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Abstract: The production of reactor-based medical isotopes is fragile, which has meant supply
shortages from time to time. This paper reviews alternative production methods in the form of
cyclotrons, linear accelerators and neutron generators. Finally, the status of the production of medical
isotopes in China is described.
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1. Introduction
1.1. Definition of Medical Isotopes

Medical isotopes are radioisotopes that emit positrons or gamma rays for medical
diagnosis or particulate radiation, such as alpha or beta particles for medical therapy [1].

1.2. Medical Use

The application process for medical isotopes is depicted in Figure 1 and can be sum-
marized in four steps:

(1a) In a reactor, irradiate a suitable target with neutrons to induce a nuclear reaction;
(1b) In an accelerator, irradiate a suitable target with protons, alpha, or deuteron particles

to induce a nuclear reaction;
(2) Separate radioisotopes from the irradiated targets;
(3) Combine the ligands with radioisotopes to prepare radiopharmaceuticals;
(4) Employ the radiopharmaceuticals in nuclear medicine.
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Depending on the physical characteristics of the isotopes applied, radiopharmaceuti-
cals have different medical uses in diagnosis, therapy, or both (theranostics) [2], leading to
a steady increase in the use of medical isotopes in nuclear medicine over time [3,4].
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1.2.1. Radiopharmaceuticals for Diagnosis

Radiopharmaceuticals are generally injected intravenously or, in some cases, taken
orally [5,6]. They are transported in the blood throughout the body and, due to their
high affinities with specific organs, can target different diseases, especially tumors. The
γ rays emitted by radiopharmaceuticals are used for imaging. Currently, there are two
main imaging applications for diagnosis in nuclear medicine: Single Photon Emission
Computed Tomography (SPECT) [7–9] and Positron Emission Tomography (PET) [10–12].
The distribution of radiotracers in vivo can be detected using SPECT and PET cameras.

The main advantage of nuclear medicine diagnosis lies in its ability to find lesions
earlier since diseased tissues usually first denote functional changes before later evolving
into shape and structural changes [13]. Another major feature of nuclear medicine diagnosis
is its ability to specifically show the locations and sizes of tumors, especially when combined
with Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) [14,15].

1.2.2. Radiopharmaceuticals for Therapy

Therapeutic radiopharmaceuticals accumulate in diseased tissue after entering the
human body. Then, their cumulative radioactive emissions can produce biological effects
(e.g., killing tumor cells), which makes radiopharmaceuticals particularly suitable for cancer
treatment [16]. The applications of radiopharmaceuticals for therapy include α therapy, β
therapy, and Auger therapy. This review focuses on α therapy and β therapy.

1.2.3. Radiopharmaceuticals for Theranostics

In theranostics, radiopharmaceuticals can be used to perform diagnostic imaging and
medical treatment [17–19]. Imaging diagnosis is used to determine an optimal treatment
modality and can help monitor and evaluate the medical treatment progress [18,20,21].
Currently, radiopharmaceuticals for theranostics use either the same radiopharmaceutical,
which emits γ rays for diagnosis and α or β particles for treatment [22,23], or two different
radiopharmaceuticals (one for diagnosis and the other for treatment) [24].

Radiopharmaceuticals for theranostics have developed rapidly in recent years with
great progress in treating neuroendocrine tumors, thyroid cancer [20,21,25,26], prostate
cancer, breast cancer [27,28], and other diseases.

1.3. The Status of Medical Isotope Production

Radioisotopes are divided into natural and artificial radioisotopes. Currently, there
are about 200 radioisotopes in use, most of which are produced artificially [29].

With the widespread usage of radiopharmaceuticals, the stable production and supply
of medical isotopes is becoming increasingly important.

Medical isotopes are generally produced via either reactors or accelerators. Typically,
reactor-based medical isotopes are neutron-rich isotopes commonly characterized by a
long half-life, while accelerator-based medical isotopes tend to offer a shorter half-life and
usually emit positrons or γ rays [30]. Reactor irradiation is currently the most commonly
used method to produce medical isotopes due to their high yield, low cost, and ease of
target preparation. However, this supply is sustained by reactors that were built in the
1950–60s (Table 1). The majority of these reactors will gradually shut down before 2030.

Table 1. Information on the world’s major reactors producing medical isotopes [31–34].

