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Abstract: The deep eutectic solvent (DES)-based biocatalysis of L-menthol acylation was designed 
for the production of fatty acid L-menthyl ester (FME) using fatty acid methyl ester (FAME). The 
biocatalytic reaction was assisted by a lipase enzyme in the DES reaction medium. ւՒ-menthol and 
fatty acids (e.g., CA—caprylic acid; OA—oleic acid; LiA—linoleic acid; and LnA—linolenic acid) 
were combined in the binary mixture of DES. In this way, the DES provided a nonpolar environment 
for requested homogeneity of a biocatalytic system with reduced impact on the environment. The 
screening of lipase enzyme demonstrated better performance of immobilized lipase compared with 
powdered lipase. The performance of the biocatalytic system was evaluated for different DES com-
positions (type and concentration of the acid component). L-menthol:CA = 73:27 molar ratio allowed 
it to reach a maximum conversion of 95% methyl lauric ester (MLE) using a NV (Candida antarctica 
lipase B immobilized on acrylic resin) lipase biocatalyst. The recyclability of biocatalysts under op-
timum conditions of the system was also evaluated (more than 80% recovered biocatalytic activity 
was achieved for the tested biocatalysts after five reaction cycles). DES mixtures were characterized 
based on differential scanning calorimetry (DSC) and refractive index analysis. 

Keywords: biocatalysis; DES; L-menthol; fatty acid; L-menthyl ester (FME); immobilized lipase 
 

1. Introduction 
Menthol (p-menthan-3-ol) is a poorly water-soluble terpene alcohol produced from 

peppermint oils of Mentha piperita and Mentha arvensis. It can be found as eight optically 
active isomers characterized by different organoleptic properties [1,2]. L-menthol is the 
only isomer with refreshing coolness and specific peppermint flavor [3] widely used as a 
component of various kinds of foods; an ingredient of cosmetics; and an analgesic, anti-
septic, and local anesthetic for pharmaceutics [4,5]. Furthermore, esters of L-menthol with 
fatty acids (fatty acid L-menthyl esters, FME) are known to moderate the strong flavor and 
to release the fragrance gradually beside the basic properties preserved from the precur-
sors (fatty acids and L-menthol) [6]. Additionally, anti-cancer activity [7], decreasing body 
fat content [8], and suppressing the development of hypertension [9] are important phys-
iological activities offered by FME. However, the developed industrial processes and the 
chemicals used for FME production have a negative impact on the environment [5]. In 
this context, green strategies for FME synthesis are requested. Enzymatic transformation 
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-menthol and
fatty acids (e.g., CA—caprylic acid; OA—oleic acid; LiA—linoleic acid; and LnA—linolenic acid)
were combined in the binary mixture of DES. In this way, the DES provided a nonpolar environment
for requested homogeneity of a biocatalytic system with reduced impact on the environment. The
screening of lipase enzyme demonstrated better performance of immobilized lipase compared with
powdered lipase. The performance of the biocatalytic system was evaluated for different DES
compositions (type and concentration of the acid component). L-menthol:CA = 73:27 molar ratio
allowed it to reach a maximum conversion of 95% methyl lauric ester (MLE) using a NV (Candida
antarctica lipase B immobilized on acrylic resin) lipase biocatalyst. The recyclability of biocatalysts
under optimum conditions of the system was also evaluated (more than 80% recovered biocatalytic
activity was achieved for the tested biocatalysts after five reaction cycles). DES mixtures were
characterized based on differential scanning calorimetry (DSC) and refractive index analysis.

Keywords: biocatalysis; DES; L-menthol; fatty acid; L-menthyl ester (FME); immobilized lipase

1. Introduction

Menthol (p-menthan-3-ol) is a poorly water-soluble terpene alcohol produced from
peppermint oils of Mentha piperita and Mentha arvensis. It can be found as eight optically
active isomers characterized by different organoleptic properties [1,2]. L-menthol is the only
isomer with refreshing coolness and specific peppermint flavor [3] widely used as a compo-
nent of various kinds of foods; an ingredient of cosmetics; and an analgesic, antiseptic, and
local anesthetic for pharmaceutics [4,5]. Furthermore, esters of L-menthol with fatty acids
(fatty acid L-menthyl esters, FME) are known to moderate the strong flavor and to release
the fragrance gradually beside the basic properties preserved from the precursors (fatty
acids and L-menthol) [6]. Additionally, anti-cancer activity [7], decreasing body fat con-
tent [8], and suppressing the development of hypertension [9] are important physiological
activities offered by FME. However, the developed industrial processes and the chemicals
used for FME production have a negative impact on the environment [5]. In this context,
green strategies for FME synthesis are requested. Enzymatic transformation (biocatalysis)
is an answer to this issue due to its sustainability and low environmental impact.

