adsorbent can be
reused five times at least with no significant decrease in extraction recovery (72.3–95.4%). Five
batches prepared at different times were chosen to evaluate the reproducibility of preparation.
The results showed that the synthesis procedure of this material had good reproducibility
with relative deviations between batches lower than 4.2%.
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2.4. Adsorbent Type

The extraction efficiency of Mag-CCNT and Mag-CCNT-TEPA were compared. The re-
sults are shown in Figure S4 from Supplementary Materials. Higher recoveries (79.9–95.1%)
of seven local anesthetic drugs were obtained by using Mag-CCNT-TEPA as adsorbents.
When using Mag-CCNT as the adsorbent, the recoveries of studied analytes decreased to
46.9–82.6%. Well-dispersed carboxyl on the surface of carboxyl–carbon nanotubes provided
large amounts of reaction sites with TEPA. The large surface area of multi-walled carboxyl–
carbon nanotubes, the increased hydrogen bond between the amino groups (–NH–, –NH2)
of Mag-CCNT-TEPA introduced by TEPA and local anesthetic drugs, and π–π interaction
between the benzene ring of local anesthetic drugs were important factors that enhance the
extraction efficiency of local anesthetic drugs.

2.5. Method Validation

The method’s validation was determined by the linearity, limit of detection (LOD),
limit of quantification (LOQ), and precision. A series of matrix-calibration standards in
human plasma with concentrations between 0.02 and 5.00 mg/L were prepared to plot
calibration curves. The calibration curves were made by peak areas of analytes against
concentration (mg/L). The LOD and LOQ were calculated according to the signal-to-
noise (S/N) ratio of 3 and 10. In order to test the precision and accuracy of the proposed
method, spiked recoveries at three concentration levels (0.1, 1.0, 4.0 mg/L), intra-day, and
inter-day relative standard deviations (RSDs) were conducted by five parallel experiments
(n = 5). All the results obtained are listed in Table 1. The matrix-calibration curves were
linear over a wide concentration range of 0.02–5.00 mg/L, with correlation coefficients
(r2) values in the range of 0.9980–0.9999. Spiked samples with a low concentration were
prepared to determine the LODs and LOQs based on the signal-noise of 3 and 10. The
LODs and LOQs values of the seven local anesthetic drugs were achieved in the ranges of
0.003–0.008 mg/L and 0.011–0.028 mg/L. Subsequently, in order to evaluate the accuracy
and precision of the proposed method, spiked recoveries and relative standard deviations
(RSDs) were determined at three concentration levels (0.1, 1.0, 4.0 mg/L). The intra-day
and inter-day RSDs were less than 7.7% and 8.3%, respectively. The mean recoveries of
the seven local anesthetic drugs spiked in human plasma varied from 82.0 to 108%. The
results of recoveries and RSDs indicated the acceptable precision and high accuracy of this
method for the analysis of the seven local anesthetic drugs in human plasma.

Table 1. Validation parameters, recoveries, and precision of 7 local anesthetic drugs obtained at three
concentration levels in blank human plasma.

Compounds Linear Range
(mg/L)

Linear
Equation

Correlation
Coefficient (r2)

Spiked Level
(mg/L)

Average
Recovery

(%)

RSD (%) Batch–Batch
ReProducibility

RSD%

LOD
(mg/L)