Country Reactor Power [MW] Year of First
Criticality

Estimated Retirement
Time

Belgium BR-2 100 1961 2026
Netherlands HFR 45 1961 2024

Czech Republic LVR-15 10 1957 2028
Poland MARIA 20 1974 2030

South Africa SAFARI-1 20 1965 2030
Russia WWR-TS 15 1964 2025

United States HFIR 100 1965 2035
Australia OPAL 20 2006 2057
Germany FRM-II 20 2004 2054
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Moreover, due to their age, and as part of the decommissioning process, reactors can be
expected to have longer periods of down time due to maintenance or unplanned shutdown
events for safety or technical reasons [35], increasing the risk of supply interruptions or
persistent shortages. Additionally, most irradiated targets for 99Mo production in a reactor
context use highly enriched uranium (HEU) targets that generate considerable amounts of
highly radioactive waste and increase the risk of nuclear proliferation [36,37]. These factors
strengthen the argument that medical isotopes produced via reactors should be replaced
by accelerator-based production [38,39].

The growing interest and recent improvements in accelerator technologies have al-
ready led some medical isotopes produced via reactors to be replaced or partly replaced
by accelerator-produced isotopes. There are many advantages to using medical isotopes
produced by accelerators:

(1) Supervision is easier, and safety is improved [40];
(2) The maintenance and decommissioning costs are lower [29];
(3) The amount of radioactive waste produced is less than 10% of the amount produced

by a reactor, and the radiation levels are lower [41];
(4) It has no risk of nuclear proliferation [42].

As shown in Figure 2, the number of cyclotrons producing radioisotopes is increasing,
while the number of reactors is slowly decreasing.
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2. Medical Isotopes

This section reviews the medical isotopes produced by cyclotrons, linear accelerators,
and neutron generators and lists some of the most commonly used medical isotopes, as
well as their characteristics, applications, and production methods.

2.1. Medical Isotopes Produced by Cyclotrons (1–5: PET Radioisotopes, 6–7: SPECT Radioisotopes,
8–10: Therapeutic Radioisotopes)

A cyclotron is a particle accelerator that accelerates charged particles and uses an elec-
tromagnetic field to get the particles to follow a spiral path to ever-increasing energies until
achieving the energy necessary to produce medical isotopes via nuclear interactions [58].
Compared with linear accelerators, the beams from cyclotrons have characteristically lower
beam intensity, but their energy can be higher [59]. Cyclotrons are classified according to
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the energy of the particles they produce. As shown in Table 2, different types of cyclotrons
can produce medical isotopes for a wide range of applications.

Table 2. Classification of medical cyclotrons [60].

Type The Energy of Particles
[MeV] Application

Small medical cyclotron <20 Short-lived radioisotopes for PET

Medium-energy cyclotron 20–35 Production of SPECT and some
PET radioisotopes

High-energy cyclotron >35 Production of radioisotopes for
therapy

2.1.1. 18F
18F (T1/2 = 109.8 min) decays and emits positrons with an average energy of 0.25 MeV;

hence, the distance traveled until reaching positron annihilation in tissues is short. 18F is
the most commonly used PET radioisotope. At present, the Food and Drug Administration
(FDA) has approved 18F radiopharmaceuticals for use in the diagnosis of a variety of
diseases, such as Alzheimer’s disease, infections, and many types of cancer, as well as to
evaluate treatment outcomes [61,62]. According to clinical data, [18F]FDG can distinguish
between Parkinson’s Disease (PD), MSA with predominant Parkinsonism (MSA-P), and
MSA with predominant cerebellar features (MSA-C) [63,64]. PET diagnosis is expensive
and can cost over $1000, while doctors can make an early and accurate diagnosis. For that
reason, the annual number of PET scans has steadily increased for many years [65]. Most
18F is produced via cyclotrons by exploiting two nuclear reactions:

(1) 18O (p, n) 18F: This reaction requires enriched (and more expensive) 18O target materi-
als to produce 18F in a high yield [66]. Technology developments led to improvements
in the target system and the production of 18F up to 34 GBq, as well as specific activi-
ties of 350–600 GBq/mmol 30 min after the end of bombardment [67]. Subsequently,
it was found that with the irradiation of 11 MeV protons, the yield of 18F further
increased directly with the proton current. However, the impurities also increased
such that for a proton current of 20 µA, the yield of 56Co (4.86 MBq) and 110mAg
(1.51 MBq) doubled [68]. Many developing countries do not have medical isotope pro-
duction facilities. If these countries desire to become self-sufficient in the production
of medical isotopes, they could start by installing low-energy cyclotrons to produce
18F [69].

