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Abstract: Iron is the most abundant mineral in the human body and plays essential roles in sustaining
life, such as the transport of oxygen to systemic organs. The Fenton reaction is the reaction between
iron and hydrogen peroxide, generating hydroxyl radical, which is highly reactive and highly toxic to
living cells. “Ferroptosis”, a programmed cell death in which the Fenton reaction is closely involved,
has recently received much attention. Furthermore, various applications of the Fenton reaction have
been reported in the medical and nutritional fields, such as cancer treatment or sterilization. Here, this
review summarizes the recent growing interest in the usefulness of iron and its biological relevance
through basic and practical information of the Fenton reaction and recent reports.
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1. Introduction

It has only been around 100 years since people started research on food in terms of
“modern nutritional science” [1]. In the latter part of the 1800s, Lavoisier investigated
chemical oxidation in living things, which is thought to be the beginning of nutritional
science. In the early 1900s, individual food components began to be found. For exam-
ple, vitamin B1 (oryzanin) was found in trials to overcome the deficiencies of military
patients [2]. Vitamin E was isolated from wheat germ oil, which was found to be involved
in rat reproduction [3]. In contrast, the discovery of minerals dates back to 6000 B.C, but it
took centuries to recognize their roles in biological systems. Among the various minerals,
iron is one of the well-known and -utilized minerals from ancient times and was estimated
to be present in the blood in the 1700s [4]. Iron is the most abundant transition metal
on Earth’s surface, with 3–4 g of iron in the body of a healthy adult human [5,6]. Since
iron is the most abundant transition metal in the human body, its contribution toward
various biological activities has long been the focus of growing attention [7]. For example,
anemia is one of the major manifestations of iron deficiency. In 1925, Fontès and Thivolle
found that iron-deficient horses had lower serum iron concentrations [8]. In the human
body, most extracellular iron is bound to iron-binding proteins (such as transferrin and
lactoferrin) [9]. Heme proteins in red blood cells play an important role in transporting
oxygen to organs [10].

On the other hand, iron is involved not only in the delivery of oxygen in our body
but also in DNA synthesis and/or repair [11], indicating this mineral is essential for the
survival of living things. Iron also works as a cofactor to facilitate various enzymes, such
as catalase and cytochromes. The roles of iron in the body are particularly involved in
redox reactions due to its preferable affinity to oxygen. In the 1890s, Henry John Horstman
Fenton found the redox reaction between iron (II) and hydrogen peroxide (H2O2) to produce
hydroxyl radical (OH•), called the Fenton reaction [12]. This reaction potentially occurs
in the human body and is thought to regulate complicated systems, which is related to
homeostasis. The products of the Fenton reaction OH• is highly reactive particles that
induce oxidative damage to cells, but this is also an aspect that can be a therapeutic strategy
for cancer patients. Several medicines (e.g., doxorubicin (DOX) [13], β-lapachone [14],

Molecules 2022, 27, 5451. https://doi.org/10.3390/molecules27175451 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27175451
https://doi.org/10.3390/molecules27175451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-8937-5110
https://orcid.org/0000-0001-5712-0204
https://doi.org/10.3390/molecules27175451
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27175451?type=check_update&version=3


Molecules 2022, 27, 5451 2 of 13

and cisplatin [15]) include mechanisms of reaction that have applied the Fenton reaction
to generate the poison, OH•, to cancer cells. Additionally, numerous food components
daily consumed have beneficial effects in the human body, such as on chronic diseases
and on immune systems [16–18]. The antioxidant reaction is one of the major properties
of such food components (e.g., polyphenols and vitamins). Considering reactive oxygen
species (ROS) generated by vitamin C [19] and chelating metal iron by flavonoids [20], iron
potentially affects the bioactivities of absorbed and metabolized food components in the
body. Furthermore, there is growing interest in programed death “ferroptosis” related to
the Fenton reaction [21]. Against these backgrounds, this review summarizes the recent
growing interest in the usefulness of iron and its biological relevance through basic and
practical information of the Fenton reaction and recent reports.

