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Abstract: Anderson-type ([XM6O24]n−) polyoxometalates (POMs) are a class of polymetallic-oxygen
cluster inorganic compounds with special structures and properties. They have been paid extensive
attention by researchers now, due to their chemical modification and designability, which have
been widely applied in the fields of materials, catalysis and medicine. In contemporary years, the
application of Anderson-type POMs in catalytic organic oxidation reaction has gradually shown great
significance for the research of green catalytic process. In this paper, we investigate the application
of Anderson-type POMs in organic synthesis reaction, and these works are summarized according
to the different structure of POMs. This will provide a new strategy for further investigation of the
catalytic application of Anderson-type POMs and the study of green catalysis.

Keywords: polyoxometalate; Anderson structure; organic synthesis; molecular catalysis; green
chemistry

1. Introduction

The Anderson type of polyoxometalates (abbreviated as POMs) are an important class
of structures in oxygen-bridged polymetallic cluster compounds, which can be expressed as
[XM6O24]n− or [Hx(XO6)M6O18]n− (M=Mo or W); its central heteroatom X can be replaced
with the majority of transition metal atoms like Fe, Co, Cu, Ni and Mn, etc. The stable
configuration of Anderson-type POMs is a flat and circular structure (Figure 1a,b). There
are three different types of oxygen atoms on the surface of Anderson-type POMs, with
different coordination modes, so the reactivity of different sites on the surface is fairly
different. Additionally, the class of protonation of the surface oxygen atoms of the POMs
are also significantly varied, which can be divided into the following two types (Figure 1c):
one non-protonation µ3-O on the surface of Anderson-type POMs called type A; the other
possesses protonated µ3-O called type B. Provided that the valence state of the central atom
is high (oxidation state > 4), Anderson-type POMs are also found to exist in a fold isomer
configuration. This is similar to ammonium heptamolybdate (Figure 1d,e). However, for
the central metal atoms in the low valence states, this structure requires organic ligand
protection to keep steady (Figure 1f) [1–5].

The oxygen atoms of Anderson-type POMs are surrounded by six octahedrons around
the central hetero-atoms by sharing an edge to form a common planar ring structure,
otherwise a folded-twisted structure. Moreover, the central hetero-atoms are varied and
modified easily, so the structure has a high coordination activity. Their structure and
properties can be more multifarious by further modification.

Classical structures of POMs are mostly uniform particles with nano, otherwise
sub-nano, size. Due to the octahedral connection and easily modified characteristics
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of Anderson-type POMs, this leads them to become a good sub-nano building unit. They
can be used to design and synthesize a variety of special sizes and properties of organic–
inorganic POMs compounds which show exceedingly important application value in
materials, medicine, catalysis and other fields.
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Anderson-type POMs; (f) Organic modified β-Anderson-type POMs. 
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The previous research about Anderson-type POMs mainly attach great importance
to the synthesis and preparation of new compounds and characterization, etc.; the Wang
group, Wei group, Zhou group, Niu group and Kreb group have made an army of contri-
butions in this field.

In 2014, Wei groups developed a liquid-phase diffusion single-crystal growth sample
addition method and a special and sample addition tube [6]. The invention can significantly
improve the working efficiency of the single-crystal cultivation, and the quality of the
obtained single crystal by this method is also significantly improved. The Wei group
designed a large number of different Anderson-type POMs and crystal of their organic
derivatives via this approach (Figure 2). They afterward defined a series of structure of
new Anderson-type POMs and the relevant derivatives [7–13] through single-crystal X-ray
diffraction, infrared spectrum, NMR spectrum and liquid chromatography, which greatly
promoted the development of synthesis Anderson-type POMs and structural chemistry.