Biocatalysis as an enzymatic acylation (esterification/transesterification) process for
L-menthol derivatization is an efficient alternative, especially considering the green features
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of the transformation process [10]. Usually, biocatalysis is associated with the aqueous
reaction phase required by the activity/stability of the enzyme. However, the low po-
larity of L-menthol and its derivatives limits their involvement in biocatalytic systems.
Therefore, the reaction medium is an essential task of the biocatalytic process, particularly
for L-menthol derivatization. To overcome this drawback, biocatalytic transformation of
L-menthol has been performed in non-conventional reaction media such as water–oil emul-
sion [11], organic solvents [12], ionic liquids [5], and supercritical fluids [13]. Therefore, H.
Stamatis and coworkers studied the esterification of lauric acid by L-menthol, catalyzed
by Penicillium simplicissimum lipase in water/bis-(2-ethylhexyl)sulfosuccinate sodium salt
(AOT)/isooctane microemulsions [11]. It was noticed that the microemulsions assisted
in reversing the direction of lipase activity favoring synthetic reactions due to their low
water content. A biocatalytic system based on the L-menthol esterification with C14/C16
fatty acids catalyzed by lipase from Candida rugosa has been successfully developed in
dry isooctane [12]. Additionally, the effect of the low percentage of ionic liquids (e.g.,
5% [BMIM][TFSI] and 1% [BMIM][BF4]) in organic MeTHF was investigated for the lipase-
catalyzed kinetic resolution of rac-menthol [5]. Increased enantioselectivity was noticed for
both cases. However, the lipase activity decreased.

In the last decade, a new class of non-conventional solvents called deep eutectic sol-
vents (DESs) has been tested as reaction media in biocatalysis [14,15]. DES is a system
prepared by combining Lewis–Bronsted acids and bases with anionic and cationic com-
pounds, respectively. The complexation of quaternary ammonium salts with hydrogen
bond donor species (e.g., amides, amines, alcohols, etc.) allows the generation of DES
systems. The effect of the interaction between DES components is mostly a decrease in
the freezing point of the mixture compared with the components [16]. The DES mixture is
usually liquid around room temperature, and can be used as solvents for the extractions or
reaction media. The DES has gained attention as solvent media, especially for biocatalysis,
due to several advantages compared with other non-conventional solvents such as ionic liq-
uids (e.g., less toxicity, biocompatibility, and biodegradability) [17]. Therefore, DES-based
biocatalysis has been recently reported in the literature [18,19].

The DES mixture of menthol and carboxylic acids has been described several times [4,20].
D/L-menthol was combined with pyruvic acid/acetic acid/(-)-lactic acid/lauric acid and
used further for the extraction of caffeine, tryptophan, isophthalic acid, and vanillin [17],
while the combination of D/L-menthol with caprylic, capric, and lauric acids allowed
the separation of neonicotinoids from diluted aqueous solutions [21]. In both cases, de-
scribed DESs are stable systems in contact with water, characterized by lower vapor pressure
and viscosity compared with the corresponding components, and efficient hydrophobicity
compatible with nonpolar systems [22]. In the last decade, menthol-based DES was used
as a source of substrate and solvent for the biocatalytic production of L-menthol deriva-
tives [18,19]. M. Hummer et al. reported the esterification reactions of L-menthol with
fatty acids (e.g., octanoic acid, decanoic acid, and lauric acid) catalyzed by lipase enzyme
from Candida rugosa [18]. L-menthol and fatty acid were mixed previously under special
conditions to provide the DES medium of the biocatalytic reaction. However, L-menthol
conversion cannot reach more than 71% even after a long reaction time of 7 days. The
optimization of the biocatalytic process focused on the thermodynamic water activity
(aw) identified as a key parameter affecting the esterification, which allowed the process
performance to be improved. Therefore, a maximum conversion of 95% was achieved for
aw = 0.55 after a 24 h reaction time [19]. In the same period, A. Paiva’s group has developed
DES-based biocatalysis for rac-menthol and lauric acid [4]. Lipase from Candida rugosa
assisted the biocatalytic process, allowing it to reach 44% conversion of the fatty acid and
62% enantiomeric excess of the product.

