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Abstract: Novel covalent organic framework (COF) composites containing a bipyridine multimetal
complex were designed and obtained via the coordination interaction between bipyridine groups
and metal ions. The obtained Pt and polyoxometalate (POM)–loaded COF complex (POM–Pt@COF–
TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe–based COF com-
posites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Com-
pared with Co–modified COFs (Co@COF–TB), the optimized bimetallic modified COF composites
(Co0.75Fe0.25@COF–TB) exhibited great performance for electrocatalytic OER activity, showing a
lower overpotential of 331 mV at 10 mA cm−2. Meanwhile, Co0.75Fe0.25@COF–TB also possessed a
great turnover frequency (TOF) value (0.119 s−1) at the overpotential of 330 mV, which exhibited high
efficiency in the utilization of metal atoms and was better than that of many reported COF-based
OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with
bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and
electrocatalytic oxygen evolution.

Keywords: covalent organic frameworks; multimetal; methane; oxygen evolution reaction; electrocatalyst

1. Introduction

With the increasingly serious global energy shortage and environmental pollution, the
exploration of green energy such as solar [1,2], hydrogen [3,4] and methane [5,6] energy has
drawn much attention. Metal, as an important catalyst, has been widely studied and used
in the production and efficient conversion of green energy sources. Specifically, precious
metal materials such as ruthenium-based and iridium–based catalysts are widely used as
efficient electrocatalysts for OER in order to improve the low efficiency of the anodic oxygen
precipitation reaction (OER) caused by the slow kinetics during electron transfer [7–9].
Moreover, platinum–based catalysts exhibited excellent catalytic performance for the direct
conversion of methane [10,11]. However, the scarcity, high cost, and secondary pollution to
the environment have hampered the application of precious metals [12]. Therefore, it is
increasingly important to reduce the use of precious metals, and develop cost-effective and
efficient metal composite catalysts.

As an emerging family of organic porous polymers, covalent organic frameworks
(COFs) were widely reported in adsorption [13–16], sensing [17–20], energy storage [21–24],
optoelectronics [25–28], and catalysis [29–31]. Benefitting from their large surface area,
and regular and adjustable open nanopores, COFs are suitable for doping with externally
useful active metals to be used as a catalyst [12,32]. On the one hand, metal–loaded COF
composite catalysts can effectively reduce the use of metals and improve the efficiency
of atomic utilization. On the other hand, because of the low catalytic activity and poor
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electrical conductivity of primitive COFs, the introduction of metal can effectively improve
the application of COF materials in catalysis, especially electrocatalysis [33,34]. However,
many reports about COF–based catalysts mainly focused on monometallic modified COF
composites. Compared with monometallic loaded COF composites, bimetallic loaded
COF–based catalysts can effectively avoid the reduction in catalytic ability caused by the
loss of metal species and filling of central vacancies during the catalytic process, which can
improve the efficiency of atom utilization [35,36]. Therefore, the construction of efficient
and cost–effective bimetallic or polymetallic loaded COF composite catalysts has become
an important issue that needs to be further investigated.

In this work, we designed and prepared different covalent organic frameworks com-
posites containing bipyridine metal complex. Benefitting from the coordination interactions
between the N atom in bipyridine groups and the metal ions, the POM–Pt@COF–TB and a
series of Co/Fe–based COF composites were obtained. Owing to the presence of active Pt
sites, POM–Pt@COF–TB displayed catalytic performance for the conversion of methane.
After the introduction of different amounts of Fe3+ and Co2+, Co0.75Fe0.25@COF–TB ex-
hibited better performance for oxygen evolution reaction than that of other Co/Fe–based
COF composites. The overpotential of Co0.75Fe0.25@COF–TB (331 mV, 10 mA cm−2) was
superior to that of other composites. Meanwhile, its catalytic performance remained great
after 1000 cycles. This work provides a new perspective for the synthesis of COF compos-
ites containing a bipyridine multimetal complex, and broadens the design of catalysts for
methane conversion and electrocatalytic OER.

2. Results and Discussion

The strategies for constructing metal composite catalysts CoxFe1–x@COF–TB
(x = 0, 0.25, 0.5, 0.75, 1.0) and POM–Pt@COF–TB using COF-TB as the matrix material are
illustrated in Scheme 1. Because of the coordination interaction between nitrogen atoms
and metal ions, COFs (COF–TB) with bipyridine groups within the backbone were selected
for the construction of metal–loaded COF complexes. The COF–TB could be synthesized
and prepared according to [37]. Then, the prepared COF–TB was processed with CoCl2
and FeCl3 in methanol for 12 h at room temperature to obtain a series of Co/Fe–based
COFs composites in order to investigate the effect of different contents of Fe(III) and Co(II)
polymetallic catalysts on the catalysis of OER. Furthermore, COF–TB was sequentially
treated with Pt(DMSO)2Cl2 and POM in CH2Cl2 to construct the target material, POM–
Pt@COF–TB. 11-Molybdo–1–vanadophosphoric acid was selected as the POM for this study.
Various characterization methods were used to certify the successful synthesis of COF–TB
and its metal compounds from different aspects.