(2) 20Ne (d, α) 18F: This is the first production method used to produce 18F. This reaction
is characterized by lower yields and low specific activity, so it is gradually being
replaced. However, with production improvements, this method could again become
an attractive alternative [70].

2.1.2. 68Ga
68Ga (T1/2 = 68 min) is a metal PET radioisotope. Currently, there are about

100 ongoing clinical tests with 68Ga [61], indicating the rapid development of 68Ga-labelled
radiotracers. Radiopharmaceuticals labeled with 68Ga are used for the diagnosis of neu-
roendocrine tumors and are highly accurate when used in patients with suspected but yet
not localized neuroendocrine tumors [71]. In addition, 68Ga and 177Lu (T1/2 = 6.7 d) have
a similar coordination chemistry, rendering them some of the most promising radiophar-
maceuticals for theranostics. For neuroendocrine tumors, both [68Ga]Ga-DOTA-TATE and
[177Lu]Lu-DOTA-TATE have been approved by the FDA for clinical PET diagnosis and
medical treatment [72–74]. [68Ga]Ga-PSMA-11 is the first radiopharmaceutical approved
by the FDA for PET imaging of PSMA-positive prostate cancer, and [177Lu]Lu-PSMA-617
has also been used for PSMA-targeted therapy [74–77].

68Ga is generally available using a 68Ge/68Ga generator and represents a relatively sim-
ple and convenient method [78] that can yield up to 1.85 GBq [79]. With the development of
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technology, the commercial “ionic” generators have made 68Ga clinically successful [80,81].
68Ga obtained by generators cannot meet the growing demands, however, so the use of
accelerators to obtain 68Ga has aroused scientific interest. Moreover, higher yields of 68Ga
can be obtained with the 68Zn (p, n) 68Ga reaction using a small cyclotron [82,83]. The yield
when using a solid target was reported as 5.032 GBq/µA·h [83]. After 6 h, impurities such
as 66Ga and 67Ga only accounted for 0.51% of the total activity [84]. Compared with using a
generator, this production method does not require radioactive waste treatment. Although
the solid target system is complex, and the separation steps are lengthy, an automated
process was developed to separate the solid target and is simpler to operate than alternative
methods [85]. This nuclear reaction can also take place in a liquid target, with radiochemical
and radionuclidic purities both above 99.9%. However, the yield using a liquid target was
found to be significantly lower (192.5 ± 11.0) MBq/µA·h [86]. This production method
using the liquid target as an alternative method still needs further optimization to improve
the yield.

2.1.3. 64Cu

Upon decay, 64Cu (T1/2 = 12.7 h) emits positrons and electrons that can be utilized
for PET diagnosis and have potential applications in β therapy, thus making 64Cu useful
as a radiopharmaceutical for theranostics. Furthermore, 64Cu and 67Cu (T1/2 = 61.76 h)
can be radiopharmaceuticals for theranostics in order to conduct pre-targeted radioim-
munotherapy [87]. Presently, the FDA has approved [64Cu]Cu-DOTA-TATE to localize
somatostatin receptor-positive neuroendocrine tumors in adult patients. In clinical experi-
ments, [64Cu]Cu-DOTA-TATE has excellent imaging quality and higher detection rates for
lesions [88].

64Cu can be produced by small medical cyclotrons via 64Ni (p, n) 64Cu reaction with
high specific activity. This production method requires an enriched 64Ni (at least 96%) target
to obtain a high yield of 5.89 GBq/µA·h and 64Cu with radionuclidic purity higher than
99% [89]. The disadvantage is that the 64Ni target material has a low isotopic abundance
(0.926%) in nature [90], meaning that the target material is expensive and must be recycled
to improve its cost-effectiveness [91,92]. Alternative methods of 64Cu production can also
be deuteron-zinc reactions such as natZn (d, x) 64Cu, and 66Zn (d, α) 64Cu. Although they
have lower costs, their yields are lower, and high-energy deuterons are required [93]. These
factors limit actual production through such reactions.

The 64Ni (p, n)64Cu reaction is the preferred choice for 64Cu production in clinical
applications. During the past decade, more than 20 countries, including the United States,
Japan, Finland, and China, have developed 64Ni (p, n) 64Cu methods for 64Cu produc-
tion [89,91,94], some of which are shown in Table 3.

Table 3. Facilities that have reported the production of 64Cu [91,94–99].