In this study, we proposed a new design of the biocatalytic system for FME production
based on the acylation of L-menthol with fatty acid methyl esters (FAMEs) assisted by
lipase biocatalyst in a DES reaction medium. Binary mixtures of L-menthol with fatty acids
were used as a DES alternative providing “green” features of the proposed system. It has



Molecules 2022, 27, 5273 3 of 11

been mentioned that L-menthol played the double role of a substrate for the biocatalytic
acylation and also a DES component. The screening of lipase enzymes allowed us to notice
the performance of the immobilized lipase compared with powdered lipase. L-menthol
and different fatty acids (e.g., CA—caprylic acid, OA—oleic acid, LiA—linoleic acid, and
LnA—linolenic acid) were tested to evaluate the effects of DES composition (the type
and concentration of the acid component) on the biocatalytic system. Furthermore, DES
characterization was performed using DSC and refractive index analysis. The effect of
the FAME structure on the efficiency of the biocatalytic system was investigated in order
to optimize the transesterification reaction. Biocatalyst recyclability was evaluated under
optimum conditions for successive reaction cycles without washing steps.

From our knowledge, it is the first time that the biocatalytic acylation of L-menthol
with FAME in DES of L-menthol and fatty acid composition has been reported. Additionally,
the variety of biocatalyst designs was enriched with the immobilized lipase which exhibited
good catalytic properties in the developed system, offering new biocatalyst alternatives for
FME production. Currently, only Candida rugosa lipase is reported in the literature as the
biocatalyst for DES-based FME production [18,19].

2. Results and Discussion
2.1. Lipase Screening for L-menthol Acylation

Nine powdered lipases, Rn, Ro, Rm, CALB, Cr, Pc, Pf, Pp, and An, and four immo-
bilized lipases, TE, RN, TL, and NV, were considered for the acylation of L-menthol with
MLE (transesterification reaction) in DES with M:CA (I) composition (Table 1). L-menthol
played the double role of the substrate and the DES component. The experimental results
are presented in Figure 1A,B. For powdered lipases (Figure 1A), the process conversion
was situated in the range 17–65%. The CALB lipase allowed 65% transformation of MLE to
be reached, while minimum conversion (17%) was achieved by Rn and Cr. Additionally,
immobilized lipase (Figure 1B) performed the MLE transesterification with higher conver-
sion compared with powdered lipase (i.e., 70–95% conversion range determined for the
immobilized lipase). Therefore, MLE conversions of 65% for CALB and 96% for NV were
determined for lipase B from Candida antarctica. Furthermore, MLE conversions of 46% for
Rm and 93% for RN were evaluated for lipase from Rhizomucor miehei. Similar catalytic
behavior of lipase after immobilization was previously reported in the literature [23–25].
The preservation of this behavior for the DES reaction medium is noticeable in this case.
Thus, immobilized lipase offered a good perspective as a biocatalyst for DES-based enzy-
matic acylation of L-menthol. Consequently, all four immobilized lipases were selected for
further experiments to investigate the DES-based biocatalytic system.

Table 1. DES composition based on L-menthol and fatty acid components.

Molar Ratio (%) of Acceptor vs. Donor

M:CA (I) 1 73:27
M:CA (II) 1 65:35
M:CA (III) 1 50:50
M:OA (I) 2 83:17
M:OA (II) 2 62:38
M:OA (III) 2 50:50

M:LiA 3 83:17
M:LnA 4 83:17

DES donor: 1 CA, 2 OA, 3 LiA, and 4 LnA. L-menthol was the DES acceptor in all the cases.