With the structural development of Anderson-type POMs, a mounting number of
researchers began to study the modification of POMs which controlled the application
in the catalytic field [14–19]. These studies illustrate that Anderson-type POMs not only
possess acid-based properties, but also excellent redox performance for the contributor
that is present in central atoms. Owing to their structural stability, they can also be used
as catalysts and applied in homogeneous and heterogeneous reactions, and even through
phase-transfer catalyst or ionic liquid catalyst after appropriate chemical modification.
Therefore, Anderson-type POMs are regarded as new sub-nano molecules with high
catalytic activity. Nowadays, the research about Anderson-type POMs materials and their
functions has gradually become a hot field in polyacid chemistry [20–25]. Nevertheless,
the early work in the catalytic application of Anderson-type POMs mainly focused on
desulfurization of oxidative and the treatment of industrial wastewater [26–30]. The
applications in organic reaction are still the confronting great challenge.
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Figure 2. Several Anderson-type POMs crystals prepared by the special sample tube for liquid-
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It is universally acknowledged that progress of society depends on the development
of organic synthetic chemistry. Reducing or avoiding producing harmful products is the
question of organic synthesis reaction and the focus of “green” chemical research [31–34].
With the development of Anderson-type POMs in the catalytic reaction, the researchers
found that the replacement of a traditional metal or non-metal catalyst is feasible with
Anderson-type POMs or their derivatives [35–51]. This system not only can improve the
catalytic efficiency, but also generate less by-product in the process. This is exactly an
environmentally friendly, green and efficient catalytic system.

The variety of Anderson-type POMs catalysts have been reported. This review summa-
rizes previous research studies based on recent literature. These works are roughly divided
into two major categories according to the anion structure (Figure 3). For convenience
of description, we define the relevant letter for the following categories: (1) The catalytic
application of simple Anderson-type POMs (abbreviated as P); (2) Catalytic application of
organic modified Anderson-type POMs derivatives (abbreviated as PO). In these two cate-
gories, the catalysts are further divided into two minor categories according to the cationic
form of Anderson-type POMs: (1) Simple inorganic cations (such as NH4

+.Na+.H+.K+, the
following is abbreviated as [I]+); (2) Organic cations ([O]+).
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2. The Application of Anderson-Type POMs in Catalytic Synthesis
2.1. Catalyzation of Anderson-Type POMs (P)
[I]+P

In 2016, Kadam and Gokavi investigated the dynamics and catalytic mechanism of the
Anderson-type POMs, chromium (III) molybdate catalyst, which originally formed via the
reaction between [O=CrV(OH)6Mo6O18]3− from the oxidation of H[CrIII(OH)6Mo6O18]2−

and hydrazide without free radicals in the course of the reaction process. This work
provides good ideas and inspiration for oxidation hydrazide by Anderson-type POMs [35].

In 2017, the Wei group reported a simple, mild and efficient method of aerobic oxida-
tion amine by inorganic ligand-loaded non-precious metal catalyst (NH)4)n[MMo6O18(OH)6]
(M=Cu2+; Fe3+; Co3+; Ni2+; Zn2+, n = 3 or 4) in water at 100 ◦C via one step, demonstrating
that the catalytic activity and selectivity can be significantly improved by transforming
the central metal atoms. In the presence of Anderson-type POMs, with O2 as the unique
oxidant, the catalytic oxidation of fundamental amine and secondary amines, and the
coupling reaction of alcohol and amines can be achieved to generate the relevant imines.
This new catalytic system provides a new method for catalytic oxidation reaction through
inorganic ligand-supported metal catalysts [36].

Soon after, Wei and collaborators proposed a Cu-based Anderson-type POM, (NH4)4
[Cu(OH)6Mo6O18] used for oxidation of carboxylic acid to aldehyde in water (Figure 4).
This system used oxygen as the sole oxidant in the mild condition and was also suitable for
various aldehyde derivatives with different functional groups [37]. In this catalytic process,
the catalyst (NH4)4[Cu(OH)6Mo6O18] can be recycled at least six times and maintain high
catalytic activity. This method of preparing for carboxylic acid is not only simple to operate,
but also avoids the use of expensive and toxic raw materials. The versatility of this catalytic
route makes it possible for industrial applications.

In 2018, the Wei Group used inorganic ligand-supported Fe-based Anderson-type
POMs (NH)4)3[Fe(OH)6Mo6O18] to prepare imines by aerobic oxidation of aldehyde/ketone
and amine oxidation coupling with oxygen as the sole oxidation [38]. The catalyst is com-
prised of an inexpensive system (NH4)6Mo7O24·4H2O and Fe2(SO4)3. This system can be
applied in broad substrates with low loss of catalytic activity, proving that this catalytic
system has great potential in catalytic chemical transformation. Additionally, the stably
inorganic skeleton for the catalyst provides good stability and is reusable in the course
of the reaction process; for this reason, the catalytic oxidation of halide and amine can be
easily improved to the gram level and has the potential to apply in industry.
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Figure 4. A method for preparing carboxylic acids by oxidizing aldehydes in water using (NH4)4

[Cu(OH)6Mo6O18].

