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Abstract: Alzheimer’s disease (AD) is one of the major neurodegenerative disorders, and its incidence
increases globally every year. Currently, available AD drugs symptomatically treat AD with multiple
adverse effects. Gefitinib (GE) is an epidermal growth factor receptor (EGFR) kinase inhibitor.
EGFR is the preferred target for the treatment of AD, whereas the effect of GE in AD conditions
is limited. The present study was designed to explore the ameliorative potential of GE in Aβ1–42

oligomer-induced neurotoxicity in AD mice. AD was induced by intracerebroventricular (i.c.v.)
injection of Aβ1–42 oligomer (4 µg/4 µL) into the lateral ventricles of the mouse brain. The test
compound, i.e., GE (2 and 4 mg/kg of body weight), was administered orally on days 10, 13, 16,
19, 22, 25, and 28, and the reference drug, i.e., donepezil (DP, 2 mg/kg), was administered orally
from the 10th to 28th days. The behavioral changes were screened by the Morris water maze (MWM)
test. Furthermore, biomarkers i.e., brain acetylcholinesterase (AChE), thiobarbituric acid reactive
substances (TBARS), and reduced glutathione (GSH) levels were estimated from brain samples.
The AD-associated histopathological changes were analyzed by hematoxylin and eosin staining.
The administration of GE significantly ameliorated the AD-associated behavioral, biochemical, and
histopathological changes. The ameliorative effect of GE against the Aβ1–42 oligomer-associated
neurotoxicity was due to its potent inhibition of EGFR kinase activation, as well as its antioxidant
and antilipid peroxidative effect.

Keywords: acetylcholinesterase; donepezil; gefitinib; intracerebroventricular; Morris water maze; neu-
rodegeneration

1. Introduction

Alzheimer’s disease (AD) is one of the major neurodegenerative disorders accounting
for more than 60–80% of dementia cases globally [1]. On the basis of the various hypotheses
behind AD progression, researchers have proposed multiple pharmacological treatment ap-
proaches. Clinically, approved drugs for the management of AD are limited. Cholinesterase
inhibitors (donepezil (DP), rivastigmine, and galantamine), glutamate regulators (me-
mantine), orexin receptor antagonists (suvorexant), and anti-amyloid antibody molecules
(aducanumab) are recommended for the management of AD [2,3]. However, these drugs
also produce a variable degree of side-effects such as loss of appetite, increased frequency of
bowel movements, constipation, mental confusion, and dizziness [4–6]. Moreover, various
targets have been explored in AD management, whereas selective target active agents and
test reports in experimental animals are limited.

In AD conditions, the nervous system undergoes progressive neuron cell loss and
decreases the dendritic neuron sprouting process, which leads to enhanced brain shrinkage,
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i.e., atrophy, followed by neuronal death [7]. The primary symptoms of AD are declin-
ing thinking ability, alternated neuronal behavioral and social skills, and effects on the
day-to-day lifestyle [2,8]. The regulation of dendritic neuron connection with the neu-
ronal sprouting process can ameliorate AD and other neurodegenerative disorders [9].
Furthermore, the accumulation of amyloid precursor proteins (APPs), tau (τ) proteins, and
amyloid-β (Aβ) peptides are primary markers of the early stage of AD progression [10].
Experimentally, the amyloid-β oligomer is known to activate the epidermal growth factor
receptor (EGFR) and also alters the intracellular kinase signaling cascade pathways which
lead to effects on the neuronal sprouting process and neuronal cell growth [11]. Hence, the
amyloid-β oligomer-associated alteration of EGFRs and their kinase contributes to the AD
progression and can reduce the long-term potentiation of neuronal cells [9,12]. Currently,
inhibition of EGFR kinase acts as a key target for the management of AD [13].