Facility/Location Nuclear Reaction Irradiation Parameters Yield

Fukui Medical University 64Ni(p, n)64Cu
12 MeV,

(50 ± 3) µA 2-24 GBq in 2 h

The University of Sherbrooke PET
Imaging Centre

64Ni(p, n)64Cu
15 MeV,
18 µA 3.9 GBq in 4 h

IBA 64Ni(p, n)64Cu
10 MeV,
12 µA 5123 MBq in 3 h

Paul Scherrer Institute 64Ni(p, n)64Cu
11 MeV,

40–50 µA Max 8.2 GBq in 4–5 h

Turku PET Centre 64Ni(p, n)64Cu
15.7 MeV,
< 100 µA Max 9.4GBq after purification

Sumitomo HM-20 cyclotron 64Ni(p, n)64Cu
12.5 MeV,

20 µA 7.4 GBq in 5–7 h

NIRS AVF-930 cyclotron 64Ni(p, n)64Cu 24 MeV HH+, 10 eµA 5.2-13GBq in 1–3 h
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2.1.4. 89Zr
89Zr (T1/2 = 78.4 h) is a positron emitter and a new metal PET radioisotope ideal for

immunoimaging [100]. To date, 89Zr-atezolizumab has been studied in renal cell carcinoma
(RCC), but some obstacles were encountered, so further research is needed [101]. 89Zr is
produced by cyclotrons involving the following nuclear reactions:

(1) 89Y (p, n) 89Zr: This reaction only requires low-energy protons (5-15 MeV) and
targets with natural abundance 89Y (100%), which reduces the costs significantly. The
number of interference nuclear reactions is limited; hence, one can obtain a high
specific activity of 89Zr [102–104]. The yield of this (p, n) reaction can be as high as
44 MBq/µA·h under irradiation of 14 MeV protons [105]. Various methods for the
isolation and purification of 89Zr have been proposed, including solvent extraction,
anion exchange chromatography, and weak cation exchange chromatography, which
can obtain 89Zr with high specific activity and radionuclidic purity [106]. The proton
energy from small medical cyclotrons installed in hospitals can meet the requirements
for bombarding the 89Y target, which is the main reason why many hospitals have
developed 89Zr production processes.

(2) 89Y (d, 2n) 89Zr: This reaction uses low-energy deuterons (also 5–15 MeV) and has
the same advantages as the aforementioned production method [102–104], as well as
offering a higher yield of 58MBq/µA·h. However, one must still factor in the avail-
ability of the beam of particles and the costs of these two production methods [105].
Thus, more research is needed.

(3) natSr (α, xn) 89Zr: Besides requiring α beams, if natSr targets are used, abundant
quantities of impurities such as 88Zr and 86Zr can easily be produced. For the moment,
this production method is only theoretically feasible [107].

2.1.5. 124I
124I (T1/2 = 4.176 d) is a PET nuclide that can provide a higher quality diagnostic

image [108]. Currently, 124I is used for the clinical diagnosis of thyroid cancer [109] and
neuroblastoma [110]. 124I and 131I can also be combined as radiopharmaceuticals for
theranostics to treat thyroid cancer [20].

124I is produced via cyclotrons through two different production methods:

(1) 124Te (p, n) 124I: This is the main production method currently employed. Although
this method offers a relatively low production rate, it can achieve high currents and
use enriched targets to improve the overall yield [108]. The average yield of this
reaction is 16 MBq/µA·h, and at the end of bombardment, the impurity content of
123I and 125I only reaches about 1% [111]. Dry distillation is used to extract 124I [112].
On the downside, the enriched 124Te target material costs about 10000$/g, which is
relatively expensive [113].

(2) 124Te (d, 2n) 124I: Has a high production yield of 17.5 MBq/µA·h, however, this
reaction requires a beam of deuterons, which may be difficult to obtain and can result
in impurities such as 125I (reaching about 1.7%) [111,114].

