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Abstract: The studies on the selective synthesis of dialkyl selenide compounds 1 were presented.
Overcoming the complexity and difficulty of selenides (R-Se-R) and/or multiselenides (R-Sen-R;
n ≥ 2), we aimed to optimize the reaction condition for the tolerable preparation of sodium selenide
(Na2Se) by reducing Se with NaBH4, and then to achieve selective syntheses of dialkyl selenides 1 by
subsequently treating the obtained sodium selenide with alkyl halides (RX). Consequently, various
dialkyl selenides 1 were efficiently synthesized in good-to-moderate yields. The investigations on
reaction pathways and solvent studies were also described.

Keywords: diorganyl selenide; sodium selenide; sodium borohydride; organoselenium; selenium
reduction

1. Introduction

Selenium (Se), one of the essential trace elements, belongs to group 16 elements, also
known as the chalcogen family [1]. During the last 40 years, organoselenium compounds
have attracted attention as important reagents and intermediates in organic synthesis as
well as in medicine [2,3]. Selenium compounds seem to play important roles in biologi-
cal systems as antioxidant, chemopreventive, anti-inflammatory, and antiviral agents [4].
Selenium is used to form selenoamino acids, selenocystein (Sec) and selenomethionine
(SeMet) that are incorporated as surrogates to sulfur derivatives [5,6]. In many respects,
selenium and sulfur have very similar physical and chemical properties, but at the same
time may display keen differences [7]. In general, the strengths of selenium–carbon bonds
(234 kJ/mol) are weaker than those of sulfur–carbon bonds (272 kJ/mol), and the bond
length of selenium–carbon (198 pm) is longer than that of sulfur–carbon (C-S, 184 pm) [7].
Selenium compounds are more nucleophilic and more acidic (pKa is 3.74 for H2Se) than sul-
fur compounds (pKa is 7.0 for H2S) [8]. Despite these intriguing characters, organoselenium
compounds have not been extensively studied for decades, because of their irregular reac-
tivity and instability, biological toxicity, and lack of tolerable synthetic methods. However,
currently organoselenium compounds have been used in many applications, including
synthetic methodologies and medicinal purposes for antioxidant [9,10] and anticancer
agents [11–14].

Among many organoselenium compounds, selenides (R-Se-R) and diselenides (R-
Se-Se-R) are the most traditional classes of organoselenium compounds. Nevertheless,
studies and derivatization of selenide compounds are less reported in comparison to
diselenide compounds. The incorporated form of Se in selenoamino acids such as SeMet
is the dialkyl selenide and so, we focused on the selective synthesis of dialkyl selenides.
So far, several methods have been reported for the synthesis of dialkyl selenides [15–20].
Among them, reactions of sodium selenide (Na2Se) generated in situ and an organic halide
in an appropriate solvent have been employed to prepare a small number of symmetrical

Molecules 2022, 27, 5224. https://doi.org/10.3390/molecules27165224 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27165224
https://doi.org/10.3390/molecules27165224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6117-2768
https://orcid.org/0000-0002-6808-4138
https://orcid.org/0000-0001-7764-7353
https://doi.org/10.3390/molecules27165224
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27165224?type=check_update&version=3


Molecules 2022, 27, 5224 2 of 11

dialkyl selenides. In these methods, selenium is reduced to selenide anion(s) by proper
reducing agents. For this purpose, NaBH4 [18], NaH [19], Na [20], and Li(CH3CH2)3BH [2]
have been used with corresponding reaction conditions. Most of the methodologies,
however, suffer from various limitations, such as poor reproducibility, narrow tolerance
according to structures, poor yields and product instability, side product formation, and
tricky manipulations. In reality, we experienced poor reproducibility of previously known
procedures, and severe difficulty in manipulating products due mainly to their chemical
instabilities. In particular, we observed that, along with desired selenides, diselenides and
multiselenides were generally formed as side products, and dark solids were also formed
in storing for even a short period of time.

According to the previous reports [16,18] and our preliminary studies, we found that
NaBH4 might be an appropriate reducing agent for this transformation; thus, we focused
on the use of NaBH4. We here report the studies on the selective formation of sodium
selenide and corresponding dialkyl selenides in a one-pot reaction, along with the studies
on reaction pathways and solvent effects.