In order to verify the crystal structure of the prepared COFs, powder X–ray diffraction
(PXRD) analysis was carried out. Figure 1a exhibited that the PXRD diffraction of COF–TB
was similar to that of a previously reported paper [38]. Meanwhile, the PXRD pattern
of Pt@COF–TB and COF–TB displayed that the peak intensity of Pt@COF–TB decreased
with the modification of Pt (Figure 1a). However, the main position at 3.46◦ (100) was
still obvious, which verified that the crystal structure of Pt@COF–TB was still kept after
the modification of Pt, allowing for the further introduction of POM. After further post-
modification, the PXRD diffraction of POM–Pt@COF–TB displayed that the diffraction
peaks of (100) still preserved, which further proved that the POM–modified COF com-
posites still possessed a good crystal structure. Furthermore, the modification of POM
and Pt could be verified by X–ray photoelectron spectroscopy (XPS) analysis. The result
demonstrated that elements C, N, O, Pt, V, Cl, and Mo were clearly observed in the XPS
spectra of POM–Pt@COF–TB (Figure 1b). The high–resolution Pt 4f spectrum showed two
peaks with binding energies of 76.2 and 72.9 eV (Figure 1c) belonging to the 4f7/2 and
4f2/5 of Pt (II), respectively [10]. Figure 1d showed that there were two peaks at 523.5 and
516.3 eV that could be attributed to the binding energy of V 2p1/2 and V 2p3/2, indicating
the presence of V5+ in the COF complexes [39]. In the high–resolution spectrum of Mo 3d
(Figure 1e), the binding energies of Mo 3d3/2 and Mo 3d5/2 had two peaks at 235.2 and
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232 eV. Meanwhile, the splitting width between them was 3.2 eV, which was consistent with
the reported properties of Mo6+ [39]. A high–resolution P 2p spectrum appeared at 133.1 eV
(Figure 1f), which is characteristic of P5+ in phosphates [40]. Furthermore, EDS mapping
images of POM–Pt@COF–TB exhibited that the elements of C, N, O, Pt, V, Mo, P and Cl
were uniformly distributed (Figures 1g and S9). The Pt element was uniformly exposed on
the surface of POM–Pt@COF–TB, which could offer more activity sites for the reaction.
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Meanwhile, the Fourier transform infrared spectra (FT–IR) of the obtained materials
were measured in order to verify the successful addition of metal and POM. The results
in Figure S5 indicated that there were four characteristic peaks at 1062, 962, 866, and
781 cm−1 in the spectrum of POM, which were attributed to the stretching of P–O, Mo=O,
interoctahedral Mo–O–Mo, and intraoctahedral Mo–O–Mo, respectively [41]. Compared to
the FT–IR of COF–TB, the new stretching vibration peak of POM–Pt@COF–TB at 794 cm−1

may be caused by the stretching of Mo–O–Mo within the octahedra from the modified
POM. Otherwise, compared with the FT–IR of the initial COF-TB, the FT–IR spectra of
Pt@COF–TB and POM–Pt@COF–TB showed that the characteristic peaks present in the
original COFs were conserved except for the red–shifted ν C-N peak at 1259 cm−1, which
further demonstrated the coordination of the metal with the bipyridyl nitrogen atoms in
the COF backbone.
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Furthermore, the porosity data of prepared composites could be obtained from N2
adsorption measurements at 77 K according to the supplementary materials. On the one
hand, the specific surface areas of COF–TB were reduced from 1216 to 965 m2 g−1, and
the pore size distribution calculated by NLDFT method also decreased to 2.05 nm after the
modification of Pt (Figures 2 and S1–S3, Table 1). After the introduction of POM, the specific
surface area of POM–Pt@COF–TB remained at 738 m2 g−1. The pore size distribution of
POM–Pt@COF–TB was concentrated, and the pore size decreased to 1.84 nm compared to
the initial COFs (Figure 2, Table 1). On the other hand, the specific surface areas of COF–TB
decreased from 1216 to 319 m2 g−1 (Figures 2a and S4) with the entry of Fe and Co into
the pore structure of COFs. The pore size of COF–TB was decreased from 2.13 to 1.39 nm
(Figure 2b and Table 1). The reduction in specific surface area and pore size may have
been caused by the introduction of metals or POM in the pore channel. The single pore
size distribution of the obtained COF–based composites demonstrates the uniformity of
the modification.
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Table 1. Porosity data of prepared porous materials.