LOQ
(mg/L)Intra-day Inter-day

procaine 0.02–5.00 Y = 2.5147X − 0.0657 0.9993
0.1
1.0
4.0

82.0
103
100

2.0
2.3
1.6

3.0
7.2
4.6

3.9 0.004 0.014

lidocaine 0.02–5.00 Y = 2.7307X − 0.0057 0.9995
0.1
1.0
4.0

91.6
93.3
98.9

2.0
5.7
2.8

4.0
3.8
5.4

4.2 0.007 0.025

mepivacaine 0.02–5.00 Y = 2.5830X + 0.2243 0.9980
0.1
1.0
4.0

97.7
87.7
101

7.1
5.6
4.0

1.7
7.5
4.7

4.0 0.007 0.023

oxybuprocaine 0.04–5.00 Y = 2.1061X − 0.0648 0.9998
0.1
1.0
4.0

98.7
99.6
94.7

7.7
1.5
1.5

6.0
2.5
2.3

1.5 0.008 0.028

bupivacaine 0.02–5.00 Y = 2.7547X + 0.0792 0.9998
0.1
1.0
4.0

89.4
93.7
99.3

4.7
6.3
5.1

8.3
4.4
2.3

3.5 0.006 0.022

tetracaine 0.02–5.00 Y = 3.9807X + 0.0555 0.9998
0.1
1.0
4.0

82.8
90.0
94.7

1.7
1.9
1.7

1.5
1.6
1.8

1.9 0.004 0.015

cinchocaine 0.02–5.00 Y = 7.3979X − 0.0917 0.9999
0.1
1.0
4.0

91.1
108
108

1.8
2.5
4.3

2.6
2.3
2.6

3.3 0.003 0.011

In order to assess the matrix effect in human plasma, the matrix-matched calibration
curve was established. The matrix effect was calculated based on comparing the slope
obtained by the matrix-matched calibration curve and the slope obtained by the standard
calibration curve. The results showed that the matrix effects of human plasma on the seven
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local anesthetic drugs varied in the range of −8.0 to 12.6%. In order to reduce the error
caused by the matrix effect, the matrix calibration curve was used for quantitative analysis
of seven local anesthetic drugs.

Furthermore, the performance of this proposed method was compared with other
reported works [10–14,28–30]. The results, including LODs, recoveries, and linearity,
are listed in Table 2. The comparison showed that the pretreatment methods for the
determination of local anesthetic drugs in biological samples were mostly traditional SPE
and LLE [10–13,28–30]. The method established in this chapter applied the magnetic solid-
phase extraction method for the determination of anesthetics in plasma. The proposed
method had the advantages of high recovery, good linearity, and accuracy. At the same time,
the sensitivity of this method is comparable to other reported HPLC-UV [29,30] and GC-
MS [28] methods. The LODs of this method cannot be compared to some reported works
using mass spectrometry detection. This is mainly because the sensitivity of UV detection
is lower than MS. This also provided us with an effective way to improve sensitivity.

Table 2. Comparison of the analytical features of MSPE-based methodologies for the determination
of local anesthetic drugs.

Analysis Preparation
Method Samples Analytes

Correlation
Coefficient

(r2)

LOQ
(µg/L)

Recovery
(%) Ref.

LC-MS/MS SPE Human
serum

Nine local
anesthetic drugs >0.9858 10 81.4–144 [10]

HPLC-
MS/MS LLE Human

plasma Lidocaine >0.9996 1.0 95.2–104 [11]

LC-MS/MS LLE Human
plasma Bupivacaine >0.998 0.25 / [12]

LC-MS/MS LLE Blood Two local
anesthetic drugs >0.9991 0.1–0.8 85.4–87.5 [13]

LC-MS/MS MEPS Human
plasma

Two local
anesthetic drugs >0.995 0.44–0.47 91.0–118 [14]

GC-MS SPE Plasma and
urine

Seven local
anesthetic drugs >0.983 50–100 73.0–95.0 [28]

HPLC-UV LLE Human
serum Lidocaine 0.9995 43 80.4–93.9 [29]

HPLC-UV LLE Human
plasma

Five local
anesthetic drugs >0.9980 50 91.7–106 [30]

