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Abstract: In this study, nano-porous carbon was completely obtained from oil palm leaves (OPL)
by hydrothermal pretreatment with chemical activation, using potassium hydroxide (KOH) as an
activating agent. Potassium hydroxide was varied, with different ratios of 1:0.25, 1:1, and 1:4 (C: KOH;
w/w) during activation. The physical morphology of nano-porous carbon has a spongy, sponge-like
structure indicating an increase in specific surface area and porosity with the increasing amount of
KOH activating agent. The highest specific surface area of OPL nano-porous carbon is approximately
1685 m2·g−1, with a total pore volume of 0.907 cm3·g−1. Moreover, the OPL nano-porous carbon
significantly showed a mesoporous structure designed specifically to remove water pollutants. The
adsorptive behavior of OPL nano-porous carbon was quantified by using paraquat as the target
pollutant. The equilibrium analyzes were explained by the Langmuir model isotherm and pseudo-
second-order kinetics. The maximum efficiency of paraquat removal in wastewater was 79%, at a
paraquat concentration of 400 mg·L−1, for 10 min in the adsorption experiment. The results of this
work demonstrated the practical application of nano-porous carbon derived from oil palm leaves as
an alternative adsorbent for removing paraquat and other organic matter in wastewater.

Keywords: nano-porous carbons; oil palm leaves; chemical activation; adsorption; paraquat

1. Introduction

Oil palm leaves (Elaeis guineensis Jacq.) have traditionally been derived from renewable
raw resources in Southeast Asian nations such as Malaysia, Indonesia, and Thailand. One
of the most common types of agricultural waste, particularly in areas where oil palms
are farmed, is oil palm leaves. The management of this waste is a major issue in the
industry. Open burning is the traditional method of disposing of this waste. It creates
smoke, lowers soil fertility and has long-term accumulative impacts on the ecosystem of
neighboring countries. This method has been banned due to its environmentally hazardous
impacts. The amount of oil palm leaves waste that is generated after harvesting process has
increased in recent years. Therefore, the study of palm oil leaves residue as a feedstock for
nano-porous carbon should be investigated. This research demonstrated the raw material’s
vast availability as a source of carbon [1,2]. Nonetheless, oil palm leaves’ residues are
lignocellulosic solids made up of 30–40% neutral detergent fiber, which is an efficient
carbon source owing to its composition of cellulose, hemicellulose, and lignin, all of which
may be converted into carbon compounds.
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Porous carbon materials are a carbon-rich product with a large porosity produced by
the thermal conversion of biomass, such as Chinese fan palm [3], hazelnut shells, empty
fruit bunch palm shells [4], bamboo shoot shells [5], maize stalks [6], corn stover, rice
husk, peanut shells [7], and palm leaves [8]. Organic pollutant adsorption capacity on
porous carbons, however, is determined by the kind of biomass, organic pollutants, and
activation conditions. The porous structure of the different generated biochar, with a
relatively high specific surface area, demonstrated enhanced toxin uptake, and the porous
structure of porous carbon is highly advantageous for absorbing polluted water. Mohamad
et al. reported the use of porous carbon derived from oil palm leaves for glycosyl removal
from wastewater [9]. Abdulrhman et al. also shown that the application of activated carbon
derived from Sabal palms for methylene blue adsorption [1]. Angel et al. reported on
the use of the biomass from Dioscorea rotundata and Elaeis guineensis for the removal of
chromium (VI) [10]. However, these materials usually have no regular morphology and
a low, non-porous surface area, and their performance is restricted by the structure and
composition of the raw materials. Recently, the application prospects for biomass carbon
can be significantly increased by utilizing structural features. For instance, nano-porous
carbon material has great advantages in the field of adsorption, where the surface area
promotes mass transfer during the adsorption process. Thus, it is highly feasible and
meaningful to prepare biomass carbon with a regular morphology and structure to remove
pollutants from water.

Over the last decade, agricultural by-products, which are available in nature, have
been identified as promising raw materials for production of porous carbons. As previously
stated, numerous thermochemical conversion strategies for porous carbon synthesis have
been extensively researched. The creation of nanomaterials in hydrothermal synthesis may
occur over a wide range of temperatures, from room temperature to high temperatures.
To control the morphology of the materials that are to be prepared, either low-pressure
or high-pressure conditions could be used, depending on the vapor pressure of the main
composition in the reaction hydrothermal treatment (HT). This can be used to control
the morphology of the prepared materials. HT and carbonization processes are usually
applied to produce carbons such as charcoal, activated carbon, and carbon fiber, which
enhanced carbon content using devolatilization, resulting in porosity. These processes
are widely used to create carbons such as charcoal, activated carbon, and carbon fiber,
which increases carbon content through devolatilization and results in porosity. In a closed
system, hydrothermal treatment, also known as the wet pyrolysis method for carbon
generation, was carried out at temperatures between 150 and 250 ◦C [11]. Subcritical water
combines with lignocellulosic polymers in the HT process, resulting in solid carbon via
simultaneous processes (hydrolysis, dehydration, decarboxylation, polymerization, and
aromatization) [12]. As a result, carbon generation by carbonization or dry pyrolysis is
often carried out at temperatures ranging from 400 to 1100 ◦C in the absence of oxygen.
However, by adjusting experimental factors, the relative qualities of carbon products may
be adjusted (reaction temperature, holding time, and heating rate). It is important to use
a cost-effective approach and increase productivity when producing NPC from a variety
of biomass precursors. Traditionally, the pyrolysis carbonization process was applied
to prepare activated carbons. Recently, the use of hydrothermal carbonization for the
conversion of a wide variety of biomass into carbon materials has been reported [13,14].
Hydrothermal carbonization method uses the subcritical water to convert the wet/dry
biomass to the hydrochar with a high oxygenated functional group content. Generally, the
hydrochar products of hydrothermal carbonization would be further activation-treated
to form nano-porous carbon. The relatively low operation temperature and no need for
dry biomass mean that the hydrothermal carbonization of biomass is an environmentally
friendly way to prepare low-cost nano-porous carbon. The main distinction between these
two procedures is the presence of activating chemicals. Physical activation was achieved
by employing physical reagents (steam, carbon dioxide, or partial O2 gas) to partially
oxidize the carbon precursor at high temperatures of 700–1000 ◦C. Chemical activation
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uses substances such as sodium hydroxide (NaOH), potassium hydroxide (KOH) [15], zinc
chloride (ZnCl2), and phosphoric acid [16,17] as the activating agent (H3PO4). However,
some recent studies showed that employing KOH as an activating agent significantly
increased the development of pore structures with larger surface areas in porous carbons.