2. Fenton Reaction

The Fenton reaction is the reaction of iron (II) with H2O2, reported by Henry John
Horstman Fenton in 1894 [12]. In 1876, his student found that a mixture of H2O2, tartaric
acid, ferrous salt and water turned a violet color. This is known as the Fenton reaction
(Reaction (1)):

Fe2+ + H2O2 → Fe3+ + OH− + OH• (1)

While Fenton speculated the mechanism of oxidation by H2O2 and iron (II), some
researchers doubted the formation of OH• in one-electron reduction by iron (II). In 1931,
Haber and Wilstatter mentioned the hydroxy radical in radical chain mechanisms (Reaction
(2) and (3)) [22]. They described that chain reactions are initiated by enzymes, specifically
catalase:

OH + H2O2 → H2O + O2H (2)

O2H + H2O2 → O2 + H2O + OH (3)

Thereafter, Harber and Weiss explained the decomposition of H2O2 by iron (II) using
Reaction (4) to (6), where the Fenton reaction initiates and Reaction (6) terminates the chain
reactions [23]:

OH• + H2O2 → H2O + O2
•− + H+ (4)

O2
•− + H+ + H2O2 → O2 + H2O + OH• (5)

Fe2+ + HO + H+ → Fe3+ + H2O (6)

In 1937, Weiss explained the reaction mechanism of catalase: an anion H2O2 reduces
iron (III) to iron (II), and then iron (II) reduces H2O2 to OH• and water, followed by chain
reaction (5, 6), which is collectively referred to as the Haber–Weiss reaction. The mechanism
of the Fenton reaction has studied and discussed, among which detailed equilibrium
principles have been well summarized by Stanbury [24]. The Fenton reaction is affected by
the environmental pH and concentration of iron. The major ROS generated from the Fenton
reaction are oxoiron (IV) species at pH > 3, and OH• at more acidic conditions [25–27].
Two mechanisms, the “radical mechanism” and the “complex mechanism”, contribute
to the iron-catalyzed disproportionation of H2O2 and the Fenton reaction. The products
obtained from these reactions are different. In the “radical mechanism”, Fe2+ and Fe3+ react
with H2O2 to produce OH• and superoxide, respectively. In the “complex mechanism”,
Fe2+ and Fe3+ react with H2O2 to produce FeO2+ and FeO3 +, respectively. In 2013, more
than 100 years after the Fenton reaction was proposed, successful detection of Fe(IV) was
reported [28]. Additionally, it has been suggested that fellyl ion controls iron cycling by the
Fenton reaction in a cloud as well as Fe2+ and Fe3+ [29]. Such reports indicate how great
the impact and complexity of this reaction is. The use of other transition metals such as
copper leads to a reaction similar to the Fenton reaction, called the Fenton-like reaction.
Although the Fenton reaction initially began to be used for analytical purposes, chelation
or sequestration of transition metals involving Fenton and Fenton-like reactions have been
found to play important roles in the internal and external environments of living things.
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3. Fenton Reaction in Body
3.1. Iron as a Nutrient

Nutrients are essential for living things, among which proteins, fats, and carbohydrates
are three major nutrients. In the context of the human diet, minerals are elements, except
H, C, N, and O (the main components of three major nutrients: organic compounds), that
maintain or regulate biological systems, and account for approximately 4% of the human
body. Of these, 16 types of elements (Na, N, P, K, S, Ca, Mg, iodine, Se, Cr, Co, Fe, Mn, Zn,
Cu, and Mo) are thought to play particularly important roles. They are classified into two
groups based on the required amount (more than 100 mg/day: Na, N, P, K, S, Ca, and Mg;
less than 100 mg/day: iodine, Se, Cr, Co, Fe, Mn, Zn, Cu, and Mo).