HPLC-UV MSPE Human
plasma

Seven local
anesthetic drugs >0.9980 11–28 82.0–108 This

work

2.6. Analysis of Real Samples

To further validate this proposed method, the proposed method was further applied
to determine the plasma concentration of lidocaine from two patients. Patient no. 1 was
treated with 105 mg of lidocaine, 120 mg of propofol, 30 µg of sufentanil, and 50 mg of
rocuronium bromide. Patient no. 2 was treated with 100 mg of propofol, 20 µg of sufentanil,
40 µg of remifentanil, 30 mg of rocuronium bromide, and 100 mg of lidocaine for topical
throat anesthesia, as well as 300 mg of lidocaine for intratracheal topical anesthesia. The
plasma samples were collected at 5, 10, and 30 min after treatment. The lidocaine concentra-
tions in plasma were determined by the proposed method. The lidocaine concentrations in
the plasma of patient no. 1 were 1.44, 0.78, and 0.62 mg/L; those in patient no. 2 were 0.39,
0.87, and 1.18 mg/L. The chromatogram of plasma from patient no. 2, the blank plasma
without MSPE, the blank plasma with MSPE, and the spiked blank human plasma (spiked
concentration: 1.0 mg/L) are displayed in Figure 5. Comparing human plasma before and
after the MSPE procedure, a lower signal-to-noise ratio and smaller peaks of interfering
substances were observed in the plasma after the MSPE procedure. This result verifies
that Mag-CCNT-TEPA can provide a sample cleanup of human plasma to a certain degree.
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However, interfering substances can also be detected after the MSPE procedure, which
means that the selectivity of the Mag-CCNT-TEPA is not very good, and it can also extract
other medicine in human plasma during the MSPE procedure. Therefore, in the future, we
can modify the adsorbent with specific functional groups to improve selectivity.
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3. Materials and Methods
3.1. Materials and Chemicals

Analytical-grade tetraethylenepentamine (TEPA), sodium acetate anhydrous, and
multi-walled carboxyl–carbon nanotubes (o.d. 10–20 nm, length 10–30 µm) were purchased
from Aladdin Industrial Corporation (Shanghai, China). Analytical-grade ethylene gly-
col and ammonium hydroxide (25%) and hydrochloric acid (36%) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Analytical-grade ferric chloride
hexahydrate (FeCl3·6H2O), HPLC-grade formic acid (FA), ammonium acetate (AmAc),
mepivacaine, bupivacaine hydrochloride, oxybuprocaine, and cinchocaine were purchased
from Macklin Biochemical Co., Ltd. (Shanghai, China). Procaine hydrochloride, lidocaine
hydrochloride monohydrate, and tetracaine hydrochloride were purchased from Dr. Ehren-
storfer GmbH (Augsburg, Germany). HPLC-grade methanol was purchased from Tedia
Company, Inc. (Fairfield, OH, USA).

3.2. Equipment

The morphological characterization of Mag-CCNT-TEPA was carried out by scanning
electron microscope (SEM, Zeiss Sigma 300, Germany), and the chemical composition
was carried out by X-ray photoelectron spectrometer (XPS, Thermo Scientific K-Alpha,
USA). The magnetic characteristics of the material were determined by a vibrating sample
magnetometer (VSM, LakeShore 7404, USA). The crystal structure characterization was
conducted by X-ray diffraction (XRD, Panalytical X’Pert’3 Powder, Germany).

The separation and analysis of seven local anesthetic drugs were performed on an
Ultimate 3000 HPLC system equipped with an LPG-3400SD pump, six-port valve with a
20 µL sample loop, TCC-100 thermostat column compartment, and VWD-3400 variable-
wavelength UV detector (Thermo Scientific, USA). The deionized water used in all experi-
ments was purified by a water-purification apparatus (Thermo Scientific, USA).
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3.3. HPLC Analysis

The separation of local anesthetic drugs was performed on a Welchrom C18 (4.6× 250 mm,
5 µm) column. A total of 5.0 mmol/L AmAc-0.05% formic acid (v/v) in methanol as
eluent A and 5.0 mmol/L-0.05% formic acid (v/v) in water as eluent B were used as a
mobile phase with the following gradient elution: 0–8 min, 12% A; 8–9 min, 12%→20% A;
9–10 min, 20%→40% A; 10–18 min, 40%→80% A; 18–22 min, 80%A; 22–23 min, 80%→12%
A. The column oven temperature was fixed at 30 ◦C. The flow rate and injection volume
were 1.0 mL/min and 20.0 µL, respectively. The detection wavelengths were 210 nm (lido-
caine, mepivacaine, bupivacaine, and cinchocaine) and 300 nm (procaine, oxybuprocaine,
and tetracaine).