2. Results and Discussion
2.1. Optimization for the Reaction Conditions

In order to achieve selective syntheses of dialkyl selenides (R-Se-R), we first aimed to
investigate the reaction conditions for the selective formation of sodium selenide (Na2Se).
Based on previous procedures for selenides [18], we attempted to apply these reaction
conditions for various aliphatic selenides with proper modifications. For this purpose, we
chose to employ selenium (Se) and NaBH4 as a reducing agent for the formation of sodium
selenide. The sodium selenide generated in situ was treated with proper electrophiles such
as alkyl halide (RX) to give desired dialkyl selenides 1. So, we conducted the reactions
with benzyl bromide (BnBr) as a template alkyl halide, leading to the selective synthesis of
dibenzyl selenide (1a), as shown in Scheme 1.
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We performed the reactions for the synthesis of sodium selenide under the condition
of Se and NaBH4 in THF-H2O solvent. On the basis of the importance of reducing agent in
these reactions, we optimized the reaction conditions by varying the amounts of NaBH4
and the reaction time at room temperature (25 ◦C). Then, the resulting sodium selenide
was directly reacted with BnBr to give the product 1a. Regarding the amount of BnBr,
we intended to provide a sufficient amount of it. Thus, we tested BnBr in the range
of 2.0–3.0 eq, and found that 2.4 eq of BnBr is an adequate amount, unless otherwise
mentioned (data not shown). As shown in Table 1, first we investigated the reaction
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conditions for the formation of sodium selenide. Based on our preliminary studies and
the information that the theoretical amount of NaBH4 is 2.0 eq (vs. Se), we chose the
range of 1.0–3.0 eq for NaBH4, and 25 ◦C for the reaction temperature. As expected, the
amount of NaBH4 was found to be the most important factor, and 3.0 eq of this reagent
gave the best yield in the given range. When we used a lower amount (e.g., 1.0 eq) of
that, we observed the substantial formation of side product, dibenzyl diselenide 2a. As the
amount of NaBH4 was increased, the formation of 2a was decreased, which is consistent
with the suggested reaction mechanism (see below) and our previous observation [21].
Considering the required stoichiometric amount (2.0 eq) of the reducing agent, the use of
3.0 eq seemed to be excessive, but we believed that the excess amount of reducing agent
could be required due to the presence of oxygen, incomplete workings of the reducing
agent, and/or extraconsumption in cleaving side products 2, diselenides (Scheme 1). In
addition, the reaction time for the formation of sodium selenide could affect the final
results. Interestingly, as the reaction time is elongated, the product 1a (selenide) formation
is decreased with the increased formation of side product 2a (diselenide). It is believed
that when the reaction time for sodium selenide is getting longer, the sodium selenide
could gradually oxidize to sodium diselenide, leading to the higher generation of 2a. Taken
together, the best condition for the two-step reaction was: (1) Se 1.0 eq, NaBH4 3.0 eq and
1 h reaction time; (2) BnBr 2.4 eq and 2 h reaction time at room temperature.

Table 1. Optimization of the reaction conditions for sodium selenide and dibenzyl selenide 1a a.
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2.2. Reaction Pathways

According to the results so far, we wish to perform mechanistic studies on reaction
pathways. Here, we propose reaction pathways for the formation of dialkyl selenides 1
and dialkyl diselenides 2, as shown in Scheme 2. At first, elemental Se could be reduced
by NaBH4 to diselenide dianion (Se2

2−, oxidation state: —1), which could also be further
reduced to selenide dianion (Se2−, oxidation state: —2). The two species (Se2

2− and Se2−)
could equilibrate each other according to redox condition. Then, selenide dianion (Se2−)
could react with alkyl halide to give the products, selenides 1, and similarly, diselenide
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dianion (Se2
2−), to give side products, diselenides 2. Notably, we could presume and

indirectly verify the presence of the selenium species by capturing them with alkyl halide.
As expected, the side products 2 were continuously formed in most of the reactions, and the
control of selective synthesis of selenides 1 over diselenides 2 was a challenge. Therefore, we
intended to employ sufficient amount of reducing agent to avoid the formation of diselenide
dianion and dialkyl diselenides 2. Once 2 is formed, it could also undergo further reduction
to give selenol 3, with further consumption of reducing agent. Taken together, we suggested
the pathways for compounds 1–3 under reduction condition (e.g., NaBH4).
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2.3. Synthesis of Dialkyl Selenides 1