COFs SBET (m2 g−1) a SL (m2 g−1) b Vtotal (cm3 g−1) c Dpore (nm) d

COF–TB 1216 1263 1.002 2.13
Pt@COF–TB 965 1207 0.8008 2.05

POM–Pt@COF–TB 738 892 0.6408 1.84
Co0.75Fe0.25@COF–TB 319 369 0.5138 1.39

a Specific surface area calculated by the BET method; b specific surface area calculated via the Langmuir method;
c total pore volume at P/P0 = 0.99; d data calculated with the NLDFT method.

To verify the catalytic performance of POM–Pt@COF–TB in the direct conversion of
methane, the reaction was carried out at 60 ◦C according to the supplementary materials.
H2O2 acted as the oxygen provider, and the POM might have acted as a cocatalyst in
the reaction [42]. After that, the products of methane oxidation obtained at the same
time interval were identified with 1H nuclear magnetic resonance spectroscopy (NMR).
The results have been shown in Figure S10; the hydrogens of acetic acid (2.98 ppm) [43],
methanol (3.34 ppm) [44], and ethanol (1.18 and 3.65 ppm) [45] were clearly visible after
the catalysis of POM–Pt@COF–TB. Moreover, the content of methane oxidation products
such as methanol and ethanol further increased with the progress of the catalytic reaction.
After 6 h of reaction, the main catalytic product was acetic acid, which can probably be
attributed to the further oxidation of ethanol. On the basis of these results, it can be inferred
that POM–Pt@COF–TB achieved efficient catalytic performance in the direct methane
conversion reaction, which may be attributed to the combined effect of the introduced Pt
and POM.

In addition, COF–TB was used as a matrix material to construct electrochemical OER
catalysts and to obtain the bimetallic composite COF–TB composites. In the characterization
of a Fe and Co bimetal-incorporated COF–TB composite, PXRD analysis was used to
demonstrate the successful preparation of the composite for the first time. The result
showed that the PXRD spectra of Co0.75Fe0.25@COF–TB that peaked at 3.46◦ belonging to
the facet of (100) were still apparent compared with those of COF–TB, which suggested
that the crystalline structure of the original COFs was still preserved after modification
(Figure 1a). The FT–IR spectra of Co0.75Fe0.25@COF–TB also exhibited the same red–shift of
ν C-N, which might be due to the coordination of the introduced Fe and Co ions with the
bipyridine groups in the COFs (Figure S5). Meanwhile, the successful addition of the metal
ions could be further certified by XPS analysis. Figure 1b displayed that the XPS spectra of
COF–TB indicated the presence of only N, O, and C. Specifically, the N 1s spectra exhibited
the presence of two distinct peaks at 399.5 and 398.3 eV associated with C–N and pyridinic
nitrogen, respectively (Figure 3b). After the impregnation of iron and cobalt, the shake–up
satellite signal in Co 2p and Fe 2p spectra clearly illustrated the existence of Co and Fe
in Co0.75Fe0.25@COF–TB (Figure 3a). For the high–resolution Co 2p spectra, the major
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peaks at about 796.4 and 780.9 eV were assigned to Co 2p1/2 and Co 2p3/2, respectively
(Figure 3d) [46,47]. The Co2+ oxidation state was confirmed in the Co0.75Fe0.25@COF–TB.
Furthermore, the Fe3+ oxidation state could be verified with the signals of Fe 2p1/2 and Fe
2p3/2 located at 780.9 and 796.4 eV, respectively (Figure 3e) [12]. During the impregnation
of cobalt and iron, a shift in the binding energy of pyridinic nitrogen (from 398.3 to 398.5 eV)
was also observed (Figure 3b,c). However, the peak position of C–N (399.5 eV) did not
change, which certified that the complexation of COF–TB with cobalt and iron was only
carried out through its bipyridine units.
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Moreover, the pore structure can be viewed clearly in the transmission electron mi-
croscopy (TEM) images of Co0.75Fe0.25@COF–TB (Figure S6). The one–dimensional chan-
nels with regularity can provide a pathway for the free flow of water molecules. Figure 3f
showed that the distribution of C, O, N, Fe, and Co was uniform on the whole, which indi-
cated that the synthesized COF composites were homogeneous. The Co and Fe elements
did not aggregate and were completely exposed on the surface of Co0.75Fe0.25@COF–TB,
which provided more active sites for the electrocatalytic OER. Moreover, the EDS spectra
of Co0.75Fe0.25@COF–TB displayed that the loading of Co and Fe accounted for 12.65 and
3.09 wt % of the total COF, respectively (Figure S7). These results indicated the successful
modification of metals in COFs, and the electrocatalytic properties of composites were
then measured.