2.1.6. 99Mo/99mTc
99mTc (T1/2 = 6.02 h) emits single γ rays with 0.141 MeV and is mostly used in SPECT;

for the diagnosis of stroke; and to examine bone, myocardium, kidneys, thyroid, salivary
glands, and other organs [61,62]. The proportion of nuclear medicine diagnosis applying
99mTc accounts for approximately 80% of all nuclear medicine procedures, representing
around 40 million examinations worldwide every year [115]. 99mTc is mainly produced
using a 99Mo/99mTc generator. Currently, 99mTc can be produced by cyclotrons through the
following reactions:

(1) 100Mo (p, 2n) 99mTc [116,117]: This is the main production method and is optimal
with a proton energy range of 19–24 MeV and a highly enriched 100Mo target, such
that 98Tc, 97Tc, and other impurities can be reduced to a minimum. According to



Molecules 2022, 27, 5294 7 of 20

the experimental data, with a proton beam energy of 24 MeV, the yield of 99mTc
is about 592 GBq/mA·h [118]. A target irradiated with a 24 MeV proton beam at
500 µA for 12 h yielded 2.59 TBq of 99mTc [119]. GE PETtrace880 machines have
obtained approximately 174 GBq after 6 h [116]. To date, TRIUMF and its partners
have successfully verified the feasibility of using a 24 MeV cyclotron to produce 99mTc
to supply the needs of all applications in Vancouver by developing a complete process
based on 16, 19, and 24 MeV cyclotron production and applied the results to relevant
patents [120]. Automated modules to separate 99mTc from irradiated targets of 100Mo
are under development [121]. However, the shipped distance should be considered
based on the direct product and its half-life [122];

(2) 96Zr (α, n) 99Mo→99mTc [123,124]: This production method can produce 99mTc with
high specific activity. However, it has a low yield, and a beam with a high current is
difficult to obtain, which limits the applicability of this production method.

2.1.7. 123I
123I (T1/2 = 13.2 h) is a γ-ray emitter that can be utilized for SPECT diagnosis. It

has especially been used for the diagnosis of Parkinson’s disease, primary and metastatic
pheochromocytoma, and neuroblastoma. The sensitivity and specificity of this technology
are greater than 90% [125]. It also can be used for diagnosis of the thyroid, brain, and
myocardium.

Presently, there are three common production routes yielding 123I:
(1–2) 124Xe (p, 2n) 123Cs→123Xe→123I and 124Xe (p, pn)123Xe→ 123I: These nuclear

reactions require a medium-energy cyclotron and can obtain with a high radionuclidic
purity. The yield of these reactions simulated by MCNP was 757 MBq/µA·h. Compared
with the experimental data, the maximum fluctuation was about 185 MBq/µA·h [126,127].
However, due to the use of enriched 124Xe targets, these methods are costly [128,129].

(3) 123Te (p, n) 123I: This production method can apply a low-energy cyclotron. When
enriched targets of 123Te (enrichment of 99.3%) were used, an ultrapure nuclide was
obtained, and the yield increased from nearly 18.5 to 37GBq 30 h after EOB (end of the
bombardment) [130–132]. This production method is also costly because of the enriched
target of 123Te. This alternative production method was proven feasible to produce 123I.

2.1.8. 225Ac
225Ac (T1/2 = 9.92 d) has a unique decay chain that can emit four α rays, causing it to

be more effective in destroying tumor cells than other isotopes. Presently, the first use of
[225Ac]Ac-PSMA-I&T in a clinical context was successful in treating advanced metastatic
castration-resistant prostate cancer [133–135]. Additionally, the research of [225Ac]Ac-
DOTAGA-SP for the treatment of malignant gliomas is ongoing [136].

225Ac can be produced with medium-energy protons via the 226Ra (p, 2n) 225Ac re-
action. The yield was only about 2.4 MBq after EOB [137], moreover, its radioactive
inventory is difficult to handle [137–139]. Production of 225Ac applying high-energy
protons (60–140 MeV) through bombarding a 232Th target can produce a high yield of
96 GBq, but this yield requires high intensity and energy [140], which are not readily
available. Currently, the U.S. Department of Energy Isotope Program produces 225Ac using
a spallation-induced reaction with high-energy protons on natural thorium.

2.1.9. 211At
211At (T1/2 = 7.2 h) emits α particles that can be utilized in α therapy [141]. Currently,

211At in the form of [211At]At-PA and [211At]At-ch81C6 has been studied in glioma and
recurrent brain tumors [142,143]. Gothenburg (Sweden) [144] is undergoing a clinical
research using [211At]At-MX35(Fab)2 to treat ovarian cancer patients, which is an alpha-
emitting radionuclide with great clinical potential [145].