After that, the Wei group published an inorganic ligand-supported iodine catalyst
(NH4)5[IMo6O24] using an efficient method of aerobic alcohol oxidation. This system is
compatible with multiple functional groups with high selectivity and good stability [39].
Based on experimental results, they proposed a preliminary mechanism of iodine cat-
alyst (NH4)5[IMo6O24] for alcohol oxidation (Figure 5). This process is similar to the
enzymatic oxidation reaction, which can be divided into two independent semi-reactions:
(NH4)5[IVIIMo6

VIO24] mediated alcohol oxidation reactions and dioxygen-coupled oxi-
dation reaction with [IVMo6

VIO24]. For the iodo-molybdic acid catalyst by the inorganic
ligands supported, two oxidizing equivalents required for oxidation are stored at the iodine
center. Meanwhile, the addition of additives exerts a significant influence on the progress
of the reaction, because the presence of Cl− and Ac− as an electron transfer medium pro-
motes the electron transfer efficiency of (NH4)5[IVIIMo6

VIO24]. This proposed mechanism
is meaningful for the application of new Anderson-type POMs in organic reactions. This
catalyst is a kind of efficient and mild inorganic ligand coordination catalytic system with
high valence of iodine. The system has a wide range of substrate tolerance, good selec-
tivity and recyclability, which avoids using the toxic organic ligands and toxic oxidant.
Compared with the expensive organic iodine reagent, this system is convenient to apply
in medicine, spices and food additives. Besides, the structure of (NH4)5[IMo6O24] also
provides more insight on designing the new Anderson-type POMs by replacing the metal
ion in the backbone.
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Subsequently, Wei and co-worker prepared a Zn-based Anderson-type POM, (NH4)4
[Zn(OH)6Mo6O18], which was used as a catalyst for oxide cross-coupling reaction of halide
and amine, oxide self-coupling reaction of amine, and the halide oxide reaction [40]. In this
catalytic system (Figure 6), they chose benzyl amine and benzyl chloride as model substrates
for the oxidative cross-coupling reaction with generating N-benzylidenebenzylamine in
32% yield, 47% selectivity. By screening the solvent, acetonitrile showed the best yield
and selectivity with 89% and 90%, respectively. Additionally, shortening and extending
the reaction time also affected the yield. In addition, the optimal reaction temperature
at 60 °C and 1.0 mol% was the optimal amount of catalyst. Although the reaction uses
O2 as an oxygen source, relevant imines, aldehyde and ketone can still be efficiently
prepared. The inorganic ligand-supported zinc-based Anderson-type POMs are not only
easy to prepare and synthesize by the hydrothermal method, but also easy to recover
due to the heterogeneity of the reaction. Compared with precious noble metal catalysts
such as rhodium, ruthenium, and palladium, this catalyst avoids the use of toxic, air and
water-sensitive organic ligands. So, Anderson-type POMs still have great potential as a
heterogeneous catalyst in organic reactions.
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Figure 6. Zn-based Anderson-type POMs catalyze the oxidation of halides to aldehydes or ketones,
and amines to sub-units.

In the same year, Sawant and co-worker investigated the application of Co-based
Anderson-type POMs, CoIII(OH)6Mo6O18]3−, in catalyzed oxidation of acetaminophen in
the aqueous media when the pH values are 1 or 2 [41]. In this reaction, the electron transfer
from neutral acetaminophen to anion, and then in the step of rate determination, the free
radicals are further oxidized to N-acetylquinone imide as an intermediate, and what is
more, hydrolyze to obtain benzoquinone and acetic acid. The experimental results reveal
that the formation of a weak complex among the reactants promotes the reaction.