The contamination of pesticides in water is a significant environmental topic that
threatens both the ecosystem and public health. Paraquat (1,1-dimethyl-4,4-bipyridinium
dichloride, C12H14Cl2N2) is one of the most frequently used herbicides for improving
agricultural crop production around the world, owing to its great weed-killing efficiency
and low cost. It is, however, exceedingly hazardous to humans and may pollute water
resources (rivers and groundwater). Pesticide use has been predicted to gradually rise.
Paraquat contamination in food and water supplies can represent a significant hazard to
human health, even at small concentrations, because of the damage it can cause to the lung,
kidney, and liver [18–22].

Several techniques for removing pesticides from water have been published in the
literature. According to the existing literature, there are two primary ways to reduce or
remove paraquat in water: (I) photocatalysis [23,24], the photo-Fenton method, chemi-
cal/electrochemical oxidation, aerobic degradation [25], and (II) adsorption by porous
materials [26,27], clay, and porous silica zeolite [28]. Due to its ease of use, low cost,
low energy consumption, high efficiency, and economic advantages, adsorption using
porous materials is probably the most-used way of removing pesticides from water. Other
methods are costly, possibly harmful to the environment and living organisms, and hard
to implement.

The objective of this study was to prepare oil palm leaves with a comparatively higher
surface area, porosity, porous size and carbon content, to be used as an adsorbent for
paraquat in wastewater. The OPL with the highest surface area was further evaluated for
carbon content at hydrothermal carbonization temperatures of 800 ◦C and the chemical
agent KOH with different weight ratios of 1:0.25, 1:1, and 1:4 (C: KOH, w/w). The OPL
with the highest surface area, porosity, porous size and carbon content was applied to the
adsorption of paraquat in wastewater. The adsorption performance was obviously investi-
gated, including removal efficiency. Equilibrium isotherm, kinetic and thermodynamics
studies were also performed. The regeneration of nano-porous carbon on the adsorption
performance was studied. A comparative analysis was conducted with other studies to
evaluate the performance of the prepared OPL. The study will help to extend the applica-
tion of abundantly available OPL waste and achieve the sustainable development goals
through waste management and paraquat in wastewater.

2. Materials and Methods
2.1. Materials

Oil Palm leave (OPL), collected from oil palm plantations in Surat Thani province,
Thailand, were crushed and sieved into approximate sizes of 0.5–3 mm. Hence, OPL was
chosen as a raw biomass feedstock to produce nano-porous carbons. The ultimate analysis
(including C, H, N, and O) of OPL feedstock is demonstrated in Table 1. The chemical
compositions, such as potassium hydroxide (KOH) high-purity-grade (85%), laboratory-
grade, were supplied from Carlo Erba reagents, (France). High-purity-grade (99.99%)
nitrogen was used in an experiment. Deionized (DI) water was used in the experiments
throughout this work.

Table 1. The ultimate analysis of oil palm leave (OPL).

Condition
Ultimate Analysis **

C H N O *

OPL 42.264 6.309 1.377 50.050
* Calculated by different, ** (as-received basis, w/w).
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2.2. Synthesis of Nanoporous Carbon

The overall preparation of the nano-porous carbon samples in this work is schemati-
cally depicted in Figure 1. The step synthesis procedure of OPL nano-porous carbon was
conducted via hydrothermal carbonization and KOH activation. Step 1: The raw OPL feed-
stock was washed with DI water and was then dried at 105 ◦C in the hot-air oven. The dried
OPL was ground into powders using a grinder machine. Step 2: 30 g of the powdery OPL
was mixed with 60 mL of DI water and placed into a Teflon-lined stainless-steel autoclave
for the HTC process. Step 3: The hydrothermal reaction was performed at a temperature of
200 ◦C and time of 12 h. Step 4: Subsequently hydrochar was dried at 105 ◦C for overnight.
The hydrochar sample obtained from an optimum hydrothermal condition was selected
for further carbonization experiments. In this way, hydrothermal carbonization (HTC)
provides environmental, social and economic benefits for biomass conversion process.
Moreover, the HTC-combined carbonization enhanced the resulting carbon yield [3]. Step
5: The hydrochars were placed in combustion boats, brought into a horizontal tube furnace
for carbonization at 800 ◦C for 1 h, using a heating rate of 10 ◦C min−1 under N2 flow
of 0.2 L min−1, and then naturally cooled to ambient temperature. The optimum carbon
sample obtained from the hydrothermal carbonization was selected for activation. The
as-prepared carbon was mechanically mixed with KOH with the different weight ratios
of 1:0.25, 1:1, and 1:4 (C: KOH, w/w). The carbon-to-KOH sample was heated in an oven
at 105 ◦C for 12 h. Subsequently, the carbon was activated in a horizontal tube furnace
at 800 ◦C for 1 h using a heating rate of 10 ◦C min−1 under N2 gas flow of 0.2 L min−1.
The nano-porous carbon product was selected for the removal of paraquat. OPL nano-
porous carbon was designated as OPL−KOH−800−1:0.25, OPL−KOH−800−1:1, and
OPL−KOH−800−1:0.25, respectively. For comparison, the hydrothermal at 200 ◦C for 12 h
was designated as OPL−HT−200−12. The hydrochar hydrothermal carbonized at 800 ◦C
without KOH activation was also prepared and designated as OPL−HTC−800.
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2.3. Characterization
2.3.1. Morphology