211At is commonly produced by a medium-energy cyclotron bombarding a 209Bi target
with α particles, causing a 209Bi (α, 2n) 211At reaction to take place [146,147]. Purifying the
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211At from the target material was either done by a wet extraction or a dry distillation. The
National Institutes of Health (Bethesda, USA) produced a maximum of 1.71 GBq in one
hour, while Sichuan University in China produced a maximum of 200 MBq in 2 h [148].
However, due to the product of toxic impurities such as 210Po, the energy of the α beam
needs to be monitored [148,149].

2.1.10. 67Cu
67Cu (T1/2 = 61.76 h) emits γ rays for SPECT diagnosis and β particles that can

be used for medical treatment. Thus, 67Cu can be used individually or with 64Cu as a
radiopharmaceutical for theranostics. Presently, 67Cu is used for the nuclear medicinal
diagnosis of neuroendocrine tumors and lymphomas [150,151] and the medical treatment
of lymphoma and colon cancer [152].

67Cu is generally produced via the 68Zn (p, 2p) 67Cu reaction. This reaction has high
recovery and needs both a medium-energy cyclotron and a highly enriched target [153–155].
Due to the need for high-energy protons, there are only a few laboratories in the world that
can produce 67Cu [156]. The yield of the integral physical thick target was calculated and is
shown in Figure 3.
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In addition to the medical isotopes mentioned above, 11C [158], 13N [159], 15O [160],
86Y [161], 44Sc [162,163], 201Tl [164], 47Sc [165,166], 32P [167], 67Ga [168], and other medical
isotopes produced by cyclotrons have also been reported.

Cyclotrons are the main accelerator-based drivers of medical isotope production. Their
output is constantly improving due to advancements in targets [169,170], research on new
nuclear reactions [171–173], and accelerator technology developments [174–176], leading
not only to increased yields but also to a reduction in radioactive impurities. Most medical
isotopes currently produced by reactors can also alternatively be produced by cyclotrons,
and the constant improvements to the medical-isotope-producing abilities of cyclotrons
have contributed to the stable supply of medical isotopes.

2.2. Medical Isotopes Produced by Linacs

The charged particles accelerated by a linac pass through the focusing magnetic field
and the linear acceleration field once without deflection [58]. Once ejected, these particles
irradiate their targets to produce medical isotopes. Linac beams are characterized by high
beam intensity and lower energy [59].

In terms of linacs currently used to produce medical isotopes, proton linacs can be
relatively easily employed in medical isotope production. For example, proton linacs
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that produce PET nuclides can reduce the weight of cyclotron magnets, and some high-
energy and high-fluxes proton linacs can produce therapeutic nuclides [177–179]. While
feasibility reports on the ability of electron linacs to produce medical isotopes are common,
the pulsed beams and the cross-sections of linacs can create challenges when used in
practice [41,180–182]. There are other linacs that accelerate other charged particles; however,
these linacs will not be described here.

2.2.1. 18F

PET radioisotopes can be produced with proton linacs. The first compact proton linear
accelerator in the United States for the generation of medical isotopes produces 18F for a
local hospital [183]. Additionally, Hitachi, Ltd. and AccSys Technology, Inc. (Hitachi’s
subsidiary company) also developed a proton linac to produce PET nuclides. After bom-
bardment for one hour, 23.5 GBq 18F was produced, indicating that batch production of 18F
could be achieved [177].

18F (T1/2 = 109.8 min) can also be produced by electron linacs through a photonu-
clear reaction 19F (γ, n) 18F, as well as other commonly used PET radioisotopes such as
11C (T1/2 = 20.38 min), 13N (T1/2 = 9.96 min), and 15O (T1/2 = 122 s). When using a pho-
tonuclear reaction to produce these PET radioisotopes, the yields are generally lower since
the cross-section is 1–2 orders of magnitude lower than that under a proton reaction. How-
ever, photonuclear reactions can use a natural target of 19F, thus providing lower costs
compared to proton reactions [177]. Many feasibility reports on producing PET nuclides via
photonuclear reactions have been published, but actual production still needs further study.

2.2.2. 99Mo
99Mo (T1/2 = 66 h) decays into 99mTc (T1/2 = 6.02 h). An electron linac can be utilized

to produce 99Mo via the photonuclear reaction 100Mo (γ, n) 99Mo [184–186]. It was re-
ported that the yield of 99Mo obtained after 6.5 days of continuous bombardment of a 6 g
high-purity 100Mo target with 36 MeV electrons was 458.8 GBq (average beam power of ~8
kW) [187]. The cost of this production method can be reduced by using a natural target
and, although this method will produce the isotopes of Mo, isotopes of Tc will not be pro-
duced, making it easy to separate 99Mo via chemical difference or evaporation temperature
difference [188]. NorthStar and its partners have studied this production method and listed
it as the main 99Mo supply option in their long-term plans [187]. Canadian Light Source
(CLS) and TRIUMF also conducted feasibility research on this production method and plan
to put it into production [189,190].