2.2. Characterization of DES(s) Composition

Different binary mixtures of L-menthol and fatty acids (CA—C8:0, OA—C18:1, LiA—
C18:2, and LnA—C18:3) were prepared based on the DES approach reported in the litera-
ture [18,20]. For L-menthol:CA/OA/LnA, the acid component was varied in the prepared
mixtures. The composition of prepared mixtures is indicated in Table 1.
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Figure 1. Lipase screening for L-menthol acylation with MLE in M:CA (I) DES medium us-
ing (A) powdered and (B) immobilized biocatalysists. Experimental conditions: 1.58 mM MLE,
L-menthol:MLE = 3:1 molar ratio, 1 mg/mL lipase biocatalyst in M:CA (I) reaction medium, 40 ◦C tem-
perature, 1000 rpm shaking, and 24 h reaction time. The values of the error bars were calculated using
triplicate measurements.

All of these mixtures were characterized based on DSC analysis (Figure S1 in Sup-
porting Information). Transition temperature(s) (Tmax/◦C) and enthalpy (∆H/J g−1) were
calculated correspondingly (Table S1 in Supporting Information). The DSC curve indicated
that the melting temperature for L-menthol was around 44 ◦C, which is in accordance with
reported data in the literature [26].

As a general remark, the temperature of the melting point(s) and also the enthalpy
of the prepared mixtures were shifted to lower values compared with those of the pure
components, indicating the formation of the eutectic mixture [27]. These are strong evi-
dence of DES achievement by hydrogen bonds established between L-menthol as the acceptor
component and fatty acid as the donor component [28]. M:CA (III) is the single DES solvent
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exhibiting only one peak of thermal effect, which demonstrates the high level of homogene-
ity. The enthalpy of the DES(s) decreased in the order M:CA > M:OA > M:LiA > M:LnA
(Table S1 in Supporting Information). This behavior is based on the intensity of the
L-menthol interaction with fatty acids affected by the structure of fatty acids. Short carbon
chains of fatty acid favored the interaction with L-menthol (82.4 and 33 J·g−1 enthalpy of
M:CA (I) and M:OA (I), respectively). Additionally, unsaturated chains of the fatty acid
allowed stronger interactions with L-menthol than saturated ones (33 and 63 J·g−1 enthalpy
of M:OA (I) and M:LiA, respectively). For different L-menthol abundances in the DES
composition (M:CA (I-III) and M:OA (I-III)), mixture properties were changed randomly
due to the pure homogeneity of DES when L-menthol content increased. The conclusions
are also supported by the literature [20].

Additionally, the refractive index of pure compounds and their mixtures was deter-
mined at 25 ◦C. The data are presented in Table S2 (Supporting Information). It is known
that the refractive index depends on the type of hydrogen bond donor in DES [29]. The
refractive index of the DESs increased in the order M:CA < M:OA < M:LiA < M:LnA
(Table S2 in Supporting Information). In the case of a binary mixture (DESs) of M:CA(I-III),
the refractive index is higher than in the case of the pure components.

2.3. Influence of DES Composition on the Biocatalytic System

Different DES compositions, based on the type and concentration of fatty acids, were
tested for the acylation of L-menthol with MLE. The obtained results are inserted in
Figure 2A,B. M:CA (I) offered the best reaction phase for the biocatalytic transformation
(Figure 2A) with conversion >70% for all of the tested biocatalysts (TE, RN, TL, and NV). A
maximum value of 95% conversion was achieved for the NV biocatalyst. The low perfor-
mance of the biocatalytic system was noticed for the other DES compositions (maximum
values of 89, 75, and 71% conversion for NV in M:OA (I), M:LiA, and M:LnA, respectively).

The experimental results demonstrated that the catalytic interaction of L-menthol with
MLE in the acylation process was influenced by the acid (donor) type of DES composition.
Therefore, CA favored the biocatalytic acylation of L-menthol, while LnA exhibited one
of the intense negative effects on it. This can be explained mostly based on the -menthol
solubility and also the preservation of biocatalyst activity in DES. When L-menthol was
proper adapted to the reaction medium (homogeneous DES), high performance in the
biocatalytic system was obtained. The conclusion is also supported by the results of DSC
analysis (Section 2.2. Characterization of DES(s) composition). Regarding biocatalyst behavior,
the NV biocatalyst exhibited better activity in the biocatalytic system compared with TE,
RN, and TL for all the tested DES(s). In the literature, NV was also reported with high
catalytic activity for the acylation reaction based on the transesterification mechanism in
the conventional solvent medium [30]. It seems that NV performance is preserved in DES
with L-menthol:fatty acid composition.