Iron is present in all human cells, with an average of 2.4 g in women and 3.8 g in
men, with daily losses of 1–2 mg [30] (Figure 1). Examples of iron-rich foods include
oysters, clams, mussels, beef or chicken liver, and poultry while non-heme iron is con-
tained in beans, spinach, nuts, and seeds. One of the most important roles of iron is to
transport oxygen in hemoglobin (Hb). This protein, consisting of 96% of blood cells [31],
provides oxygen to the whole body from the lungs or other airway organs and supports
metabolism. Hb iron binds up to four oxygen molecules in the form of Fe2+ or Fe3+ [32].
Additionally, other oxygen storage protein and enzymes bind to iron (hemoglobin, 2500 mg
iron; myoglobin, 130 mg iron; enzymes, 150 mg iron) [33]. Anemia due to a general iron
deficiency (Hb <13 g/dL in males, <12 g/dL in females, <11 g/dL during pregnancy) is
mainly due to biological mechanisms (e.g., iron deficiency, hemolytic anemia, and anemia
of inflammation) and/or erythrocyte morphology. Iron deficiency occurs when there is
an insufficient supply of iron against the amount needed such as during periods of high
iron requirements (e.g., infancy and pregnancy) and/or iron loss exceeds intake. Iron is
absorbed via human intestinal mucosa in heme and non-heme forms, whereas heme-iron
is reported to be more readily absorbed through the folate transporter [34]. Non-heme
iron, Fe2+ and Fe3 +, is transported into the duodenal cytoplasm via divalent metal iron
transporter-1 (DMT-1) in Fe2+ [35], where Fe3+ is previously reduced to Fe2+ by cytochrome
b reductase and/or other reductants. After being transported into cells, iron either binds
to ferritin for storage or is transported into the blood stream via ferroportin as Fe2 +. Iron
is then oxidized by membrane-bound ferroxidase hephaestin and ceruloplasmin to be
incorporated into transferrin to form the transferrin–Fe3+ complex. Hepcidin is a peptide
hormone excreted from the liver that binds to ferroportin, the only iron efflux transporter
in the blood, and regulates iron homeostasis by promoting internalization and degradation
of the transporter [36]. Hepcidin completely occludes the iron pathway by binding ferro-
portin with an outward-open conformation [37]. While this section only presented limited
information on iron absorption and metabolism, more detailed clinical characteristics of
iron deficiency are described by Camaschella et al. and Pasricha et al. [33,38].
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Figure 1. Distribution of iron in the body and the main organs involved in the regulation of iron
metabolism (modified from permission from [39] under the Creative Commons CC BY 4.0 license,
https://creativecommons.org/licenses/by/4.0/ (accessed on 28 July 2022)). Values data for iron
levels are obtained from Lesjac et al. [40]).
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As mentioned above, iron is absorbed in the intestine as either heme or non-heme
forms, but other food-derived components are also absorbed in the intestine, suggesting
that interactions with them may affect iron absorption (Figure 2). For example, quercetin
has been reported to inhibit intestinal iron absorption by different mechanisms, through
chelation in an acute duodenal injection study and by suppressing ferroportin expression in
an oral administration study in rats [41]. Tea consumption also reduces the bioavailability
of iron, possibly due to polyphenols such as tannins [42,43]. It has also been reported that
the intake of a high-fat diet inhibits intestinal iron absorption, causing iron deficiency [44],
and that the amount of absorbed iron in overweight women was two-thirds of the normal
value [45]. In contrast, ascorbic acid is well known to increase iron absorption related to iron
reduction and the intake of ascorbic acid attenuates the above inhibitory effect of polyphe-
nols [46]. The major peptide hormone, hepcidin, is also affected by flavonoids; myricetin
significantly suppresses the expression of this hormone [47]. Higher concentrations and
lower clearance of hepcidin due to chronic kidney disease suppress iron absorption, result-
ing in iron deficiency [48]. On the contrary, 17β-estradiol possibly promotes iron absorption
by inhibiting hepcidin expression through an estrogen-responsive element half-site in the
promoter region of the hepcidin gene [49], indicating that increased iron might be caused
by another mechanism in postmenopausal women.
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Figure 2. Absorption behavior of iron in the intestine and the interaction with molecules derived
from food (modified with permission from [50] under the Creative Commons CC BY 4.0 license,
https://creativecommons.org/licenses/by/4.0/ (accessed on 28 July 2022)).