The surface morphology was observed by field emission scanning electron microscope
(FEI, model Versa). The samples were sprinkled on a carbon tape located on steel sample
holder and coated by gold sputtering to enhance electron conductivity for identification.
TEM images of the materials were obtained using a JEOL JEM-3100F transmission electron
microscope, operated at an acceleration voltage of 300 kV. The sample dispersed in ethanol
was dropped onto the Cu grid (200 square mesh coated with carbon film) and dried at
room temperature overnight prior to measurements [29].

2.3.2. Surface Characteristics

Relative pore characteristics, including specific surface area and porosity, were ana-
lyzed by N2 adsorption–desorption analysis at −196 ◦C using a Quantachrome Autosorp
iQ-MP-XR. The Brunauer–Emmett–Teller (BET) model was used to determine the BET
surface area (SBET) [30]. The micropore surface area and external surface area were cal-
culated by the Vt method. The pore size distribution was analyzed using the density
functional theory (DFT) model. The total pore volume (Vtotal) was calculated by using
the Barrett–Joyner–Halenda (BJH) method at the relative pressure of 0.99. The micropore
(Dmic) and mesopore (Dmes) size distributions were obtained by the Density Functional The-
ory (DFT) model. The average pore size distribution (Daverage) was calculated by Density
Functional Theory (DFT) model [31].

2.3.3. Functional Group

The functional group on the surface of nano-porous carbon was studied by Fourier
transform infrared spectroscopy (FT-IR)-modeled Perkin Elmer Spectrum Two. The in-
frared absorption spectra were measured in transmission mode with a wavenumber range
from 4000 to 500 cm−1. The samples were put into infrared platform and directly screw-
impressed before performing FTIR data collection. The chemical states of oxygen and car-
bon on the material surface were analyzed by X-ray photoelectron spectroscopy (XPS) using
the Kratos Axis Ultra DLD X-ray photoelectron spectrometer equipped with a monochromic
Al Kα X-ray source (1486.7 eV) operated at 15 kV and 5 mA. Survey scans were measured
at a spot size of 400 µm and a constant pass energy of 200 eV. The samples were situated
on the carbon tape placed on the steel stub and substituted to a high-vacuum system
(1 × 10−8 mbar) for 2 h before measurement. All binding energy spectra were processed
by multipack software to fit the desired spectra (C1s and O1s contributions) [32].

2.3.4. Crystal Structural

The chemical structural properties of nano-porous carbon samples were characterized
using X-ray Diffraction technique (XRD, Rikagu Smart Lab). X-ray diffractograms of all
carbon samples were achieved using Cu-Kα radiation generated at 40 kV and 30 mA in
steps of 0.01◦ S−1 with a step time of 0.5 s over the range of 10◦ < 2θ < 80◦ on an X-ray
diffractometer [33].

2.3.5. Amorphous Structural

Raman analysis was performed on a dispersed Raman spectrometer DXR Microscope
of the company Thermo Scientific (Walthamm, MA, USA). We used solid-state Nd:YAG
laser (wavelength 532 nm, maximum power 10 mW), recorded from 500 to 2500 cm−1, as
an excitation source. Grating was performed with 900 lines/mm and a 25 µm slit aperture.
Measurement conditions for the samples were 10 mW laser power, 10 s acquisition time per
scan, and 20 repetitions. Ten spectra were averaged from each surface. Data were processed
using Omnic 9 software (Thermo Scientific, Walthamm, MA, USA) [34].
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2.3.6. Ultimate Analysis

Ultimate analysis reveals the elemental compositions of OPL and as-performed sam-
ples (i.e., carbon, hydrogen, and nitrogen) were determined using a carbon, hydrogen, and
nitrogen (CHN) elemental analyzer (ASTM D 5373-16). The oxygen percentage was directly
calculated using the difference of all elemental compositions from 100% [35].

2.4. Adsorption Desorption and Regeneration Experiments
2.4.1. Removal Efficiency of Paraquat

A mixture of the material (0.5 g) and target solution (500 mL) was placed into a TS-
520D orbital shaker-flask clamp platform (Yihder Co., Ltd., Taiwan, China) operating at a
shaking speed of 200 rpm at 25 ◦C. The PQ concentration was determined using a T92+
Spectrophotometer UV-visible spectrophotometer (PG Instruments) (λmax = 257 nm). The
removal efficiency of paraquat was calculated using the following:

Removal efficiency =
Ci − Ct

Ci
× 100 (1)

where Ci is the initial strength of the paraquat at the time (mg·L−1), and Ct is the final
concentration of paraquat solution at certain time intervals (mg·L−1) [36–39].