Variations in the L-menthol:CA ratio were also considered and the performance of NV
and RN biocatalysts was determined in the proposed system (Figure 2B). Slight differences
were observed for different DES compositions. The system performance decreased together
with the component ratio. In other words, high L-menthol content favored the performance
of the acylation process. DES M:CA (I) was selected for further experiments.

Negative control samples were also considered. The experimental results are inserted
in Table S3 from Supporting Information. Low conversion of fatty acids was achieved,
demonstrating that the immobilized lipase exhibited negligible catalytic activity for the
esterification of CA/OA/LiA/LnA with L-menthol.

2.4. Testing the Effect of FAME on FME Production

Three different FAMEs (MLE, MPE, and MOE) were considered for the developed
biocatalytic system. The acylation process was tested for all the immobilized lipases in DES
with composition M:CA (I). The corresponding experimental data are shown in Figure 3.
MLE was better recognized by the lipase biocatalyst compared with MPE and MOE. All
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the immobilized lipases exhibited high affinity for the short carbon chain. As an example,
RN converted 93% of MLE and only 45% and 57% of MPE and MOE, respectively. This
behavior was noticed for all the tested biocatalysts. The highest performance of the system
was achieved for the NV biocatalyst with the MLE acylation reagent (95% conversion).
Based on this, the optimum system parameters were set up as the MLE acylation reagent,
the NV biocatalyst, and the M:CA (I) reaction medium, and 40 ◦C temperature, 1000 rpm
shaking, and a 24 h reaction time were established as experimental conditions.
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Figure 2. Evaluation of the performance of the biocatalytic system for different DES compositions
((A)—different H donor of DES and (B)—different concentration of the H donor in DES). Experi-
mental conditions: 1.58 mM MLE, L-menthol:MLE = 3:1 molar ratio, 1 mg/mL lipase biocatalyst
in DES reaction medium, 40 ◦C temperature, 1000 rpm shaking, and 24 h reaction time. Triplicate
measurements of the samples with maximum 25% RSD.
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Figure 3. Influence of the FAME structure on the developed biocatalytic system. Experimental
conditions: 1.58 mM FAME, L-menthol:FAME = 3:1 molar ratio, 1 mg/mL lipase biocatalyst in
M:CA (I) reaction medium, 40 ◦C temperature, 1000 rpm shaking, and 24 h reaction time. Triplicate
measurements of the samples with maximum 18% RSD.

2.5. Stability of the Biocatalyst under Optimal System Conditions

The working stability of the biocatalyst was tested for all of the immobilized enzymes
(TE, RN, TL, and NV). The biocatalysts were used for five successive reaction cycles without
any intermediary washing steps. The recovered biocatalyst activity was calculated and
related to the initial catalytic activity (Figure 4). RN and NV exhibited the best stability
under the experimental conditions. The catalytic activity of RN/NV lost less than 20% after
five reaction cycles. Oppositely, TL exhibited low stability (only 16% recovered catalytic
activity was noticed after five reaction cycles).
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Figure 4. Working stability of the biocatalyst under optimum experimental conditions (1.58 mM MLE,
L-menthol:MLE = 3:1 molar ratio, 1 mg/mL lipase biocatalyst in M:CA (I) reaction medium, 40 ◦C
temperature, 1000 rpm shaking and 24 h reaction time). Experimental conditions of the determination
of biocatalyst activity: 2.5 mM p-NPB dissolved in ethanol, 1:4 v/v protein extract, and 32.5 mM
Tris-HCl (pH 7.2) was incubated for 30 min at 37 ◦C, and the reaction was terminated by addition of
20 mM Na2CO3 blocking solution (10 min incubation). Triplicate measurements of the samples with
maximum 23% RSD.
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3. Experimental
3.1. Chemicals and Solutions