3.2. Fenton Reaction under Biological Environment

Iron is transferred from binding in transferrin as Fe3+ form and transported into cells
via the transferrin receptor. Most transition metals, including iron, are involved in the gen-
eration of various free radicals due to their redox features. As “second-messengers”, ROS
play essential roles in cellular life cycles, such as proliferation [51] and gene expression [52]
(Figure 3). Observation with fluorescent reagents (e.g., dihydrorhodamine, coumarin-
3-calboxylic acid, and endoplasmic reticulum (ER)-targeting OH• probe) has revealed
intracellular localization of the generated OH•. Such studies have reported that ER by the
Fenton reaction [53,54] regulates hypoxia-inducible gene expression. ER stress has been
reported to regulate more than one-third of all proteins made in the cell in synthesis, folding,

https://creativecommons.org/licenses/by/4.0/
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and structural maturation [55]. Additionally, H2O2, one type of ROS generated extracellu-
larly, penetrates the cell membrane easily to react with intracellular iron (Fe2+ and Fe3 +),
producing OH• through the Fenton and Fenton-like reaction. OH• reacts most strongly
with biomolecules shorter than 1 ns [3,56], which results in the most severe damage to
biological systems among ROS. It involves the induction of the oxidation of molecules. OH•

produced through the Fenton reaction has been reported to induce DNA damage [57]. Iron
released from Hb is also known to promote the degradation of deoxyribose, inducing lipid
peroxidation [58,59]. Additionally, Fenton-type chemistry (e.g., peroxidases, free heme,
and metal ions) is involved in the tyrosine nitration observed within tyrosine residues in
proteins and used as a signature for peroxynitrite [60].
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superoxide dismutase (modified with permission from [61] under the Creative Commons CC BY 3.0
license, https://creativecommons.org/licenses/by/3.0/ (accessed on 28 July 2022)).

In heme proteins, the transition of iron is essential for the performance of their func-
tions. Among them, cytochrome P450 is one of the largest enzyme families, in which as
many as 18,000 P450s have been identified [62] and is well known to work in detoxification
of drugs or other xenobiotics. This enzyme is made up of 40–50 kDa single polypeptides
with a long I helix and H-bond between Cys, and a peptide NH group is regarded as the
key factor to heme iron redox. Fe2+ centered in the enzyme binds to O2 to form oxy complex
followed by the second electron transfer and heterolytic cleavage, during which ROS can
be produced. Heme degradation catalyzed by heme oxygenases also generates ROS by
non-heme iron.

Recently, ferritinophagy and ferroptosis have attracted attention as iron-dependent
cell death. Ferritinophagy consists of the autophagic degradation of ferritin to regulate
iron homeostasis [63]. Increased intracellular iron levels following the release from ferritin
promotes ROS production, leading to cell death; radiation is reported to induce autophagic
iron-dependent death in cancer cells, which is a promising therapeutic strategy [64]. “Fer-
roptosis”, coined by Brent Roark Stockwell and Scott Dixon in 2012 [65], is one type of
regulated cell death dependent on iron or ROS, which is distinct from other types such as
apoptosis, necrosis, and autophagic death at the morphological, biochemical, and genetic
levels. Excessive iron in cell lines (harboring RAS mutations with increased iron uptake
and decreased iron storage) induces ferroptosis, which is regulated by suppression of the
master transcription factor of iron metabolism [66], indicating that ferroptosis is iron depen-
dent. Although the correlation between autophagy and ferroptosis is not well understood,
Park et al. elucidated that ROS-induced autophagy plays an important role in ferritin
degradation and transferrin receptor 1 expression during ferroptosis [67]. More details
on ferroptosis are beyond the scope of this review and are reviewed and described by Xie
et al. [68], Chen et al. [69], and Bebber et al. [70].

https://creativecommons.org/licenses/by/3.0/
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4. Use of the Fenton Reaction for Drugs

ROS are regarded to cause intracellular lipid peroxidation, leading to ferroptosis.
Therefore, the Fenton reaction has been challenged for use in directly attacking cancer cells,
but it is difficult to treat them because of the low amounts of generated OH• [71]. In recent
years, various nanoparticles that enhance the effectiveness of Fenton reactions for drug
applications (nanomedicines) have been reported. A simple scheme is depicted in Figure 4.
Previous reports on such an approach have already been well reviewed by Meng et al. [72],
Ranji-Burachaloo et al. [73], and Miyazawa et al. [74], so the present review focuses on very
recent reports (from 2020) on nanomedicines using the Fenton reaction.