2.4.2. Adsorption Capacity of Paraquat

The paraquat adsorption capacity was calculated according to the following
equations [17]:

qe =
(Ci − Ce)

W
× V (2)

qt =
(Ci − Ct)

W
× V (3)

where qe and qt are the adsorption capacities of paraquat at equilibrium and time t (mg·g−1),
respectively. C0, Ce, and Ct are the initial, equilibrium, and time t paraquat concentrations
in the solution (mg·L−1), respectively. V is the solution volume (L) and W is the weight of
the material (g) [40].

2.4.3. Adsorption Isotherm
Langmuir Isotherm

The Langmuir model assumes that the maximum adsorption capacity corresponds
to a monolayer of adsorbate molecules on the adsorbent surface. It is also assumed that
adsorbate molecules bind to specific sites and each site accommodates one molecule. It is
further assumed that the adsorptive energy is equal for all sites, regardless of the adsorbed
molecules in neighboring sites. The adsorbent surface is flat, smooth, and adsorbate-
adsorbate interactions are negligible. Equation (4) describes the Langmuir model

qe =
qmkLCe

1 + kLCe
(4)

where qe represents the paracetamol adsorption quantity, m is the maximum adsorp-
tion capacity and corresponds to the monolayer, Ce is the paracetamol concentration in
equilibrium and kL is the Langmuir constant [10].

Freundlich Isotherm

The Freundlich model is an empirical model that is frequently used to describe organic
compound adsorption in an aqueous solution. It proposes an exponential decrease in
the distribution of the active sites’ adsorption energies. The equation uses mathematical
model (5)

qe= kFC
1
n
e (5)
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where the constants KF and n depend on the adsorbent–solute interaction and the temper-
ature. The 1/n values may be less or greater than the unity. When the value is less than
unity, this indicates favorable adsorption. This expression reduces to a linear adsorption
isotherm. Normal adsorption occurs when the value of 1/n is below one. Cooperative
adsorption arises in the case 1/n being above one [41].

Temkin Isotherm

This isotherm contains a component that explicitly considers interactions between the
adsorbent and the adsorbate. It assumes that the adsorption heat linearly varies with the
degree of overlap. This equation, which was formulated in the case of the adsorption of
gases on solids and transported to the liquid phase, is one of the only equations provid-
ing access to the variation in adsorption energy, which characterizes how the pollutants’
molecules are retained on the surface of the adsorbent. For an intermediate concentration
range, this isotherm is reasonably used. As the adsorption heat is a function of the temper-
ature of all molecules in the layer, the model predicts that it will fall linearly rather than
logarithmically as coverage increases. The Temkin isotherm was calculated according to
the following equations:

qe= BlnKT+BlnCe (6)

B =
RT
b

(7)

KT is a Temkin isotherm equilibrium binding constant (L·g−1); b, Temkin isotherm constant;
R, universal gas constant (8.314 J·mol−1·K−1); T, the temperature at 298 K; B is a constant
related to the heat of sorption (J·mol−1) [42].

Jovanovic Isotherm

The Jovanovic model is based on the Langmuir model’s assumptions, as well as the
potential of certain mechanical contacts between the adsorbent and the adsorbate. The
Jovanovic isotherm was calculated according to the following equations:

qe= qm

(
1 − exp−kjCe

)
(8)

where qe the is amount of adsorbate in the adsorbent at equilibrium (mg·g−1), qm is
maximum uptake of adsorbate, and kj is Jovanovic constant [43].

2.4.4. Adsorption Kinetics
Pseudo-First-Order

The expression of the pseudo-first-order reaction model for n = 1 is as follows:

qt= qe

(
1 − exp−k1t

)
(9)

where qe and qt are the amounts of adsorbate uptake per adsorbent mass at equilibrium and
at any time t (min), respectively, and k1 (min−1) is the rate constant of the PFO equation.

Pseudo Second Order

The expression of the pseudo-second-order reaction model for n = 2 is as follows:

qt =
q2

ek2t
qek2t + 1

(10)

where qe (mg·g−1) and qt (mg·g−1) are the adsorbate amounts adsorbed at equilibrium
and any t (min), respectively and k2 (g·mg−1·min−1) is the PSO equation constant rate.
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Elovich

Elovich kinetic model is usually used in a gas–solid system and is expressed by:

qt =
1
β

ln(1 + αβt) (11)

where qt is the amount of paraquat adsorbed in mg·g−1 at a particular time, t. α represents
the initial adsorption rate in mg·g−1·min, and β is the extent of surface coverage in g·mg−1

and the process activation energy [43].

Inter-Particle Diffusion

The intraparticle diffusion model, which considers pore diffusion, was developed and
proposed as follows:

qt= kdifft
1
2 +C (12)

where C (mg·g−1) is the intercept and kdiff (mg·g−1·min) is the intraparticle diffusion
rate constant.

The internal diffusion model assumes that the internal diffusion of the adsorbate is
the slowest step, resulting in the rate-controlling step during the adsorption process, and
that adsorption is instantaneous [44].