Using this optimized condition, we achieved the selective syntheses of various dialkyl
selenides 1, expanding the scope of this reaction by applying different aliphatic halides,
as shown in Table 2. We tried to employ primary, secondary, and tertiary alkyl bromides.
At first, benzyl bromide, phenethyl bromide, and allyl bromide afforded good yields
(Table 2, entries 1 to 3). As primary aliphatic bromides, n-butyl, n-pentyl, n-hexyl, and
n-octyl bromide also gave good yields (entries 4 to 7). As secondary alkyl halides, c-pentyl,
c-hexyl, 3-pentyl, and 4-heptyl bromide provided moderate-to-poor yields (entries 8 to
11). However, tertiary halides (e.g., t-butyl, t-amyl, and trityl bromide) did not afford
an appreciable amount of product, due mainly to steric hindrance (data not shown). In
addition, aromatic bromides generally gave poor results. Phenyl bromide, phenyl bromides
with an electron-donating substituent (e.g., methyl group), and phenyl bromides with
electron-withdrawing substituents (e.g., cyano or trifluoromethyl group) afforded poor
yields (5–10%, data not shown) even at a high reaction temperature (e.g., 153 ◦C). In order
to improve the results, we also tested the additional use of sodium iodide as a catalyst or
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tetrabutylammonium bromide as a phase-transfer catalyst (PTC), leading to no appreciable
success. We also attempted to employ aromatic iodides instead of aromatic bromides under
harsh reaction conditions (e.g., elongated reaction time at 120 ◦C), without appreciable
improvement. Notably, we were also interested in the formation of cyclic selenides and
so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-dibromo-2,3-
dihydroxybutane, entries 12 and 13, respectively). For these reactions, we applied half
amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM for Se) in
order to facilitate intramolecular cyclization reactions. As expected, these reactions worked,
leading to the generation of cyclic selenides in modest yields (65 and 51%). Notably,
for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) was an
enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 1m was
also an enantiomer mixture ((R,R)- and (S,S)-form).

Table 2. Synthesis of dialkyl selenides 1a a.
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plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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4 n-BuBr 2.4 3 rt n-Bu–Se-Bu-n  1d 93 
5 n-PenBr 2.4 3 rt n-Pen–Se-Pen-n  1e 82 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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5 n-PenBr 2.4 3 rt n-Pen–Se-Pen-n  1e 82 
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eq) for 1 h at 25 °C for formation of Na2Se; RBr ([c] = 127 mM) in THF (8 mL) for formation of 1; b [c] 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
was an enantiomer mixture (two enantiomers (R,R)- and (S,S)-form) and thus the product 
1m was also an enantiomer mixture ((R,R)- and (S,S)-form). 
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eq) for 1 h at 25 °C for formation of Na2Se; RBr ([c] = 127 mM) in THF (8 mL) for formation of 1; b [c] 
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appreciable improvement. Notably, we were also interested in the formation of cyclic 
selenides and so we tested the use of alkyl dibromides (e.g., α,α′-dibromoxylene and 1,4-
dibromo-2,3-dihydroxybutane, entries 12 and 13, respectively). For these reactions, we ap-
plied half amount of alkyl dibromides and a low concentration of reagents (e.g., 64 mM 
for Se) in order to facilitate intramolecular cyclization reactions. As expected, these reac-
tions worked, leading to the generation of cyclic selenides in modest yields (65 and 51%). 
Notably, for compound 1m, the used starting material ((±)-1,4–dibromo–2,3–butanediol) 
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2.4. Solvent Studies