Clinically, selective inhibitors of EGFR kinase are commonly used in cancer treatments
such as erlotinib, lapatinib, and gefitinib (GE) [14]. Gefitinib (GE) was the first selective
inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase activation, and it
regulates cell growth and cell division via interactions of antiapoptotic and Ras signaling
cascade mechanisms of cells [15,16]. GE is commonly used for lung cancer, certain breast
cancers, and other cancers. Initially, it was FDA-approved for non-small-cell lung cancer
(NSCLC) [15,17,18]. However, it is also recommended following the failure of platinum-
based compound and docetaxel chemotherapies for lung cancer patients [19]. Furthermore,
epidermal growth factor receptor inhibitors can regulate amyloid-β biosynthesis and
clearance in brain tissue. EGFR is one of the potential drug targets for the management of
memory dysfunction [13]. Hence, newer anticancer agents such as GE can be repurposed
for the management of AD via selective inhibition of EGFR actions [20]. However, in June
2005, FDA withdrew GE for usage in new cancer patients due to its lack of evidence and
questionable life extension [21]. GE is now used for certain cancers, and it has also been
investigated for its potential use in neuroprotection and prevention of neurodegenerative
disorders due to its proposed neuronal sprouting action [20]. Hence, this study investigated
the effect of an EGFR kinase inhibitor, i.e., GE, in ameliorating β-amyloid oligomer-induced
AD in Swiss albino mice.

2. Results
2.1. Effect of GE on AD-Induced Behavioral Changes

In the present study, the i.c.v. injection of Aβ1–42 oligomer into the lateral ventricle of
mouse brain showed significant (p < 0.05) impairment of memory and cognition function in
MWM tests when compared to the normal animal group. The administration of GE (2 and
4 mg/kg) significantly ameliorated the above neurobehavioral changes when compared to
the AD group. The effect of GE (4 mg/kg.) showed a similar effect to that of the reference
drug, i.e., DP (2 mg/kg; p.o.)-treated group. The details are described in the next section.

2.2. Effect of GE on Escape Latency Time (ELT) and Time Spent in the Target Quadrant (TSTQ) in
MWM Test

Aβ1–42-induced AD mice (4 µg/4 µL; i.c.v.) showed significant (p < 0.05) impairment
of cognitive dysfunction in the MWM test as an indication of increased ELT and decreased
TSTQ values when compared to the normal control group. The administration of GE (2
and 4 mg/kg; p.o.) significantly ameliorated the above ELT and TSTQ responses when
compared to the AD group. These ameliorative effects were similar to those of the reference
drug, i.e., DP (2 mg/kg; p.o.)-treated group. The results are illustrated in Figures 1 and 2.
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Figure 1. Effect of GE on ELT in MWM test assessment. Digits in parentheses indicate the dose in
mg/kg. Data are expressed as the mean ± SD, n = 8 mice per group. a p < 0.05 vs. normal group;
b p < 0.05 vs. AD group. Abbreviations: AD, Alzheimer’s disease; DP, donepezil; ELT, escape latency
time; GE, gefitinib; Sec, seconds.
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Figure 2. Effect of GE on TSTQ in MWM test assessment. Digits in parentheses indicate the dose in
mg/kg. Data are expressed as the mean ± SD, n = 8 mice per group. b p < 0.05 vs. Q4 normal group;
c p < 0.05 vs. AD group. Abbreviations: AD, Alzheimer’s disease; DP, donepezil; GE, gefitinib; Q,
quadrant; Sec, seconds; TSTQ, time spent in the target quadrant.

2.3. Biomarker Estimations

On the 28th day, all the animals were anesthetized with diethyl ether and then sacri-
ficed before collecting the brain tissues. Thereafter, under a stereo microscope, different
parts of the brain such as the cortex, hippocampus, and cerebellum were precisely dissected
for the estimation of tissue biomarker changes such as AChE, TBARS, and GSH levels. The
results of all biomarker estimations are explained below.
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Effect of GE on Aβ Oligomer-Induced AD Tissue Biomarker Changes

The administration of Aβ1–42 oligomer (4 µg/4 µL; i.c.v.) showed significant (p < 0.05)
alteration of brain tissue biomarkers, i.e., an increase in AChE and TBARS activity and a
decrease in GSH activity, in all the brain regions such as the hippocampus, cerebral cortex,
and cerebellum when compared to the normal control group. The administration of GE
(2 and 4 mg/kg; p.o.) significantly attenuated the Aβ1–42 oligomer-induced changes in
tissue biomarkers when compared to the AD group in a dose-dependent manner. These
ameliorative effects of GE were similar to the reference drug, i.e., DP (2 mg/kg; p.o.)-treated
group. The results are indicated in Tables 1–3.