3. Results and Discussion
3.1. Morphology and Characteristics
3.1.1. Surface Morphology

The field emission scanning electron microscopy (FE-SEM) images of the OPL nano-
porous carbon without and with KOH activation are demonstrated in Figure 2a–h. The
surface of OPL−HTC−800 revealed a wavy and wrinkled morphology (Figure 2a,e), as
opposed to the uniform, rough-surface morphology of the OPL−KOH−800 samples (Fig-
ure 2c,d), which contributed to its large surface area. This result confirms that KOH
activation had a significant influence on the transformation of a non-porous structure to
a well-developed porous sample. The activation at a high KOH content could enlarge
the pore cavity size of a sponge-like morphology. As illustrated in high-magnification
FE-SEM images (Figure 2f–h), the sponge-like structure of all the OPL nano-porous carbon
samples was quite smooth, with significant differences when the KOH content increases.
As demonstrated in Figure 3, transmission electron microscopy (TEM) revealed the pres-
ence of a nano-porous structure (micropores and mesopores). OPL−KOH−800−1:4 is an
amorphous phase, which showed a nano-porous structure. The number of white dots in the
carbon matrix between the disordered carbon layers suggests the presence of micropores
and mesopores in OPL−KOH−1:4 (black).
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KOH activation, SBET increased to 283, 961, and 1681 m2·g−1 for OPL−KOH−800−1:0.25, 
OPL−KOH−800−1:1, and OPL−KOH−800−1:4, respectively. Meanwhile, the isotherms 
OPL−KOH−800−1:1 and OPL−KOH−800−1:4 exhibited a mixed type-I/type-IV isotherm 
with a narrow pore, showing that a highly microporous character existed. However, as 
the KOH content increased, a wider isotherm pore and a narrow hysteresis loop with an 
H4 type (P/P0 = 0.40–0.99) were observed, resulting in the formation of larger micropores 
and the development of mesopores. Figure 4b illustrates the pore size distribution of the 
samples as determined using the density functional theory (DFT) method. The majority 

Figure 2. FE-SEM images of (a,e) OPL−HTC−800, (b,f) OPL−KOH−800−1:0.25, (c,g) OPL
−KOH−800−1:1, and (d,h) OPL−KOH−800−1:4.
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3.1.2. Nitrogen Adsorption/Desorption Isotherms and Pore Size Distribution

To further examine the textural properties on a porous structure, the N2 adsorption-desorption
isotherms were recorded and are illustrated in Figure 4a. The OPL−KOH−800−1:0.25 exhibited
low quantities of N2 being adsorbed with a type-IV isotherm and H3 hysteresis loop,
according to the IUPAC classification, which is characteristic of mesoporous materials. The
mesoporous structure of OPL−KOH−800−1:0.25 could be attributed to the slit-shaped
pores that were likely created by the spaces between the wavy edges on the surface.
For the OPL-KOH samples, it is evident that the quantities of adsorbed N2 increased as
the KOH content increased, implying that the surface area was enhanced. The specific
surface area was determined by the Brunauer–Emmett–Teller (SBET) method, using ad-
sorption data in the relative pressure range of 0.05–0.30. After the KOH activation, SBET
increased to 283, 961, and 1681 m2·g−1 for OPL−KOH−800−1:0.25, OPL−KOH−800−1:1,
and OPL−KOH−800−1:4, respectively. Meanwhile, the isotherms OPL−KOH−800−1:1
and OPL−KOH−800−1:4 exhibited a mixed type-I/type-IV isotherm with a narrow
pore, showing that a highly microporous character existed. However, as the KOH con-
tent increased, a wider isotherm pore and a narrow hysteresis loop with an H4 type
(P/P0 = 0.40–0.99) were observed, resulting in the formation of larger micropores and
the development of mesopores. Figure 4b illustrates the pore size distribution of the
samples as determined using the density functional theory (DFT) method. The majority
of OPL−KOH−800−1:0.25, OPL−KOH−800−1:1, and OPL−KOH−800−1:4 pores were
found in the micropore region (<2 nm). Following activation at higher KOH contents, the mi-
cropores were widened into small mesopores (2–5 nm). From the t-plot analysis, the propor-
tion of the external surface area caused by the meso-macropores increased from 126 m2·g−1

for OPL−KOH−800−1:0.25, 269 m2·g−1 for OPL−KOH−800−1:1, and 404 m2·g−1 for
OPL−KOH−800−1:4. The total pore volume (Vtotal) increased from 0.845 to 0.907 cm3·g−1.
The textural parameters of all samples are summarized in Table 2. These results indicate
that chemical activation with a high KOH content delivered a significant increase in SBET
and further meso-porosity development, which agree with the previously reported obser-
vation describing the effect of KOH activation on the surface area and pore structure of
OPL−KOH [45–47]. Table 3 displays the activated carbon produced by different manufac-
turing processes and different conditions compared to this study.
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Figure 4. (a) N2 adsorption–desorption isotherms. Solid and open symbols represent the adsorp-
tion and desorption data, respectively. (b) DFT pore size distribution of OPL−KOH−800−1:0.25,
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Table 2. Structural parameters of OPL−KOH−800−1:0.25, OPL−KOH−800−1:1, and
OPL−KOH−800−1:4 from N2 adsorption.

Condition 1 SBET (m2·g−1)
2 Micropore
Surface Area

(m2·g-1)

3 External
Surface Area

(m2·g−1)

4 Vtotal
(cm3·g–1)

5 Dmic (nm) 6 Dmes (nm) 7 Daverage (nm)

OPL−KOH−800−1:0.25 283 156 126 0.845 1.231–1.931 2.020–13.376 11.96

OPL−KOH−800−1:1 961 692 269 0.566 0.548–1.931 2.020–13.376 2.36

OPL−KOH−800−1:4 1685 1281 404 0.907 0.523–1.931 2.020–13.376 2.15

1 SBET: the specific surface area is calculated by Brunauer–Emmett–Teller (BET) model; 2 Micropore surface area
and 3 External surface area: the specific surface area is calculated by V-t method; 4 Vtotal: the total pore volume
is calculated by Barrett–Joyner–Halenda (BJH) model; 5 Dmic and 6 Dmes: the micropore and mesopore size
distribution are obtained by Density Functional Theory (DFT) model; 7 Daverage: the average pore size distribution
is calculated by Density Functional Theory (DFT) model.