We performed the reactions under THF–H2O as a co-solvent system and the results
were generally successful. Nevertheless, we conducted solvent studies to find out better
and more convenient conditions. So, we chose ethanol (EtOH) as a volatile protic solvent
and acetonitrile (MeCN), tetrahydrofuran (THF), and dimethoxyethane (DME) as volatile
aprotic solvents. Using these solvent systems, we performed the reactions under similar
conditions by using NaBH4 and BnBr as alkyl halide at room temperature (25 ◦C), which
was summarized in Table 3. The reaction for the preparation of Na2Se under EtOH solvent
seemed to be in a white suspension condition and selectively provided dibenzyl selenide
1a in a good yield (81%). The reactions under MeCN, THF, and DME solvents seemed to
be in brown-to-reddish-brown suspension conditions with heterogeneous reaction media.
The reaction under MeCN afforded dibenzyl selenide 1a in a good yield (80%) with a trace
amount of dibenzyl diselenide. However, the other reactions under THF and DME solvents
required longer reaction times (48 and 47 h, respectively) and provided modest yields (50
and 30%, respectively). Although the reaction under EtOH solvent gave a good result
(81%), the reproducibility of the reaction was not so good, probably due to the undesired
participation of EtOH as a nucleophile producing benzylethyl ether (BnOEt). As a result,
MeCN was found to be a good choice as a non-aqueous, volatile, aprotic solvent.

Table 3. Solvent test a.
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Furthermore, inspired by the good results under MeCN solvent, we expanded test
reactions under MeCN using several alkyl halides. We also compared the reactions of
alkyl bromides with those of alkyl chlorides. In general, the results under MeCN solvent
were similar or lower than those under the original solvent (H2O-THF), and sometimes
the results fluctuated according to the conditions, as shown in Table 4. Although the
results under MeCN were found to be variable, it seemed a milestone experiment that
sodium selenide and then dialkyl selenides 1 could be obtained in good yield in MeCN as
a non-aqueous, volatile, aprotic solvent. Nevertheless, the heterogeneity issue might still
limit broad applications, and further studies for improvements are in progress.
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Table 4. Comparison of the results under H2O-THF and MeCN solvents a.
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a All reactions were run on 1.3 mmol scale of Se (1.0 eq, [c] = 640 mM) and NaBH4 (3.0 eq) for 1 h at 25 ◦C for
formation of Na2Se; RX ([c] = 127 mM) for formation of 1; b Isolated yields; c Trace amount.

3. Experimental
3.1. General

Most of the reagents were purchased at good commercial quality and used without
further purification, unless otherwise noted. Reactions were continuously monitored
by thin-layer chromatography (TLC) using glass plates (0.25 mm) coated with silica gel
(20 × 20 cm2; Aldrich No. Z12272-6) and visualized by UV light and staining solutions such
as cerium molybdate and phosphomolybdic acid, if necessary. Preparative TLC (PTLC)
and column chromatography were mainly employed for purifications. PTLC separations
were carried out on the same silica gel plates for TLC. Column chromatography was
conducted using Merck silica gels (230–400 mesh). Measurement of melting points was
carried out in open capillary tubes using Electrothermal IA9100 melting point apparatus,
and the measurements were uncorrected. FT-IR spectra were obtained on a Thermo
Fisher (Waltham, MA, USA) FT-IR spectrometer (Nicolet Summit) and frequencies (ν) are
given in reciprocal centimeters (cm−1). 1H (300 MHz) and 13C (75 MHz) NMR spectra
were obtained by a Bruker (Billerica, Massachusetts, USA) DRX 300 spectrometer and the
chemical shift values (δ) are expressed as units relative to tetramethylsilane (TMS). Mass
spectra were obtained using EI or ESI ionization method. HPLC analyses were conducted
using the following Waters Associate Units: 1525 Binary HPLC Pump, 2998 Photodiode
Array Detector, and C18 COSMOSIL column (4.6 × 250 mm2). The product analyses were
performed using a linear gradient condition. Condition 1: from 70% A (H2O) and 30% B
(MeCN) for 3 min (isocratic) to 10% A and 90% B in 30 min (gradient), then to 10% A and
90% B for 7 min (isocratic) and, finally, from 10% A and 90% B to 70% A and 30% B over
3 min (gradient), then to 70% A and 30% B for 5 min (isocratic). Condition 2: from 50% A
(H2O) and 50% B (MeCN) for 3 min (isocratic) to 10% A and 90% B in 30 min (gradient),
then to 10% A and 90% B for 7 min (isocratic) and, finally, from 10% A and 90% B to 50% A
and 50% B over 3 min (gradient), then to 50% A and 50% B for 5 min (isocratic). The flow
rate was 1 mL/min, and the eluent was monitored at 254 nm. The HPLC solvents were
filtered (aqueous solution with Millipore HVLP, 0.45 mm; acetonitrile with Millipore HV,
0.45 mm) and degassed before utilization.