BSA, HA, lipids etc.

Fe

Fe

Fe

Drugs (DOX, APAP etc.)

Fe-contained 
nanomedicines

O2
–

H2O2+
Fenton reaction

OH・
SOD, 
Glucose oxidase

endocytosis

apoptosis

tumor, cancer cells

pH/ROS-dependent
release

pH/ROS-dependent
release

Figure 4. Depicted representative scheme of cell apoptosis by Fe-containing nanomedicines via the
Fenton reaction. DOX, doxorubicin; APAP, amionoacetophen; BSA, bovine serum albumin; HA,
hyaluronic acid; SOD, superoxide dismutase; ROS, reactive oxygen species.

Xing et al. prepared an iron-loaded liposome using hollow mesoporous Prussian
blue co-delivering iron, unsaturated lipids, and a photothermal converter. Controlled
passive targeting enabled efficient photothermal effects and ferroptosis of these liposomes
with low toxicity [75]. Tian et al. prepared ultra-small ellagic acid-Fe-bovine serum
albumin nanoparticles and showed acceleration of Fe3+/Fe2+ transformation by strong
reduction of endogenous H2S [76]. Sang et al. first prepared PZIF-67 nanoparticles with
SOD (super oxide dismutase)-like activity and an OH -generating ability [77]. Gao et al.
prepared the nanoparticles encapsulating light-responsive CO prodrugs by self-assembly
of photoresponsive polymers. These nanoparticles accumulated in mitochondria and
light-responsively released CO and the prodrugs, followed by the Fenton reaction, which
generated high levels of ROS to decrease cell viability. Actually, intravenous injection of
the nanoparticle significantly suppressed the tumor growth with an increase in ROS [78].
You et al. combined NIR irradiation with nanoparticles. Functional nanoparticles with
internally encapsulated functional benzothiazole complexes (eTB2) and the photosensitizer
indocyanine green induced FeTB2 release and Fenton reaction under NIR irradiation [79].
Wu et al. prepared hollow porous carbon coated with FeS2-based nanoparticles. Prepared
hollow porous carbon revealed that the conversion of NIR heat into an effective temperature
rise by the carbon shell and the reduction of Fe3+ to Fe2+ by tannic acid promoted the
Fenton reaction [80]. Fu et al. reported that DOX and glucose oxidase-gallic acid/iron
complexes were encapsulated into zeolitic imidazole framework-8 nano particles, which
induced cancer cell death by the Fenton reaction with gallic acid/iron complexes under
an acidic microenvironment [81]. Chen et al. reported the preparation of biodegradable
nanoparticles of Fe3O4 bound with protocatechuic acid and human serum albumin loaded
with β-lapachone [82].
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Correlating pH or ROS sensitivity with the Fenton reaction enables more effective and
selective attack of tumor cells, which is also being used as an approach. Sun et al. prepared
synergistically therapeutic nanoparticles that encapsulated acetaminophen (APAP). Sun
et al. prepared nanoparticles with the ability to induce the Fenton reaction in a weakly
acidic tumor microenvironment. The prepared nanoparticles showed the conversion of
APAP to the toxic metabolite NAPQ1, leading to GSH depletion and accelerating the effect
of the Fenton reaction [83]. Zhong et al. prepared pH-responsive nanoparticles using BSA-
derived albumin as carrier nanoparticles and encapsulating triphenylphosphine-modified
DOX, which could be used to target tumor mitochondria [84]. Meng et al. prepared a
metal-phenolic network-based multifunctional nanocomposite coated with Fe–tannic acid
complexes and reported that Fe–tannic acid was degraded by laser irradiation (808 nm) and
the acidic pH of the tumor environment, resulting in drug release and the Fenton reaction,
promoting the effect of tannic acid [85]. Lei et al. prepared pH-responsive nanoparticles
co-encapsulated with DOX and APAP, which were released at 56.5% and 61.8%, respec-
tively, under an acidic endosomal/lysosomal environment, synergistically promoting OH•