Table 3. Production of activated carbon by different manufacturing processes and under
different conditions.

Sample Condition SBET (m2·g−1) Vtotal (cm3·g−1) Daverage (nm) Ref

Onion Leaves
(Allium fistulosum)

Chemical activation
process using (H3PO4) 1100 0.879 1.050 [41]

Biochar derived
from tobacco stems

Stems and pyrolyzed
400 ◦C for 30 min 33 0.072 1.631 [37]

Bamboo shoot shell (HTC) 800 ◦C 513 0.27 2.09 [5]

Oil Palm
Male Flowers

Microwave-Assisted
Pyrolysis Combined KOH

Activation
991 0.49 - [35]

Water ferns

(HTC) followed by a
chemical activation

process using (KOH)
at 700 ◦C

2848 1.552 - [20]

Oil palm leave

(HTC) followed by a
chemical activation

process using (KOH)
at 700 ◦C

1685 0.907 2.15 This study
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3.1.3. Crystallinity

From Figure 5, The OPL−HTC−800, OPL−KOH−800−1:0.25, OPL−KOH−800−1:1,
and OPL−KOH−800−1:4 sample. The XRD measurement at a range of 10◦ < 2θ < 80◦ was
investigated to examine the phase structure of the carbon material, as shown in Figure 5.
The peak at a 2θ around 19−26◦ showed carbon characteristics in an amorphous phase.
In addition, the peak found at 2θ positions of 25.5◦ and 43◦ correspond to the structure of
carbon materials, as shown in Figure 5. The 002 peaks in crystalline graphite occurred at
23◦ and the broad 101 peaks appeared to be a single peak. This implied that each carbon
atom layer in the structure was incompletely stacked [46,47]. These results prove that all
the samples consist of small sp2 platelets. The first peak corresponded to the reflection
of graphite and the stacking of graphene layers. The other peaks were also ascribed
to the reflections originating from the in-plane structure of graphitic in the structure of
corresponding samples.
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OPL−KOH−800−1:4.

3.1.4. Function Groups

The chemical functionality of all samples could be revealed by analyzing their FTIR
spectra in Figure 6. The FTIR spectra of porous carbon synthesized from palm leaves
showed that the peaks at and 1580 cm−1 represent the C=O bonds of the carboxylic
groups (−COOH) and the stretching vibrations of conjugated C–C bonds of aromatic rings,
whereas those of C=C and C–O stretching (1050 cm−1) remained following the emergence
of C=C bending (860–724 cm−1), described as hemicellulose. This result suggests that KOH
activation at high temperatures promoted the degradation of the lignocellulose structure
and the removal of functional groups to yield products with a high carbon content [48].
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OPL−KOH−800−1:4.

The surface chemistry composition of OPL−KOH−800−1:4 with the highest specific
surface areas 1684.860 m2/g was accomplished using XPS analysis, as demonstrated in
Figure 7. The obtained XPS spectra of prior to and after KOH activation samples can be
fitted to two enriched component peaks in carbon and oxygen, as seen in Figure 7a. The
high-resolution C 1s (Figure 7b) peak in OPL−KOH−800−1:4 can be separated into three
component peaks, representing the peaks in graphitic carbon (C=C, 284.80 eV), the carbon
groups in alcohol and/or ether linkages (C–O–C, 286.00 eV), and carbon in carbonyl group
(O–C=O, 288.50 eV). The O 1s spectrum exhibits the two relevant spectra representing
organic C–O in phenol and ether groups, and the organic C=O in carboxylic acid and/or
ester groups, centered at 531.00 and 533.00 eV, respectively, as displayed in Figure 7c.
Meanwhile, the O 1s of OPL−KOH−800−1:4 was fitted into two components: the organic
C–O in phenol and ether groups of 531.00 eV, and organic C=O in carboxylic acid and/or
ester groups of 533.00 eV. The results of XPS analysis could possibly be used to indicate the
significantly different proportions of carbon and oxygen, which is good agreement with
FTIR and ultimate analyses.

3.1.5. Amorphous Structure

The characterization of the chemical properties of OPL−KOH is illustrated in Figure 8.
The crystallography of the OPL−KOH sample (Figure 8) was evaluated using the Raman
technique from ID/IG ratio, considering amorphous and crystallite carbon components.
The band at 1360 cm−1 was assigned to the D band, which corresponds to a graphitic
lattice vibration mode with A1g symmetry. This is typical for carbon materials, which was
detected to be around 1300–1380 cm−1. The G band, which typically occurs at 1600 cm−1,
arises from the stretching of the C–C bond in graphitic materials, and is common for
all sp2 carbon systems. Hence, ID/IG shows (Table 4) the amorphous ratio that repre-
sents the physical structure of porous carbon. The ID/IG values of the OPL−HTC−800,
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OPL−KOH−800−1:0.25, OPL−KOH−800−1:1 and OPL−KOH−800−1:4 was 0.96, 0.96,
0.97 and 0.99, respectively. The Raman analyzes reveal that OPL−KOH−800−1:4 con-
tributes slightly more to the graphitic structures [35].
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Table 4. Raman spectra of OPL via hydrothermal carbonization and KOH activation.