In 2019, the Wei group reported Cu-based Anderson-type POMs, (NH4)4[Cu(OH)6
Mo6O18], which were used to study the aerobic oxidation of alcohol [42]. The classical
transition metal complex catalytic system required complex organic ligands or nitroso
radicals as auxiliary catalysts, and even strong oxidants. Nevertheless, when many organic
compounds are in contact with these strong oxidants, it can easily result in exploding.
Therefore, the traditional oxidation reaction of alcohol possesses complex process, high-
price, severe and dangerous reaction conditions. Although, this catalyst is synthesized in
water from cheap ammonium heptamolybdate and copper sulfate. The results showed that
this catalytic system was suitable for various substrates in the oxidation of alcohol with
excellent selectivity and activity. This method is not only safe and efficient, but also environ-
mental. It has the potential to achieve industrial application. The experimental results show
that the catalytic mechanism of the catalytic system is as follows (Figure 7) [42]: The two
oxidation equivalents required for oxidation are not only stored in the copper center, but
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can be transferred to six marginalized MoO6 on the unit for (NH4)4[Cu(OH)6Mo6O18]. The
Cu-based Anderson-type POMs react with alcohol to generate active substance A, while A
and E, as a pair of isoforms, can interconvert, possibly due to the transfer of electrons to
the inorganic ligands MoO6 via the intramolecular oxygen bridge Cu-O-Mo. Thus, one of
the Mo cells goes from positive hexavalent to positive pentavalent. Anderson-type POMs
A firstly activate molecular oxygen generation activity species B. Subsequently, species
B hybridizes by the O=O bond to obtain the highly reactive metal oxygen species C as
an active oxidant. During this catalytic reaction, the detection by MS indicates that water
is involved in the reaction, producing hydrogen peroxide, so that the catalytic system is
closer to the galactose oxidase reaction. CuII and the hydroxyl radical act together as a
single-electron oxidant to be a two-electron alcohol oxidation reaction. In the reaction of
galactose oxidase, a single center which is copper reacts with oxygen, producing hydrogen
peroxide as a by-product. High active species C reacts with ethanol to generate intermediate
D, and then H atoms are extracting to generate aldehyde and regenerate E. Finally, the
intermediate E (CuII) was re-oxidized by hydrogen peroxide to substance A (CuI).
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At the same time, the Wei group also prepared Fe-based Anderson-type POMs,
(NH4)3[Fe(OH)6Mo6O18] and applied them in olefination epoxidation reaction with 30%
H2O2 as oxidant. This catalytic system does not require additional reductant or free radicals
as initiators, and the experimental operation is simple, completely avoiding the use of
expensive, toxic precious metal catalysts. Moreover, it does not need air/water sensitive
and commercially unavailable organic ligands or tungsten POMs. (NH4)3[Fe(OH)6Mo6O18]
can be obtained by one-step reaction in 100 ◦C water. This system has successfully con-
verted the various aromatic and aliphatic alkenes into the corresponding epoxy compounds,
with a good yield and selectivity [43]. Subsequently, Wei and collaborators further used
this system in oxidative esterification reaction of various aldehydes with alcohol, and the
corresponding esters were achieved under mild conditions with high yields, including
several drug molecules and natural products [44].

After that, the Wei group and co-worker developed Cr-based Anderson-type POMs,
(NH)4)3[CrMo6O18(OH)6]. The various primary and secondary amines, and even dual
primary amine, were successfully converted into the corresponding formamides and
methylated using this catalyst with methanol as a potential formylation reagent. Compared
with the high-valence Cr-based catalyst including CrO3 and K2Cr2O7, etc. This one with
low-valent chromium catalyst is more effective, safe, and green environmental [45]. Wei
then reported another work using (NH4)3[Fe(OH)6Mo6O18] catalyzed formic acid and
amine coupling to generate formamide in mild conditions [46]. In the same year, the
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Xu group also developed Fe-based Anderson-type POMs, Na3Fe(OH)6Mo6O18·5H2O to
prepare for 5-formyl-2-furanformic acid from 5-hydroxyl methylfuranic acid. The related
results also further proved that the catalyst has high catalytic activity under an aerobic
environment [47].