3.2. General Procedure for the Synthesis of Dialkyl Monoselenides 1

To a stirred mixture of NaBH4 (144 mg, 3.9 mmol, 3.0 eq) and H2O (2 mL), Se (100 mg,
1.3 mmol, 1.0 eq) was added under the nitrogen atmosphere. The resulting mixture was
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stirred for 1 h at room temperature turning white. Then, alkyl halides (3.1 mmol, 2.4 eq) in
THF (8 mL) were slowly added and stirring was continued for 2–48 h at room temperature
to 50 ◦C until completion of the reaction (Table 2). The reaction mixture was diluted with
water (30 mL), extracted with CH2Cl2 (3 × 30 mL) and then washed with brine (30 mL).
The combined organic layers were dried (anhydrous MgSO4), and concentrated in vacuo
to give sticky residue. The residue was purified by column chromatography (1:50→ 1:1
EtOAc/n-hexanes) to give 1a–1m as a light yellow oil, unless otherwise noted. The NMR
charts for all compounds 1 were provided in Supplementary Materials.

3.2.1. 1,2-Dibenzyl Selenide (1a) [2]

Use of benzyl bromide (0.36 mL, 3.1 mmol, 2.4 eq), 2 h reaction time at room tem-
perature in general procedure, afforded the title compound 1a (310 mg, 87%) as a light
yellow solid. Mp 44–45 ◦C; Rf 0.34 (1:20 EtOAc/n-hexanes); HPLC tR 31.17 min (condition
1); λmax = 215 nm; IR (KBr) 3033, 3030, 703, 696, 670, 667 cm−1; 1H-NMR (300 MHz, CDCl3)
δ 7.32–7.18 (m, 10H, Ar), 3.72 (s, 4H, CH2); 13C-NMR (75 MHz, CDCl3) δ 139.37 (Ar),
129.17 (Ar), 128.69 (Ar), 27.75 (CH2); MS m/z 262 [M]+; HRMS (+ESI) calcd for C14H14Se
[M]+ 262.0261, found 262.0264.

3.2.2. 1,2-Bis(2-phenylethyl) Selenide (1b) [2]

Use of phenethyl bromide (0.42 mL, 3.1 mmol, 2.4 eq), 5 h reaction time at room
temperature, in general procedure afforded the title compound 1b (248 mg, 66%) as a light
yellow solid. Mp 148–156 ◦C; Rf 0.30 (1:20 EtOAc/n-hexanes); HPLC tR 30.54 min (condition
1); λmax = 261 nm; IR (KBr) 3104, 1029, 705 cm−1; 1H-NMR (300 MHz, CDCl3) δ 7.36–7.10
(m, 10H, Ar), 2.95 (t, J = 7.8 Hz, 4H, SeCH2), 2.78 (t, J = 7.8 Hz, 4H, PhCH2); 13C-NMR
(75 MHz, CDCl3) δ 141.42 (Ar), 128.66 (Ar), 128.55 (Ar), 126.52 (Ar), 37.36 (SeCH2), 25.19
(PhCH2); MS m/z 290 [M]+; HRMS (+ESI) calcd for C16H18Se [M]+ 290.0574, found 290.0570.