Lipase from Rhizopus niveus (Rn), Rhizopus oryzae (Ro), Rhizomucor miehei (Rm), Can-
dida rugosa (Cr), Aspergillus niger (An), Pseudomonas fluorescens (Pf), Pseudomonas cepacia
(Pc), Porcine pancreas (Pp), and lipase B from Candida antarctica (CALB) (Sigma-Aldrich,
Sofia, Bulgaria) were used as powder dispersed in the DES medium to catalyze the acy-
lation (transesterification) process. Novozym 435 (Ca lipase B immobilized on acrylic
resin, NV), Lipozyme TL (Thermomyces lanuginosus lipase immobilized on silica gel car-
rier) (TL), Lipozyme RM (Rm lipase immobilized on resin carrier) (RN) from commercial
sources (Novozymes A/S, Bagsvaerd, Denmark), and Transenzyme (lipase from Geobacillus
stearothermophilus immobilized in sol–gel matrices) [31] (TE) prepared in the lab of Prof.
A. Fishman (Technion–Israel Institute of Technology, Haifa, Israel) were the immobilized
biocatalysts tested in the FME system. L-menthol was provided by our partner Natural
Ingredients SA (Fagaras, Romania) in the frame of the PED376/2020 research project. Fatty
acids (CA—C8:0, OA—C18:1, LiA—C18:2, and LnA—C18:3) and FAMEs (methyl laurate
ester—MLE, methyl palmitate ester—MPE, and methyl oleate ester—MOE) were purchased
from Sigma-Aldrich (Sofia, Bulgaria) and the Merck (Bucharest, Romania) company, respec-
tively. For HPLC analysis, acetonitrile (ACN) and acetone (Act) of analytical purity grade
were purchased from the Sigma-Aldrich company (Sofia, Bulgaria).

3.2. DES Preparation

The DESs, as a binary mixture of L-menthol and fatty acids, such as L-menthol:caprylic
acid (M:CA I, II and III), L-menthol:oleic acid (M:OA I and II), L-menthol:linoleic acid
(M:LiA), and L-menthol:linolenic acid (M:LnA), were prepared by adding the components
into glass vessels at a certain molar ratio, as indicated in Table 1. The mixtures were
incubated at 40 ◦C under stirring at 250 rpm overnight until the homogeneous phase was
obtained, and then cooled to room temperature. [20].

3.3. DES Characterization

The thermal behavior of DESs was investigated via differential scanning calorimetry
(DSC) using a power-compensated calorimeter from PerkinElmer, USA (model 8500) with
a cooling system (Intracooler III). Sealed aluminum pans were used for the DES samples
and standards, ideally for volatile samples, while an empty pan was used as a reference.
Calibration of the temperature and the heat flow rate scale was performed by measuring
high-purity indium (Tfus = 156.7 ◦C and ∆Hfus = 28.5 J g−1). The DSC curves of the
studied compounds were recorded under nitrogen (> 99.996% purity) with a flow rate of
20 mL min−1. Samples were scanned from 25 to −30 ◦C at 10 ◦C min−1, held at −30 ◦C
for 2 min before heating to 60 ◦C at 10 ◦C min−1. The thermal effects (the temperature of
crystallization, the melting point, and the enthalpy of the system) were calculated using
Pyris Software (V 11, PerkinElmer, Waltham, MA, USA) for Windows.

The refractive indices of prepared DESs were carried out at sodium D-line at
λD = 589.3 nm, using a digital automatic refractometer (Anton Paar RXA 170) with accuracy
of ± 0.01 K for temperature and ± 0.000001 for the refractive index. The refractometer
was calibrated using double distilled water. An average of triplicate measurements was
considered for each sample [32]. Certified reference liquid (CRM) tetrachloroethylene
was used for the calibration. Further, the system checked out with deionized water at
atmospheric pressure. The refractive index measured for water (nD

20 = 1.33302 ± 0.00003)
was similar with the value reported in the literature (nD

25 = 1.33249) [33].

3.4. Biocatalytic Approach for L-menthol Acylation

A mass of 1 g DES was weighed into a 1.5 mL reaction tube where 1 mg of lipase and
amounts of FAME were added to prepare a reaction mixture with L-menthol:FAME = 3:1 molar
ratio. A negative control was prepared for each DES-containing enzyme in the absence
of FAME. The reaction mixture was incubated for 24 h at 40 ◦C under stirring conditions
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(1000 rpm). After the reaction, the sample was centrifugated and the supernatant was
diluted 1:10 with a solution of ACN:Act = 41:59, v/v (mobile phase of HPLC analysis), after
filtration (0.2 µm pore size).