In 2020, Wei and co-worker proposed Co-based Anderson-type POMs (NH4)3[Co(OH)6
Mo6O18]. In the presence of this catalyst, it is effective in achieving from alcohol to esters
when KCl is used as an additive and 30% H2O2 as oxidant (Figure 8). As the important
complexes in the fields of biology, medicine, and fine chemicals, esters are usually pre-
pared by carboxylic acids or active derivatives (acyl chlorine and anhydride) reacted with
alcohol. The Co-based Anderson-type POMs catalytic system is cheap, stable, safe and
efficient and can successfully make alcohol to esters under mild conditions. They first
explored the substrate range of benzyl alcohol and fatty alcohol oxidation coupled with
methanol to generate methyl esters. The results demonstrate that various substituted
benzyl alcohols as well as fatty alcohols were performed efficiently and highly selectively;
the highest yield can reach 99%. Subsequently, on the basis of the above work, they further
extended the catalytic system to the esterification reaction of benzyl alcohol and fatty
alcohol with other alcohols, the corresponding ester products were also obtained. More
importantly, the natural product octranactone can also be prepared by this method with
66% yield. In this catalytic system, the experiment shows that the additive can significantly
enhance the selectivity and activity of the catalytic reaction system. The single-crystal
X-ray diffraction test showed that the chloride ion in the additive linked with CoMo6
forming a supramolecular dimer 2 (CoMo6Cl) served as the key catalytic intermediate,
which then achieves alcohol-to-ester conversion through nucleophilic addition and β-H
elimination. The catalyst enables to achieve an oxidation coupling reaction of various
alcohols (aromatic and aliphatic) under mild conditions and produce the corresponding
esters with high yield [48]. This work shows that Anderson-type POMs, as an important
class of single-metal ion inorganic molecule carriers, are an excellent and environmentally
friendly catalyst with great potential applications in organic reactions. As a multifunctional
catalyst, it changes the structure and properties of the central metal, so that Anderson-type
POMs show excellent catalytic activity and extremely high catalytic efficiency in the green
catalytic oxidation of alcohol.
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2.2. Catalyzation of Organic Modified Anderson-Type POMs (PO)
2.2.1. [I]+PO

In 2017, Wei and co-workers reported an organic ligand-stable β-isomer Anderson-
type POMs: [NH4]β-{[H3NC(CH2O)3]2MnMo6O18}[49]. The sub-nano-cluster acts as a
highly active catalyst applied in selectively catalyzed oxidation of cyclohexanone, cyclo-
hexanol, or a mixture thereof. The results show that the special butterfly topology of
Anderson-type POMs significantly improves the catalytic activity. Additionally, due to
its high selectivity and high catalytic conversion efficiency, it can enable use for the green
industrial synthesis of adipic acid.

2.2.2. [O]+PO

In 2017, the Yu group developed the first organic modified hybrid Fe-based Anderson-
type POMs [N (C4H9)4]3[FeMo6O18(OH)3{(OCH2)3CNH2}] for the aerobic oxidation of
aldehydes to acids in water (Figure 9) [50] with O2 (1 atm). They found that the alkalinity
of additives played a great impact on yield. Benzaldehyde, which was used as substrate,
reacted with different additives at 50 ◦C. When Na2CO3 (pKb = 3.67) was used as additive,
the yield of benzoic acid was 95%. When NaHCO3 (pKb = 7.95) was added in the system,
the yield of benzoic acid decreased to 63%. However, the additive replaced by Na2SO3
(pKb = 6.8) the yield reduced to 26%. While Na2SO4(pKb = 12.0) was chosen as additive, the
lowest yield of benzoic acid was 5%. For organic alkaline additives, such as CH3COONa
and Et3N, the yield of benzoic acid was 83% and 89%, respectively. Regarding additives
containing neutral salts, such as NaBr, KCl, and NaCl, the desired product was obtained
in moderate yield. The acid additive, NH4Cl, avoided the process reaction. These results
indicate that the additive to Fe-based Anderson-type POMs, FeIIIMo6, has a great effect
on the activity of the catalyst, perhaps because of the high tunability of the acid-based
properties of POMs. Subsequently, they also studied the effect of the catalyst dosage and
the reaction temperature on catalytic activity. Changing the amount of the catalyst has
little effect on the yield of the product. The yield of benzoic acid reached the maximum at
50 ◦C, but increasing or decreasing the temperature showed the different result. When the
reaction temperature increased to 70 ◦C, the yield decreases to 96%, possibly due to reduced
contact surface between the oxygen (gas phase) and the catalyst. When the reaction was
performed in a nitrogen sphere, the yield of the obtained products was 5% less. As a control
experiment, the experiments conducted without FeIIIMo6, only a small amount of product
generation can be detected. This Fe-based Anderson-type POMs system was carried out
with oxygen as the sole oxidant under extremely mild aqueous solution conditions, and
suitable to a variety of functional group aldehydes. This method is environmentally friendly,
has a low cost and high catalytic efficiency, as well as the potential application in industry.