3.2.3. 1,2-Diallyl Selenide (1c) [22]

Use of allyl bromide (0.26 mL, 3.1 mmol, 2.4 eq), 25 h reaction time at room temperature,
in general procedure afforded the title compound 1c (135 mg, 66%). Bp 56–58 ◦C; Rf 0.51
(n-hexane); HPLC tR 33.86 min; λmax = 243 nm (condition 1); IR (KBr) 987, 739 cm−1; 1H-
NMR (300 MHz, CDCl3) δ 5.89–5.80 (m, 2H, CH2=CH), 5.05–5.00 (m, 4H, CH2=CH), 3.15 (d,
J = 7.6 Hz, 4H, SeCH2); 13C-NMR (75 MHz, CDCl3) δ 135.19 (CH2=CH), 116.61 (CH2=CH),
25.55 (SeCH2); MS m/z 162 [M]+.

3.2.4. 1,2-Di-n-butyl Selenide (1d) [19]

Use of n-butyl bromide (0.33 mL, 3.1 mmol, 2.4 eq), 3 h reaction time at room temper-
ature, in general procedure afforded the title compound 1d (228 mg, 93%). Bp 72–74 ◦C;
Rf 0.49 (1:50 EtOAc/n-hexanes); HPLC tR 32.73 min (condition 1); λmax = 222 nm; IR (KBr)
2953, 2872, 994, 741 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.56 (t, J = 7.5 Hz, 4H, SeCH2),
1.64 (quintet, J = 7.4 Hz, 4H, SeCH2CH2), 1.40 (sextet, J = 7.4 Hz, 4H, CH2CH3), 0.92 (t,
J = 7.3 Hz, 6H, CH3); 13C-NMR (75 MHz, CDCl3) δ 32.99 (SeCH2), 23.84 (SeCH2CH2), 23.29
(CH2CH3), 13.83 (CH3); MS m/z 194 [M]+; HRMS (+ESI) calcd for C8H18Se [M]+ 194.0574,
found 194.0575.

3.2.5. 1,2-Di-n-pentyl Selenide (1e) [2]

Use of n-pentyl bromide (0.38 mL, 3.1 mmol, 2.4 eq), 3 h reaction time at room
temperature, in general procedure afforded the title compound 1e (230 mg, 82%). Bp
96–106 ◦C; Rf 0.50 (n-hexanes); HPLC tR 35.94 min (condition 2); λmax = 224 nm; IR (KBr)
2957, 2925, 1466, 1241, 728 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.55 (t, J = 7.5 Hz, 4H,
SeCH2), 1.66 (quintet, J = 7.3 Hz, 4H, SeCH2CH2), 1.36–1.34 (m, 8H, (CH2)2CH3), 0.90 (t,
J = 6.9 Hz, 6H, CH3); 13C-NMR (75 MHz, CDCl3) δ 32.39 (SeCH2), 30.59 (SeCH2CH2), 24.16
(CH2CH2CH3), 22.45 (CH2CH3), 14.18 (CH3); MS m/z 222 [M]+; HRMS (+ESI) calcd for
C10H22Se [M]+ 222.0887, found 222.0889.
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3.2.6. 1,2-Di-n-hexyl Selenide (1f) [19]

Use of n-hexyl bromide (0.43 mL, 3.1 mmol, 2.4 eq), 5 h reaction time at room tempera-
ture, in general procedure afforded the title compound 1f (269 mg, 85%). Bp 90–94 ◦C; Rf
0.50 (n-hexanes); HPLC tR 26.92 min (condition 2); λmax = 271 nm; IR (KBr) 3409, 2856, 1458,
743, 698 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.55 (t, J = 7.5 Hz, 4H, SeCH2), 1.65 (quintet,
J = 7.4 Hz, 4H, SeCH2CH2), 1.43–1.28 (m, 12H, (CH2)3CH3), 0.89 (t, J = 6.8 Hz, 6H, CH3);
13C-NMR (75 MHz, CDCl3) δ 31.59 (SeCH2), 30.87 (SeCH2CH2), 29.90 (Se(CH2)2CH2), 24.20
(CH2CH2CH3), 22.78 (CH2CH3), 14.26 (CH3); MS m/z 250 [M]+; HRMS (+ESI) calcd for
C12H26Se [M]+ 250.1200, found 250.1203.