To explore the electrocatalytic performance of the Co/Fe–based COF composites, the
oxygen precipitation reaction of the prepared metal–loaded COF composites was measured
using a 1.0 M KOH solution as the electrolyte. First, the LSV curve of COF–TB was almost
unchanged when the voltage rose to 1.7 vs. the reversible hydrogen electrode (RHE)
(Figure 4a). The comparison of the LSV curves of other materials clear exhibited that the
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primitive COF–TB did not contribute to the electrocatalytic OER. After the coordination of
metal ions, the current density was increased in different degrees. In the case of single–metal
modification, the OER activity of the COF composites with the addition of Co was higher
than that of Fe. Meanwhile, considering that the addition of an appropriate quantity of Fe
can motivate strong electronic interactions between Fe and Co, the OER of bimetallic COFs
with different counts of Fe was also measured. Figure 4a displayed that the overpotentials
of Co0.25Fe0.75@COF–TB (364 mV), Co0.5Fe0.5@COF–TB (362 mV), and Co0.75Fe0.25@COF-TB
(331 mV) were much lower than those of Co@COF–TB (427.8 mV) and Fe@COF–TB, which
might be due to the significant synergistic effect between Co and Fe. Additionally, the Tafel
slope of Co0.75Fe0.25@COF–TB was 88 mV dec−1, which was also much smaller than that
of the others, and exhibited faster reaction kinetics and better electrocatalytic properties
(Figure 4b).
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Furthermore, the charge transfer ability of the surface of COFs also impacted their
catalytic performance. Therefore, the electrochemical impedance spectroscopy (EIS) of
metal coordinated COF composites were also tested. Figure S11 showed that the resistance
of the charge transfer of Co@COF–TB was much smaller than that of the original COF–TB
and Fe@COF–TB. Figure 4c displayed that the charge transfer resistance of Co@COF–
TB could be effectively reduced with the further introduction of Fe. Among the metal
COF composites with different amounts of bimetallic modification, the charge transfer
resistance of Co0.75Fe0.25@COF–TB was the smallest (Figures 4c and S11), which further
explicated the better OER activity of Co0.75Fe0.25@COF–TB. The double–layer capacitor (Cdl)
of Co0.75Fe0.25@COF–TB was 1.12 mF cm−2 (Figure 4f), and the electrochemically active
surface area (ECSA), calculated according to Figure 4e, was 28 cm−2 ECSA. The larger value
of ECSA allowed for the active sites on the surface to be more efficiently in contact with
water molecules for electron transfer. The electrochemical stability of Co0.75Fe0.25@COF–TB
was also measured under the same conditions, and the results show that the overpotential
of Co0.75Fe0.25@COF–TB increased by 7 mV after 100 cycles, and only 3 mV after another
1000 cycles (Figure 4d), which demonstrated that the composite catalyst exhibited great
stability in the oxygen reduction process. Meanwhile, with cobalt and iron ions as the
active sites, the turnover frequency (TOF) of Co0.75Fe0.25@COF–TB at an overpotential
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of 330 mV was 0.119 s−1, which indicated highly efficient metal atom utilization and
better than that of other metal–containing COFs catalysts such as COF–TpDb–TZ–Co [23],
Co@COF–Pyr [48], Co0.5V0.5@COF–SO3 [36] and Co–TpBpy [38] (Table S1). Furthermore,
the relationship between TOF value and overpotential is visualized in Figure S12, showing
a positive correlation between TOF and current density. On the whole, Co0.75Fe0.25@COF–
TB with a larger specific surface area exhibited better electron transfer capability and
OER performance.