HPLC analysis based on DAD and RID detection (HPLC-DAD/RID) was performed
for the determination of sample composition after the biocatalytic acylation of L-menthol.
The modular HPLC system (Agilent 1260) equipped with C18 column (Europhore 100-5,
L × d = 250 × 4 mm, 5 µm particles size) was used for the analysis. The HPLC-DAD/RID
was set up for a 25 µL sample volume, a 1 mL/min flow rate of the mobile phase
(ACN:Act = 41:59, v/v), and a temperature of 25 ◦C in the column thermostat. Detection
was performed with DAD at 210 nm and RID at 40 ◦C. The identification and quantitative
determination of the sample components (L-menthol, fatty acid, FAME and FME) were
achieved based on the calibration curve of corresponding standards. Based on the HPLC
analysis results, FAME conversion was calculated according to the equation inserted bellow.
FMEs (menthyl laurate, menthyl palmitate, and menthyl oleate) synthesized and character-
ized in our lab (SI) were used as reference materials for the identification of the L-menthol
esters in the chromatograms.

C (%) =
FAME mass after reaction

initial mass of FAME
× 100 (1)

3.5. Evaluation of the Biocatalyst Recyclability

Immobilized lipases (TE, RN, TL and NV) were tested for five successive reaction
cycles in the developed biocatalytic system. The following experimental conditions were
set up: 1.58 mM of MLE, L-menthol:MLE = 3:1 molar ratio, 1 mg/mL of TE/RN/TL/NV in
the M:CA (I) reaction medium, 40 ◦C temperature, 1000 rpm shaking, and a 24 h reaction
time. After each reaction cycle, the biocatalyst was recovered from the reaction phase
and its catalytic activity was determined using the p-NPB method [34]. The recovered
biocatalyst activity was calculated as the percentual value of the ratio between catalytic
activity after the reaction cycle and the initial catalytic activity.

4. Conclusions

DES-based biocatalysis for FME production was developed using L-menthol acyla-
tion with FAME assisted by a lipase enzyme. The DES reaction medium was used with
L-menthol as the donor and fatty acids as the acceptor components, providing proper
homogeneity to the biocatalytic system. Immobilized lipase exhibited better catalytic per-
formance compared with powdered lipase in the proposed system. In this way, a new
biocatalyst for FME production using DES-based biocatalysis was discovered, since only
lipase from Candida rugosa has been reported in the current literature [18,19]. Under the
optimal experimental conditions, 95% MLE was converted using NV biocatalyst and M:CA
(I) DES at 40 ◦C temperature, 1000 rpm shaking, and a 24 h reaction time. Additionally,
the biocatalyst can be used over at least five consecutive reaction cycles by preserving the
catalytic activity (recovered catalytic activity >80%).

The developed system has several advantages compared with the literature-reported
alternatives for FME production: (i) it allows us to perform an efficient biocatalytic trans-
formation of FAME into FME (e.g., 95% conversion for MLE); (ii) it provides a nonpolar
reaction medium proper for the solubilization of reagents/products in the reaction phase,
preserving the biocatalyst activity; (iii) it exhibits versatility by easily adapting to different
FAME (e.g., MLE, MPE, and MOE) for optimum biocatalyst—DES couple; (iv) it is cost-
effective based on the use of immobilized lipase allowing the recyclability and reusability
of the biocatalyst (more than 80% recovered catalytic activity of RN/NV for five reaction
cycles); and (v) it has a low impact on the environment due to green characteristics of
the system components and experimental conditions. Besides all of these, the developed
biocatalytic system is a good perspective for future FME production in lab with impact at
an industrial scale.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27165273/s1. Figure S1: Comparative DSC scans obtained
at heating rate 10 ◦C min−1 of mixtures of L-menthol (M) and fatty acids (CA—C8:0, OA—C18:1,
LiA—C18:2, and LnA—C18:3). Table S1: Characterization of DES(s) using DSC analysis. Table S2:
Comparative data of refractive indices (nD) at 25 ◦C of pure compounds and DES mixtures [1–6]. Table
S3: Testing the catalytic activity of the immobilized lipases (TE/RN/TL/NV) for the reaction of DES
components—the determination of fatty acid conversion (%) based on the acylation of L-menthol with
DES donor (CA, OA, LiA and LnA). Experimental procedure: FME synthesis; FME characterization.
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