Condition ID IG ID/IG

OPL−HTC−800 157.10 162.42 0.96
OPL−KOH−800−1:0.25 55.12 57.28 0.96

OPL−KOH−800−1:1 64.46 65.78 0.97
OPL−KOH−800−1:4 49.11 49.49 0.99

3.1.6. The Ultimate Analysis

The elemental compositions of OPL-KOH-800-1:4 is summarized in Table 5. The C,
H, O, and N contents of OPL−KOH−800−1:4 is listed in Table 5. The C content markedly
increased, from 46.204% to 77.860%, the H content increased from 2.355% to 5.699%, and
the N content increased from 0.084% to 1.748%. However, the O content decreased from
46.349 % to 16.997%. This result demonstrates that carbon and oxygen functional groups
were introduced to the surface of OPL-KOH-800-1:4.

Table 5. Ultimate analysis of OPL via hydrothermal carbonization and KOH activation.

Condition
Ultimate Analysis **

C H N O *

OPL−HT−200−12 46.204 5.699 1.748 46.349
OPL−HTC−800 72.296 2.355 0.841 24.508

OPL−KOH−800−1:0.25 73.352 2.742 1.350 22.556
OPL−KOH−800−1:1 75.338 4.188 0.590 19.884
OPL−KOH−800−1:4 77.860 5.059 0.084 16.997

* Calculated by different, ** (as-received basis, w/w).

3.2. Adsorption Property of Materials
3.2.1. The Removal Efficiency

Figure 9 shows the paraquat removal efficiency of OPL−KOH−800−1:4 samples,
which are plotted as a function of paraquat concentration between 5 and 400 mg·L−1. In
descending order, the paraquat concentration reached 100% removal efficiency up to a con-
centration of 25 mg·L−1 and dropped to 21.42% at a concentration of 400 mg·L−1 [35–37].
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3.2.2. Adsorption Isotherms

An adsorption isotherm experiment was carried out to explore the adsorption mechanism
for OPL−KOH−800−1:4 on paraquat. The adsorption capacity of OPL−KOH−800−1:4 was
found to increase from 5.681 mg·g−1 to 93.306 mg·g−1 with increases in initial paraquat
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concentration from 5.0 mg·L−1 to 400.0 mg·L−1. When the paraquat concentration was
further increased to 400.0 mg·L−1, the adsorption capacity remained almost unchanged
at a value of 93.306 mg·g−1 (Figure 10a). According to the apparent area of the paraquat,
the external and internal surfaces of the OPL−KOH−800−1:4, and the maximum ad-
sorption capacity, we can estimate that most of the paraquat is adsorbed onto the pores
of the nano-porous carbon. The equilibrium isotherm data were fitted with Langmuir,
Freundlich, Temkin, and Jovanovic isotherm models, respectively, and the fitting curves
for all four models are shown in Figure 10b. Compared with the four fitting results, only
the correlation coefficient value (R2) was found to change. The R2 values suggest that the
data for paraquat adsorption onto OPL-KOH-800-1:4 are best matched with the Langmuir
isotherm (Table 6). The Langmuir isotherm is a typical monolayer adsorption model and
is suitable for describing an adsorption process without intermolecular interaction. The
calculated maximum adsorption capacity (qm) for paraquat (97.755 mg·g−1) using the
Langmuir model was found to be higher than that of most other adsorbents. Nonetheless,
high alkalinity tends to increase the adsorptive properties of paraquat due to the surface
characteristics of porous carbon.
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Table 6. Adsorption isotherm parameters of paraquat.

Model Parameter Paraquat

Langmuir
qe =

qmkLCe
1+kLCe

qm (mg·g−1) 97.755 ± 7.058

kL (L·mg−1) 0.100 ± 0.047

R2 0.916

Freundlich
qe= kFC

1
n
e

kF 38.615 ± 7.532

n 5.986 ± 0.039

R2 0.906

Temkin
qe= BlnKT+BlnCe ; B =RT

b

B 13.621 ± 4.082

KT 5.034 ± 9.253

R2 0.898

Jovanovic
qe= qm

(
1 − exp−kjCe

) qm 90.764 ± 5.572

k 0.069 ± 0.025

R2 0.906

Note: T(K) is the temperature in Kelvin; R is the ideal gas constant (8.314 J·mol−1·K−1); KL, KF, n, B, KT, k and b
are the constants for the corresponding formula, respectively.
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3.2.3. Adsorption Kinetics

The kinetics’ fitting curves and corresponding parameters are shown in Figure 11.
According to the non-linearity (R2), the adsorption processes of paraquat (R2 = 0.999) is
closely approximated to the pseudo-second-order kinetics model. These results further con-
firm that the adsorption mechanism of paraquat on OPL-KOH-800-1:4 is mostly chemical
adsorption (Table 7). Technically, the adsorption in higher-temperature condition exhibited
an increase in adsorption rate. This is due to the shaking of adsorbate molecules, which
caused the turbulent flow, resulting in an enhancement of adsorption performance.
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Table 7. Adsorption kinetic parameters of paraquat.

Model Parameter Paraquat

Pseudo-first-order
qt= qe

(
1 − e−k1t

) k1 (min−1) 1.397 ± 0.153

qe (mg·g−1) 91.774 ± 0.581

R2 0.997

Pseudo-second-order
qt =

q2
ek2t

qek2t+1

k2 (min·mg·g−1) 0.069 ± 0.010

qe (mg·g−1) 92.673 ± 0.374

R2 0.999

Elovich
qt =

1
β ln(1 + αβt)

α 4.343 × 1029 ± 6.465 × 1030

β 0.781 ± 0.166

R2 0.998

Inter-particle diffusion
qt= kdifft

1
2 +c

kdiff (mg·g−1·min−1/2) 3.236 ± 1.959

c (mg·g−1) 63.143 ± 14.155

R2 0.254
Note: k1, k2, α, β, kdiff and c are the constants for the corresponding formula, respectively.