In addition to the medical isotopes mentioned above, the production of 67Cu [191–193],
64Cu [194], 225Ac [195,196], 68Ga [197], 111In [181], 177Lu [198], 47Sc [199], and other medical
isotopes through linacs have been reported.

Overall, linacs have some disadvantages in terms of their design and yields [41,182,
200,201]. As a backup method for the production of medical isotopes, linacs still require
further research.

2.3. Medical Isotopes Produced by Neutron Generators

A neutron generator is an accelerator-based neutron source device that is capable of
delivering neutrons through nuclear fusion reactions. These neutrons will, in turn, irradiate
the target to produce medical isotopes. The nuclear fusion reactions commonly used to
produce neutrons are shown in Table 4.

Table 4. Fusion reactions that produce neutrons [202–206].

Reaction Energy [MeV] The Suitable Reaction of Isotope Production

D-D reaction 2–3 (n, γ)
D-T reaction 14–15 (n, 2n) (n, p)

D-7Li reaction 10&13 (n, 2n) (n, p)
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2.3.1. 99Mo/99mTc
99mTc (T1/2 = 6.02h) can be produced by neutron generators [207,208]. After neutron

moderation, neutrons with a specific energy can be obtained and then used to produce
99mTc via the nuclear reaction of 235U (n, f) 99Mo→99mTc. The advantages of this production
method include both ease of supervision and overall safety, but the yield will be 1–2 orders
of magnitude lower than that produced by a reactor [209]. SHINE and Phoenix Laboratory
used a DT neutron generator to bombard UO2SO4 to produce 99Mo. After irradiation of a
5 L UO2SO4 solution for about 20 h, the yield of 99Mo was 51.8 GBq [210]. The disadvantage
of this production method is that a long-term, stable, and high-intensity beam is difficult to
achieve [211].

In addition, 99Mo can be produced via the nuclear reactions of 98Mo (n, γ) 99Mo and
100Mo (n, 2n) 99Mo, both of which use Mo targets instead of U targets. Additionally, suffi-
cient activity of 99Mo can be produced in principle [207,208,212]. The yields of these two
nuclear reactions can be increased by improving the fluxes of neutrons and the irradiation
time and/or using highly enriched targets, in addition to other methods [213]. However,
99Mo from an irradiated 98Mo/100Mo target is a carrier-added product with a low specific
activity. The biggest challenge for this method is how to develop a new type of 99Mo/99mTc
generator that meets medical requirements.

2.3.2. 67Cu
67Cu (T1/2 = 61.76 h) is generally produced by cyclotrons. Kin proposed using neutrons

to produce 67Cu [212]. Presently, using neutron generators via the D-T reaction in the form
of 67Zn (n, p) 67Cu can produce 67Cu. Due to the developments of neutron generators,
67Cu can be produced in the hospital without the need to transport the isotope over long
distances. This production method does not produce a large number of impurities [156,214],
and the activity can reach hundreds to thousands of MBq [212]. However, when dealing
with radioactive isotopes with GBq, the radiation facility will result in higher costs [212].

In addition to the medical isotopes mentioned above, 89Sr [215–217], 64Cu [218],
47Sc [219], 132Xe [220], 225Ac [212], and other medical isotopes produced by neutron gener-
ators have also been reported.

As a neutron source, a neutron generator is essential to produce neutron-rich medical
isotopes. Although such generators have the advantages of low cost and target reusabil-
ity [212,221], providing continuously high fluxes of neutrons and engaging in separation-
extraction of the medical isotopes remain challenging topics [221]. Despite these challenges,
generators are presently regarded as a viable alternative to the reactor-production method.

3. The Status of Medical Isotope Production via Accelerators in China
3.1. Available Accelerators for Medical Isotope Production in China

Currently, there are about 160 PET small medical cyclotrons for the routine production
of 11C, 18F, and other medical isotopes to meet clinical demands in China [222]. Addi-
tionally, there are several medium- and high-energy accelerators used for medical isotope
production in China.