3.2.7. 1,2-Di-n-octyl Selenide (1g) [23]

Use of n-octyl bromide (0.53 mL, 3.1 mmol, 2.4 eq), 5 h reaction time at room tempera-
ture, in general procedure afforded the title compound 1g (330 mg, 85%). Bp 132–148 ◦C;
Rf 0.60 (1:100 EtOAc/n-hexanes); HPLC tR 28.82 min (condition 1); λmax = 297 nm; IR (KBr)
3418, 2914, 750, 696 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.55 (t, J = 7.5 Hz, 4H, SeCH2), 1.65
(quintet, J = 7.4 Hz, 4H, SeCH2CH2), 1.36–1.27 (m, 20H, (CH2)5CH3), 0.88 (t, J = 6.7 Hz, 6H,
CH3); 13C-NMR (75 MHz, CDCl3) δ 32.05 (SeCH2), 30.90 (SeCH2CH2), 30.22 (Se(CH2)2CH2),
29.42 (Se(CH2)3CH2), 29.36 (CH2(CH2)2CH3), 24.19 (CH2CH2CH3), 22.88 (CH2CH3), 14.33
(CH3); MS m/z 306 [M]+; HRMS (+ESI) calcd for C16H34Se [M]+ 306.1826, found 306.1821.

3.2.8. 1,2-Di-c-pentyl Selenide (1h) [24]

Use of c-pentyl bromide (0.31 mL, 3.1 mmol, 2.4 eq), 3 h reaction time at 50 ◦C, in
general procedure afforded the title compound 1h (138 mg, 50%). Bp 90–96 ◦C; Rf 0.47
(n-hexanes); HPLC tR 34.36 min (condition 1); λmax = 225; IR (KBr) 2956, 2866, 1448, 1217,
932 cm−1; 1H-NMR (300 MHz, CDCl3) δ 3.25 (quintet, J = 7.1 Hz, 2H, SeCH), 2.12–2.01 (m,
4H, SeCH(CHH)2), 1.80–1.51 (m, 12H, SeCH(CHH)2(CH2)2); 13C-NMR (75 MHz, CDCl3) δ
37.76 (SeCH), 35.06 (SeCH(CH2)2), 25.19 (SeCH(CH2)2(CH2)2); MS m/z 218 [M]+; HRMS
(+ESI) calcd for C10H18Se [M]+ 218.0574, found 218.0576.

3.2.9. 1,2-Di-c-hexyl Selenide (1i) [25]

Use of c-hexyl bromide (0.38 mL, 3.1 mmol, 2.4 eq), 8 h reaction time at 50 ◦C, in
general procedure afforded the title compound 1i (150 mg, 48%). Bp 104–106 ◦C; Rf 0.50
(n-hexanes); HPLC tR 35.65 min (condition 1); λmax = 228 nm; IR (KBr) 3422, 2849, 1724,
1447, 1258, 993, 699 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.96 (m, 2H, SeCH), 2.03–1.25
(m, 20H, CH2); 13C-NMR (75 MHz, CDCl3) δ 37.97 (SeCH), 35.40 (SeCH(CH2)2), 27.17
(SeCH(CH2)2(CH2)2), 26.08 (SeCH(CH2)4(CH2)2); MS m/z 246 [M]+; HRMS (+ESI) calcd for
C12H22Se [M]+ 246.0887, found 246.0885.

3.2.10. 1,2-Bis(3-pentyl) Selenide (1j) [22]

Use of 3-pentyl bromide (0.38 mL, 3.1 mmol, 2.4 eq), 5 h reaction time at 50 ◦C, in
general procedure afforded the title compound 1j (87 mg, 31%). Bp 90–100 ◦C; Rf 0.50
(n–hexanes); HPLC tR 34.60 min (condition 1); λmax = 228 nm; IR (KBr) 2963, 2932, 1457,
1378, 1185, 861 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.69 (quintet, J = 6.3 Hz, 2H, CH),
1.75–1.60 (m, 8H, CH2), 0.99 (t, J = 7.3 Hz, 12H, CH3); 13C-NMR (75 MHz, CDCl3) δ 45.27
(CH), 28.63 (CH2), 12.29 (CH3); MS m/z 222 [M]+; HRMS (+ESI) calcd for C10H22Se [M]+

222.0887, found 222.0883.