3. Materials and Methods
3.1. Materials and Reagents

2,4,6–Trihydroxybenzene–1,3,5–tricarbaldehyde was ordered from Jilin Yanshen Tech-
nology Co., Ltd., Jilin, China. 2,2’–Bipyridine–5,5’–diamine, acetic acid (99%) was ob-
tained from Bide Pharmatech Co., Ltd., Shanghai, China. 1,3,5-Trimethylbenzene (97%),
1,4–dioxane (97%), potassium tetrachloroplatinate(II) (K2PtCl4, 98%), deuterium oxide
(99.9%), sodium metavanadate (99.0%), sodium phosphate dibasic dodecahydrate (99%),
and sodium molybdate dihydrate (99.0%) were prepared from Aladdin Co., Ltd., Shang-
hai, China. A total of 30 wt % H2O2 aqueous water, dimethylformamide (DMF, ≥99.5%),
isopropyl alcohol (≥99.7%), and methanol (≥99.5%) were bought from Xilong Scientific
Co., Ltd., Shantou, China. Iron(III) chloride hexahydrate and cobalt(II) chloride were ob-
tained from Shanghai Macklin Biochemical Co., Ltd., Shanghai, China. The preparation of
COF–TB [37] and 11–molybdo–1–vanadophosphoric acid (polyoxometalates, POM) [49,50]
was based on the supplementary materials. The preparation of COF–TB needs to be carried
out at 120 ◦C without water and oxygen, while the preparation of POM needs to be carried
out under normal conditions. The prepared products were dried under vacuum overnight
without special instructions.

3.2. Synthesis of CoxFe1-x@COF–TB (x = 0, 0.25, 0.5, 0.75, 1)

COF–TB (10 mg) was impregnated in a mixture of 15.3x mg CoCl2 and 9.95 (1 – x) mg
FeCl3 prepared with anhydrous methanol as the solvent. Then, the solution was stirred
overnight and washed with methanol. CoxFe1–x@COF–TB (x = 0, 0.25, 0.5, 0.75, 1) could be
obtained after being dried for 6 h.

3.3. Synthesis of Pt@COF–TB and POM–Pt@COF–TB

Pt(DMSO)2Cl2 (4.68 mg, 0.01 mmol) and COF–TB were dispersed in 4 mL of anhydrous
dichloromethane, and the mixture was stirred at room temperature for 24 h. After being
centrifuged, the collected solids were washed and extracted in a Soxhlet extractor with
dichloromethane. Lastly, the powder Pt@COF–TB was collected after having been dried
overnight at 60 ◦C.

For the preparation of POM–Pt@COF–TB, POM (60.83 mg) was dissolved in ultrapure
water (20 mL). Then, Pt@COF–TB was impregnated in the mixture solution and stirred
at room temperature for 12 h. After being washed with ultrapure water, the powder
(POM–Pt@COF–TB) was obtained after having been dried.

4. Conclusions

In conclusion, a series of novel COF composites containing a bipyridine multimetal
complex were designed and synthesized. Specifically, the Pt and POM–modified COFs
(POM–Pt@COF–TB) exhibited great catalysis for methane conversion. In addition, a se-
ries of Co/Fe-based COFs materials were fabricated. The optimized bimetallic composite
(Co0.75Fe0.25@COF–TB) possessed low overpotential and excellent stability. The overpo-
tential of Co0.75Fe0.25@COF–TB was 331 mV in a 1 M KOH solution at a current density
of 10 mA cm−2. Remarkably, its great performance remained after 1000 CV scans, which
might have been due to the better utilization of the loaded cobalt by the introduction of iron.
Co0.75Fe0.25@COF–TB exhibited a great TOF value (0.119 s−1) at the overpotential of 330 mV,
which exhibited high efficiency in the utilization of metal atoms and was better than that of
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many reported COFs–based OER electrocatalysts. This work provides a new perspective
for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the
application of COFs in methane conversion and electrocatalytic oxygen evolution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27165193/s1. Scheme S1: synthesis of COF–TB; Figure S1:
BET specific surface area plot of COF–TB; Figure S2: BET specific surface area plot of Pt@COF–TB;
Figure S3: BET specific surface area plot of POM–Pt@COF–TB; Figure S4: BET specific surface area
plot of Co0.75Fe0.25@COF–TB; Figure S5: FT-IR spectra of POM, COF–TB, Pt@COF-TB, POM-Pt@COF–
TB and Co0.75Fe0.25@COF–TB; Figure S6: TEM of Co0.75Fe0.25@COF–TB; Figure S7: EDS spectra
of Co0.75Fe0.25@COF-TB; Figure S8: TEM of POM–Pt@COF–TB; Figure S9: EDS spectra of POM–
Pt@COF–TB; Figure S10: 1H NMR spectra of the methane oxidation reactions products; Figure S11:
Nyquist plots of COF–TB, Fe@COF–TB and Co@COF–TB; Figure S12: TOF value vs. overpotential
of Co0.75Fe0.25@COF–TB; Table S1: comparison of the reported OER catalytic performance of metal–
containing COFs catalysts.
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