generation by the Fenton reaction [86]. Cho et al. prepared dual (pH- and redox-)responsive
magnetic nanoparticles that promote drug release under low pH and high GSH concentra-
tions [87], and Chen et al. developed a pH/ROS-responsive multifunctional nanoplatform
that inhibits tumor through chemo/photodynamic/chemodynamic combinations [88]. Jia
et al. prepared multifunctional nanoparticles with a core-shell structure encapsulating
Fe3O4 and demonstrated that simultaneous photothermal and chemodynamic therapy
is possible [89]. In addition to tannic acid, several food components have been used as
effective applications for anticancer therapy as follows: the generation of ROS by vitamin
C based on the Fenton reaction of Fe3O4 nanoparticles in cells [90]; promotion of lipid
peroxidation and induction of ferroptosis in anaplastic thyroid carcinoma produced by
vitamin C via the Fenton reaction [91]; enhancement of linomycin release by the Fenton
reaction using tea polyphenols [92].

In addition to Fenton reactions, approaches utilizing the Fenton-like reaction have also
been utilized. Cheng et al. reported that the Cu2+ and polymersome complex efficiently
induced the Fenton-like reaction and promoted the oxidation of iminoboronates [93]. Wang
et al. reported that conjugation of nanoparticles composed of glucose oxidase, Cu2-xSe,
and a membrane of 4T1 cells promoted the Fenton reaction by increasing H2O2 under
NIR-II irradiation [94]. Sun et al. prepared nanotubes composed of SiO and Cu, which is
advantageous for the combination of photodynamic therapy and photothermal therapy
(PTT). The prepared nanotubes effectively promoted the generation of ROS by the reaction
between Cu2+ with H2O2 in the Fenton-like reaction, PTT effect, and porous structure of
the nanotubes [95].

5. Fenton Reaction in Food

It is known that complex interactions occur between metal ions (or protein–metal
ion complexes) and food components. Research on the relationship between the Fenton
reaction and food components is relatively advanced in terms of flavonoids. Flavonoids
are known to have antioxidative effects and are regarded as candidates that modulate the
Fenton reaction. Among the flavonoids, the antioxidant/prooxidant properties of luteolin
or kaempferol in Fenton-like reactions have been reported. For example, it has been
reported that coordination of luteolin or kaempferol to Cu(II) significantly suppresses the
generation of hydroxyl and superoxide radicals by 80% in the Fenton-like reaction [96,97].
These Cu-flavonoid complexes are considered to have intercalation activity towards DNA,
which have potential applications for disorders associated with oxidative damage. Perron
et al. measured the oxidation rate of Fe2+ when several polyphenol compounds were bound
and found that galloyl groups oxidize iron faster than catechol groups, suggesting that
a single iron-binding moiety contributes to the protective effects of polyphenols against
oxidative damage [98]. Proteins are also affected by the Fenton reaction at their amino acid
residues; cysteine and methionine residues are especially easily oxidized [99,100]. Bochi
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et al. investigated the effects of Fenton reaction-generated advanced oxidation protein
products on the gene transcription in HEK293 cells [101]. As a result, it activated the
gene transcription of inflammatory genes (NF-κB, COX-2, and IL-6), possibly mediating
inflammation in the kidneys. Ishikawa et al. reported that phosphoprotein phosvitin,
known as iron-career in egg yolk, chelated iron more effectively than other iron-binding
proteins such as ferritin and transferrin, and accelerated the oxidation of Fe2+ to inhibit the
Fenton reaction [102]. In some cases, the Fenton reaction may play a role in improving food
quality as an effective tool. Voltea et al. used the Fenton reaction to accelerate the oxidative
brewing of white wines, enabling rapid testing to assess the susceptibility, appropriate
levels of flavanols and total free sulfhydryls for subsequent processes [103]. Gharib-Bibalan
et al. showed that the oxidation process via the Fenton reaction modified the color and total
polyphenols, improving the quality indexes of the purified juice [104]. Blank et al. reported
that the Fenton-type reaction has significant effects on the aroma of coffee beverages [105].
Yeung et al. hydrolyzed okra pectin by the Fenton reaction to obtain pectic oligosaccharides
with low molecular weights (1.79–6.09 kDa) and improved bioactivity (antioxidant and
anti-inflammatory) [106]. Food components should also interact with metal ions in the
body, but there are few reports on this.