3.2.4. Comparative Profile

To evaluate the development behavior of the new adsorbent proposed in this research,
a comparison study was performed between the nanoporous of the oil palm leaves and
other adsorbents reported in previous studies (Table 8). Notably, oil palm leaves biomass
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has excellent adsorption capacity for paraquat and a fast adsorption process, as it reaches
equilibrium in a few minute, standing out in relation to other bioadsorbents found in the
recent literature.

Table 8. Comparison of qm, kL, concentration and dosage values from the Langmuir isotherm model
of adsorbents and modified adsorbents for the removal of paraquat.

Sample qm (mg·g−1) kL (L·mg−1) Paraquat Concentration
(mg·L−1) Dosage (g·L−1) Ref

Water ferns 5.78 0.26 1.5–4.5 1.00 [20]

NAC water ferns 20.00 1.39 1.5–45 1.00 [20]

Mesoporous silica 11.75 1.19 8–16 0.04 [28]

Poly(Vinyl Alcohol)-
Cyclodextrin 102.00 0.09 25–300 2.00 [49]

Starch-derived carbons 66.20 25.61 1–150 2.00 [50]

Carbon tubes 218.61 0.03 70–500 0.20 [19]

Magnetic adsorbent 242.40 0.66 30–900 2.50 [26]

TEMPO-oxidized
cellulose nanofibers 115.00 3.51 10 0.10 [51]

Bentonite 94.34 480.83 50 2.00 [52]

K-Zeolite LTL 166.71 1.05 50–500 2.50 [53]

H-Zeolite LTL 25.67 1.26 50–500 2.50 [53]

NaY zeolite 234.40 0.05 100–1500 2.50 [54]

Nanoporous for Oil
palm leave 97.76 0.10 25–400 1.00 This study

3.3. Regeneration Efficiency

A material’s regeneration ability is important for practical applications [39,55]. The
target-loaded materials were treated with pyrolysis at 300 ◦C at 90 min with nitrogen flow
and pyrolysis at 300 ◦C at 90 min in airflow to remove the targets [46]. The materials
were then washed, dried, and subjected to the next round of adsorption experiments. The
materials retained more than 50.39 to 47.63% of pyrolysis at 300 ◦C for 90 min in nitrogen
flow, and pyrolysis at 300 ◦C at 90 min in nitrogen flow. The retained materials gradually
decreased from 100 to 47.63% of their initial adsorption capacity after four adsorption–
desorption cycles (Figure 12a).

The chemical functionality with paraquat after four adsorption–desorption cycles
could be revealed by analyzing the FTIR spectra in Figure 12b. The FTIR spectra of
porous carbon synthesized from palm leaves showed that the peaks at 1700–1580 cm−1

represented the C=O bonds in the carboxylic groups (−COOH) and the stretching vibrations
of conjugated C–C bonds of aromatic rings, whereas for those at the N-H bend (1580 cm−1)
of the 1o amines, the peaks at 1300–1150 cm−1 represented C-H wag (−CH2X) and the
peaks at 790 cm−1 represented H-Cl’s correlated with alkyl halides. This suggests that the
paraquat is completely adsorbed on the carbon surface, after several adsorption–desorption
tests. These functional groups persisted, resulting in a decrease in adsorption capacity.

The XRD measurement at the range of 10◦ < 2θ < 80◦, was investigated to examine
the phase structure of carbon material, as shown in Figure 12c. The peak of 2θ at around
19−26◦ showed the carbon characteristics in an amorphous phase. In addition, the peak
found at 2θ in positions of 25.5◦ and 43◦ was assertive for all samples corresponding to the
carbon materials. As shown in Figure 12c, the 002 peaks in crystalline graphite occurred
at 23◦ and the broad 101 peaks appeared to be a single peak. This can be implied that
the structure of OPL nano-porous carbon has transformed into amorphous phase after
regeneration because of the effect of pyrolysis condition.
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4. Conclusions

Nano-porous carbon was prepared from oil palm leaves via hydrothermal carboniza-
tion at 200 ◦C for 12 h under a nitrogen atmosphere. It was stimulated with 1:4 potassium
hydroxide at 800 ◦C for 1 h under a nitrogen atmosphere. According to KOH activation,
OPL samples showed a porous, sponge-like morphology with a large surface area. This
result is due to an increase in the specific surface area and volume of the pore, caused
by the microporous pore structure developing into a hierarchical mesoporous. The in-
creased removal efficiency and maximum adsorption capacity of carbon nano-cavities can
be attributed to the large surface area and microporous and mesoporous pore sizes. In
addition, the carbon nanotubes obtained from this research can be used as an alternative
adsorbent to remove paraquat and other organic compounds from water. The adsorption
isotherm models of OPL−KOH−800−1:4 was represented by the Langmuir, Freundlich,
Temkin, and Jovanovic isotherm models. Their adsorption kinetics could be described by
the Langmuir model. The results of the adsorption isotherm and kinetics models confirm
that the adsorption mechanisms of paraquat were a typical monolayer adsorption model
and chemical adsorption. The regeneration ability of the material further shows great
application potential for controlling water pollution.
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