3.2.11. 1,2-Bis(4-heptyl) Selenide (1k)

Use of 4-heptyl bromide (0.48 mL, 3.1 mmol, 2.4 eq), 25 h reaction time at 50 ◦C, in
general procedure afforded the title compound 1k (123 mg, 35%). Bp 118–120 ◦C; Rf 0.39
(n-hexanes); HPLC tR 32.85 min (condition 2); λmax = 250 nm; IR (KBr) 3398, 2932, 2872,
1458, 1378, 756, 698 cm−1; 1H-NMR (300 MHz, CDCl3) δ 2.81 (quintet, J = 6.4 Hz, 2H, CH),
1.65–1.36 (m, 16H, CH2), 0.91 (t, J = 7.2 Hz, 12H, CH3); 13C-NMR (75 MHz, CDCl3) δ 41.21
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(CH), 38.83 (CHCH2), 21.00 (CH2CH3), 14.26 (CH3); MS m/z 278 [M]+; HRMS (+ESI) calcd
for C14H30Se [M]+ 278.1513, found 278.1514.

3.2.12. 1,3-Dihydrobenzo[c]Selenophene (1l) [26]

Use of α,α′-dibromo-o-xylene (335 mg, 1.3 mmol, 1.0 eq), 24 h reaction time at room
temperature, in general procedure afforded the title compound 1l (151 mg, 65%) as a
light yellow solid. Mp 36–37 ◦C; Rf 0.39 (n-hexanes); HPLC tR 22.40 min (condition 1);
λmax = 268 nm; IR (KBr) 3441, 3018, 1645, 1448, 834, 744 cm−1; 1H-NMR (300 MHz, CDCl3)
δ 7.25–7.14 (m, 4H, Ar), 4.32 (s, 4H, CH2); 13C-NMR (75 MHz, CDCl3) δ 141.82 (Ar), 126.62
(Ar), 126.10 (Ar), 30.04 (CH2); MS m/z 184 [M]+; HRMS (+ESI) calcd for C8H8Se [M]+

183.9791, found 183.9794.

3.2.13. Tetrahydro-3,4-Selenophenediol (1m) [27]

Use of 1.4-dibromo-2,3-butanediol (315 mg, 1.3 mmol, 1.0 eq), 48 h reaction time
at room temperature, and then extraction with n-butanol in general procedure afforded
the title compound 1m (108 mg, 51%) as a light yellow solid. Mp 77–80 ◦C; Rf 0.20 (3:1
EtOAc/n-hexanes); HPLC tR 28.12 min (condition 1); λmax = 297 nm; IR (KBr) 3378, 1637,
1492, 1015, 704 cm−1; 1H-NMR (300 MHz, MeOH-d4) δ 4.20 (m, 2H, CH), 3.09, 2.79 (each
dd, J = 10.2 and 9.6 Hz, each 2H, CH2); 13C-NMR (75 MHz, MeOH-d4) δ 80.02 (CH), 27.90
(CH2); MS m/z 168 [M]+; HRMS (+ESI) calcd for C4H8O2Se [M]+ 167.9690, found 167.9691.

4. Conclusions

We reported the systematic studies on the synthesis of Na2Se and corresponding
dialkyl selenide compounds 1. We established an optimized condition for these reactions
as follows: (1) Se (1.3 mmol, 1.0 eq), NaBH4 (3.0 eq) in H2O for 1 h at room temperature;
(2) alkyl bromide for 2–48 h with THF at room temperature to 50 ◦C. Applying this op-
timized condition using various alkyl halides, the desired dialkyl selenides 1 were suc-
cessfully produced in good-to-moderate yields (31–93%). In particular, alkyl dihalide
compounds were also employed to provide cyclic selenides, 1l and 1m, in 65% and 51%
yields, respectively. Furthermore, solvent studies revealed that non-aqueous and volatile
solvents (e.g., MeCN) other than THF-H2O also worked for these reactions. Taken to-
gether, we have completed systematic studies on the selective syntheses of Na2Se and the
corresponding dialkyl selenide compounds 1 using NaBH4 as a reducing agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27165224/s1. The charts for 1H- and 13C-NMR spectro-
scopies are available online.
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