Table 1. Effect of GE on the changes in AChE levels in brain tissue biomarkers.

Groups Hippocampus Cortex Cerebellum

Normal 21.5 ± 1.5 20.7 ± 2.3 20.2 ± 1.3

AD 41.1 ± 1.3 a 42.5 ± 1.2 a 36.4 ± 1.5 a

AD + GE (2) 28.9 ± 0.7 b 29.2 ± 1.7 b 30.3 ± 1.7 b

AD + GE (4) 23.5 ± 1.1 b 21.4 ± 1.6 b 20.5 ± 1.6 b

AD + DP (1) 22.3 ± 1.3 b 22.9 ± 1.4 b 21.3 ± 1.4 b

Digits in parentheses indicate the dose in mg/kg; the value of AChE level is expressed as µmol/mg of protein/min.
Data are expressed as the mean ± SD, n = 8 mice per group. a p < 0.05 vs. normal group; b p < 0.05 vs. AD group.
Abbreviations: AD, Alzheimer’s disease; DP, donepezil; GE, gefitinib.

Table 2. Effect of GE on the changes in TBARS levels in brain tissue biomarkers.

Groups Hippocampus Cortex Cerebellum

Normal 4.2 ± 0.11 4.2 ± 0.13 3.5 ± 0.13

AD 7.5 ± 0.09 a 7.9 ± 0.23 a 5.9 ± 0.08 a

AD + GE (2) 4.9 ± 0.05 b 4.7 ± 0.14 b 4.3 ± 0.11 b

AD + GE (4) 4.3 ± 0.02 b 4.3 ± 0.15 b 3.7 ± 0.09 b

AD + DP (1) 4.2 ± 0.03 b 4.2 ± 0.08 b 3.6 ± 0.14 b

Digits in parentheses indicate the dose in mg/kg; the value of TBARS level is expressed as nmol/mg of protein.
Data are expressed as the mean ± SD, n = 8 mice per group. a p < 0.05 vs. normal group; b p < 0.05 vs. AD group.
Abbreviations: AD, Alzheimer’s disease; DP, donepezil; GE, gefitinib.

Table 3. Effect of GE on the changes in GSH levels in brain tissue biomarkers.

Groups Hippocampus Cortex Cerebellum

Normal 81.6 ± 1.4 88.1 ± 1.3 74.6 ± 2.1

AD 52.9 ± 0.5 a 58.5 ± 1.6 a 54.2 ± 0.8 a

AD + GE (2) 66.9 ± 1.6 b 70.2 ± 2.1 b 66.9 ± 1.7 b

AD + GE (4) 77.6 ± 1.2 b 83.7 ± 2.2 b 71.7 ± 2.2 b

AD + DP (1) 79.7 ± 1.5 b 86.4 ± 1.3 b 73.1 ± 1.2 b

Digits in parentheses indicate the dose in mg/kg; the value of GSH level is expressed as µmol/mg of protein.
Data are expressed as the mean ± SD, n = 8 mice per group. a p < 0.05 vs. normal group; b p < 0.05 vs. AD group.
Abbreviations: AD, Alzheimer’s disease; DP, donepezil; GE, gefitinib.