The Wei group and co-worker also found that halogen ions (X−) can be incorporated
with sub-nanoscale organoalkoxyl ligands-modified Al-based Anderson-type POMs([(n-
C)4H9)4N]3{AlMo6O18(OH)3[(OCH2)3CCH3]}) in solution, forming the stable supramolec-
ular complex with the binding constant K = 1.53 × 103. This system was used in oxidation
to aldehydes from alcohol. Crystal structure analysis demonstrated this behavior that
binding occurs between the halogen ion X− and the unmodified three hydroxyl groups on
the surface of {AlMo6O18(OH)3[(OCH2)3CCH3]}3−, forming multiple X···H-O [51]. The in-
teraction in this supramolecular sub-nano-cluster system means that its catalytic activity for
oxidation of aldehydes can be adjusted by introduction of halogen–halogen ions and water.
Chlorine ions inhibit by blocking the active center of the cluster, and the catalytic activity
of the cluster can be reactivated by replacing the chloride with water supra-molecules. The
result shows that the presence of multiple synergistic hydrogen bonds is key to overcome
the electrostatic repulsion between halogen ions and Al-based Anderson-type POMs. This
work not only enriches the supramolecular chemistry of Anderson-type POMs, but also
provides a new way of selective catalysts for oxidation reactions.
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3. Summary and Outlook

In order to solve the environmental crisis brought by the traditional production of
chemicals, the research and development of green chemical technology had gradually
become one of the hot fields in chemical research since the 1990s. The use of chemical
technology and methods to reduce or eliminate the production of substances that are
detrimental to human health and the ecological environment is one of the research priorities
in the green industry of chemicals.

Advances and innovations in chemical technology are often driven by new catalytic
materials and new catalytic technologies. In the research in the catalytic field, as a new
type of high-efficiency, green, cheap and safe catalyst for Anderson-type POMs, they
possess excellent redox activity compared with other inorganic acids. At the same time,
it has measure and controlled acidity, as well as excellent dual-functional properties in
the catalytic reactions. Moreover, most POMs possess good solvability. Apart from that,
they not only have a definite structure and size, but also can be further modified by
organic group, giving them more excellent features. In addition, Anderson-type POMs as a
catalyst have more selectivity, few side reactions and retard the corrosion for the equipment.
Therefore, the catalytic application of Anderson-type POMs has a great prospect and
research value in scientific exploration and green chemical technology (Figure 10).

In combination with relevant literature, due to the instability of Anderson-type POMs,
sometimes it is necessary to perform a series of organic–inorganic hybrid modifications
for the parent POMs. The simple Anderson-type POMs are widely used in organic syn-
thesis reactions, and the organic group modified POMs derivatives can perform relevant
structural modification for specific catalytic reactions. It can be seen that the difference of
the molecular structure of POMs has a certain influence on the specific catalytic reaction,
especially in the aspects of catalytic efficiency, selectivity and yield. The POMs modified
by different inorganic cations or organic ligands have their specific characteristics func-
tional, which enlightens us. We can modify and design POMs catalysts for special organic
catalytic reactions, and have achieved the desired effect. Anderson-type POMs displayed
remarkable catalytic characteristics in oxidation of alcohol. They also have extremely high
efficiency in the formation of C-N, C-O and C-C bonds. By comparison to the traditional
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precious metal catalyst, Anderson-type POMs are not only easy to synthesize, but also
have high catalytic activity and recyclability. It can be expected that this catalytic system
will also play the significant role in the selective oxidation of hydrocarbons and will have
overwhelmingly wide application in the field of industrial catalysis.
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This paper aims at paying much attention to investigate Anderson-type POMs in
organic reactions and provide some new strategies and ideas for researchers. It is believed
that, in the near future, a mounting number of Anderson-type POMs will be used in organic
reactions, which will promote the development of organic synthetic chemistry.
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