One of the most important concerns regarding commercial food is their safety. As the
Fenton reaction generates strong toxic radicals, it is used to kill bacteria that cause food
poisoning. Shi et al. developed the Fenton reaction-assisted photodynamic inactivation
method, a simple system that combines calcinated melamine sponges and Fe2+ to inactivate
Salmonella under light illumination [107]. Morikawa et al. developed two “green” iron
catalysts with reducing and chelating ability using tea leaves and coffee grounds [108]. This
system with the catalytic Fenton reaction enhanced the degradation of the contaminants into
harmless compounds and disinfection of Escherichia coli. In contrast, the Fenton reaction
can also work as a protective system for certain microbes. Calhoun et al. reported that Dps,
a ferritin-like protein with DNA-binding properties, protects Salmonella enterica serotype
Enteritidis against the common killing mechanism of bactericidal antibiotics through the
Fenton reaction [109]. Since oxidation leads to food deterioration, the monitoring of food
conditions is essential and several approaches using the Fenton reaction have been reported.
Abbas et al. developed a simple and highly sensitive fluorometric method based on the
Fenton reaction system to assess H2O2 in foods [110]. Additionally, Wang et al. developed a
novel colorimetric and fluorescent ELISA based on the Fenton reaction triggered by glucose
oxidation was constructed to quantitatively and qualitatively measure danofloxacin in
milk [111].

6. Conclusions

This review summarized the Fenton reaction from the basic principle to the bioavail-
ability of iron, and the latest applications in the medical and nutritional fields. In the
medical fields, it appears that various nanomedicines utilize the intracellular Fenton re-
action as the generating system of strongly toxic OH• to enhance their selectivity and
efficiency. In the nutritional fields, the Fenton reaction has been used to kill microorganisms
that cause food spoilage, and this redox system has also been applied to food processing.
The Fenton reaction is also useful in the synthesis of bioethanol [112,113] and the removal
of pollutants derived from drugs or food additives [114–117]. Through this review, it can be
inferred that the Fenton reaction can be used as a useful technology in both the medical and
nutritional fields, though the mechanism is partially unknown. Additionally, the biosafety
of Fenton-reaction-based nanomedicines is insufficient and unclear. Most papers regard the
Fenton reaction as being useful, with less side effects than other drugs because the reaction
is regulated by H2O2 and pH. However, for example, hypoxia, related to H2O2 generation,
is a typical feature of solid tumors of cancer. Further investigation into the biosafety of
Fenton-reaction-based treatment is warranted. It is expected that new technologies utilizing
the Fenton reaction will continue to be developed.
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On the contrary, it was found that the Fenton reaction of absorbed food components
has been little examined to date. For example, vitamin C is one of the well-known antiox-
idants in the body, but it can also act as a pro-oxidant through the Fenton reaction [118].
Simultaneously, vitamin C changes into its oxidized form, dehydroascorbic acid. The
mechanism by which high-level vitamin C kills cancer cells has been the subject of much de-
bate [119], and recent studies have described the potential contribution of dehydroascorbic
acid to cancer cell destruction [120,121]. This indicates the free-iron and Fenton reaction are
involved in the functions of compounds with reduction properties, but their interaction has
rarely been examined. As the redox system is too complicated in the body system, a com-
prehensive understanding might be necessary to elucidate the rules of their bioactivities.
As science and technology advance in general, there will be a demand for a more sufficient
understanding of the effects of these food components and Fenton reactions. More progress
is expected in the near future.
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