3.4. Preparation of Mag-CCNT-TEPA

Mag-CCNT-TEPA was prepared by a one-pot reaction. A total of 1.0 g ferric chloride
hexahydrate and 3.0 g sodium acetate anhydrous were dissolved in 20 mL ethylene glycol.
After that, 5.0 mL ammonium hydroxide was added to the solution. When the solution
changed to dark orange, 10.0 mL tetraethylenepentamine was added. Finally, 50.0 mg
carboxyl-CNTs was added. All processes underwent ultrasonication. Then, the mixture
was allowed to react at 200 ◦C for 6 h in a 100 mL Teflon-lined stainless-steel autoclave.
After the reaction was finished, the black Mag-CCNT-TEPA was washed with deionized
water and ethanol several times, dried at 50 ◦C, and stored in a sealed glass bottle for
further use. The schematic diagram of Mag-CCNT-TEPA preparation based on a one-pot
reaction is shown in Figure S5 from Supplementary Materials.

3.5. Standard Preparation

Local anesthetic drugs were precisely weighted and dissolved in a small amount of
methanol and diluted with deionized water to prepare the standard stock solution at the
concentration of 1000 mg/L. Additionally, 100 mg/L of the standard solution was prepared
by dilution of the stock solutions with deionized water. All stock solutions were sealed and
stored in brown glass bottles at 4 ◦C before analysis.

3.6. Application of Mag-CCNT-TEPA for the Extraction of Local Anesthetic Drugs from Human Plasma

Human plasma was provided by Hwa Mei Hospital (Ningbo, China). Patients signed
written informed consent before taking part in this study. A total of 1.0 mL plasma was
transferred to a 5.0 mL centrifuge tube, and then 2.0 mL methanol was added. The mixtures
were extracted under ultrasonication for 5 min, then centrifuged at 15,000 r/min for 6 min.
Then, the residue was extracted with 2.0 mL methanol one more time. The supernatants
were collected into a 10.0 mL tube for further MSPE procedures.

In order to extract local anesthetic drugs in human plasma, 20 mg (accurate to
0.1 mg) Mag-CCNT-TEPA was added to the samples and machine-shaken for 20 min.
The adsorbent was then collected by an extra magnetic field and eluted with 1.0 mL 0.1%
formic acid/acetonitrile (V/V). The eluent solution was dried at 40 ◦C in N2 steam and
redissolved with 200 µL of an initial mobile phase. The schematic diagram of the MSPE
procedure is shown in Figure 6.
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4. Conclusions

In this work, a simple method for the separation and determination of seven local
anesthetic drugs in human plasma was developed based on HPLC coupled with the MSPE
procedure. Mag-CCNT-TEPA was successfully synthesized based on a one-pot reaction
and exploited as the adsorbent in the MSPE procedure. Magnetic nanoparticles provide a
rapid magnetic separation, so they can simplify the sample-preparation procedure. The
conditions in the procedures of adsorption and elution were optimized. Under optimal
conditions, satisfactory extraction efficiencies of seven local anesthetic drugs were obtained.
Parameters including linearity, LODs, recoveries, and RSDs were chosen to evaluate the
performance of this proposed method. The results obtained demonstrated that the Mag-
CCNT-TEPA-based MSPE method is rapid, sensitive, and suitable for the analysis of local
anesthetic drugs in real samples. In the future, improving the selectivity of magnetic
adsorbents and combing magnetic solid-phase extraction with MS is needed.
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CCNT and Mag-CCNT-TEPA; Figure S5. The schematic diagram of Mag-CCNT-TEPA preparation.
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