The Chinese Institute of Atomic Energy (CIAE) and Shanghai Ansheng Kexing Com-
pany each have a C-30 cyclotron with adjustable proton energy of 15.5–30 MeV and beam
currents up to 350 µA. These can be used to produce medical isotopes such as 11C, 18F,
64Cu, 68Ge, 89Zr, 123I, 124I, and 201Tl. CIAE has a 100 MeV proton cyclotron (C-100) with a
beam current up to 200 µA capable of producing 67Cu, 225Ac, and other medical isotopes
of interest.

The Sichuan University owns a cyclotron capable of delivering beams of protons, as
well as alpha and deuteron particles (p–26 MeV and α–30 MeV).

The Chinese Academy of Sciences Institute of Modern Physics built a 25 MeV super-
conducting proton linear accelerator with an intensity in the order of milliamps. At present,
the linac can accelerate various beams such as proton beams, 3He2+ beams, and 4He2+

beams. The energy of 3He2+ beams can reach 36 MeV at an intensity of 200 µA, while the
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energy of 4He2+ beams can reach 32 MeV with a current of 100 µA. The accelerator can
meet the needs of medical isotope production and produce various radioisotopes such as
99Mo/99mTc, 117mSn, 211At, 55Fe, 73As, 225Ac, 109Cd, 88Y, and 75Se.

Lanzhou University has been instrumental in the development of advanced ion source
selection, ion beam extraction, and acceleration system design, as well as target system
design. Additionally, the university independently built a series of neutron generators
based on D-D and D-T reactions [223].

3.2. The Status of Medical Isotope Production via Accelerators

There is a solid research foundation for accelerator-based medical isotope production
in China. In the 1980s, Sichuan University and others successfully developed production
technology for medical isotopes such as 211At, 123I, 111In, and 201Tl by relying on domestic
cyclotrons and a CS-30 cyclotron [224]. Since the 1990s, CIAE has produced medical
isotopes such as 18F, 111In, and 201Tl using a C-30 cyclotron.

In the last two decades, with the popularization and rapid development of domestic
nuclear medicine, the amount of PET equipment increased to 427 by 2019. Today, 117 hos-
pitals equipped with small medical cyclotrons routinely produce 18F to meet clinical needs,
with an annual consumption of more than 1850 TBq. Additionally, some emerging isotopes
such as 64Cu, 89Zr, and 123/124I have been rapidly developed for medical applications. In
2007, CIAE cooperated with Atom Hitech to carry out research on 123I production using
enriched 124Xe gas at 111 GBq for each batch with a C-30 cyclotron. In 2012, Atom Hitech
produced carrier-free 64Cu with enriched 64Ni at 37–74 GBq for each batch based on a C-30
cyclotron. In 2016, Sichuan University bombarded an 89Y target with 13 MeV protons and
obtained 89Zr with a radionuclidic purity of more than 99% [16]. However, due to the
limited availability of high-energy particle accelerators for the production of therapeutic
nuclides such as 67Cu, 225Ac, and 223Ra, China is significantly lagging behind the advanced
international levels of development. In 2021, for the first time, CIAE obtained around
22.2 MBq of 225Ac with radionuclidic purity greater than 99% using a C-100 cyclotron.

4. Summary

Presently, cyclotrons remain the primary facilities for accelerator-based medical iso-
tope production, although linacs and neutron generators are rapidly becoming a viable
alternative.

Cyclotrons with adjustable energy ranges or medium energy can produce various
kinds of medical isotopes and can cover most radiopharmaceutical production needs in
a region [59]. Yield and purity improvements in medical isotopes and the overall cost of
cyclotron production have led researchers to explore further possibilities, including proton
linacs, which have significant advantages in providing proton beams in the order of tens to
hundreds of MeV [179]. These linacs can be developed in research institutes or laboratories
conducting scientific experiments and physical research at the same time. For electron
linacs, the cross-section of photonuclear interactions is relatively low, which restricts their
practical applications. Other factors, such as impurity products and economic costs, also
play major roles when evaluating production techniques and methodologies. Attempts to
produce medical isotopes through neutron generators are promising and could theoretically
yield the medical isotopes that are currently produced by reactors. However, improving
the neutron flux rate remains a major consideration.

As medical isotopes produced by reactors often face supply shortages, interest in the
use of accelerator-based techniques to produce medical isotopes will increase. We hope to
develop an accelerator with the right energy, right beam types, right location, and good
shielding facilities, which will play an important role in the supply of medical isotopes.
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