2.4. Effect of GE on AD-Induced Histopathological Changes

The administration of Aβ1–42 oligomer (4 µg/4 µL; i.c.v.) was shown to potentially
induce AD. AD-associated neuronal changes were observed in the pyramidal cells of the
Cornu Ammonis (CA1) region and vesicular nuclei in the hippocampus and cortex of
mouse brain when compared to the normal animal group. The administration of GE (2
and 4 mg/kg; p.o.) showed significant ameliorative effects against the Aβ1–42-induced
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AD-associated histopathological changes. Furthermore, these results were similar to the
reference drug (DP; 2 mg/kg) treatment. The results of the effect of GE on AD-associated
histopathological changes are illustrated in Figure 3a–e (hippocampus) and Figure 4a–e
(cortex).
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Figure 3. Effect of GE on AD-induced histopathological changes in CA1 region of the hippocampus.
(a–e) Histopathological images of coronal sections of mouse brain tissue of normal, AD, and GE (2
and 4 mg/kg)- and DP (2 mg/kg)-treated groups, respectively. (a) Normal arrangement of pyramidal
cells of the CA1 region and vesicular nuclei in hippocampus regions. The thin arrow shows neuron
loss and neurofibrillary degeneration and neuronophagia, the thick arrow shows nuclear pyknosis,
and the arrowhead shows vacuolation in the CA1 region of the hippocampus. (b) Typical colliquative
necrosis, characterized by disrupted cell membranes, fragmented nuclei, and inflammatory cells,
indicating that the Aβ oligomer caused neuronal structural pathological injuries in mice. (c–e)
Reversal of Aβ1–42-induced histopathological changes. Microscopic examinations were performed
under 400× light microscopy; scale bar = 35 µm.
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Figure 4. Effect of GE on AD-induced histopathological changes in the cortex region of the mouse
brain. (a–e) Histopathological images of coronal sections of mouse brain tissue of normal, AD, and
GE (2 and 4 mg/kg)- and DP (2 mg/kg)-treated groups, respectively. (a) Normal arrangement in
cortex regions of the mouse brain. The thin arrow shows neuron loss and neurofibrillary degeneration
and neuronophagia, the thick arrow shows nuclear pyknosis, and the arrowhead shows vacuolation
in cortex regions. (b) Typical colliquative necrosis, characterized by disrupted cell membranes,
fragmented nuclei, and inflammatory cells, indicating that the Aβ oligomer causes neuronal structural
pathological injuries in mice. (c–e) Reversal of Aβ1–42-oligomer induced histopathological changes.
Microscopic examinations were performed under 400× light microscopy; scale bar = 35 µm.
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3. Discussion

The administration of Aβ1–42 oligomer (4 µg/4 µL; i.c.v.) showed significant (p < 0.05)
induction of AD, reflected by brain histopathological changes in hippocampus and cortex
region such as neuron loss, neurofibrillary degeneration, neuronophagia, nuclear pyknosis,
vacuolation, amyloid deposition, and tau aggregation. In the Morris water maze test,
ELT was significantly increased and TSTQ was significantly decreased in the AD group,
indicating a clear loss of memory in the AD group. Similarly, there was an alteration in
the tissue biomarkers i.e., an increase in AChE and TBARS activity and a decrease in GSH
activity in the hippocampus, cerebral cortex, and cerebellum of mouse brain, highlighting
the increased oxidative stress in the AD group. However, the administration of GE (2
and 4 mg/kg; p.o.) and DP (2 mg/kg; p.o.) significantly ameliorated the Aβ1–42-oligomer-
associated AD changes and restored the histopathological, behavioral, and tissue biomarker
changes close to the normal level. These indicated a potential ameliorative effect of GE
against the Aβ1–42 oligomer-associated AD.

Various experimental reports evidenced that the Aβ1–42 oligomer enhances β-amyloid
and tau protein accumulation [22]. Moreover, β-amyloid also enhances senile plaque for-
mation and neuronal degeneration, leading to the progression of mild to severe AD [23,24].
Furthermore, the accumulation of Aβ1–42 tends to produce neurotoxic effects, such as induc-
ing oxidant stress and promoting microglial activation [25,26]. Current studies also revealed
that the administration of Aβ1–42 oligomer is known to produce free radicals (decreased
GSH) and neuroinflammation (elevation of TBARS level). However, the administration
of GE attenuates the Aβ1–42 oligomer-induced oxidative stress and neuroinflammation.
Current results agree with other studies, where GE showed potential antioxidant effects
via free-radical (DPPH (2,2-diphenyl l-1-picrylhydrazyl) and hydroxyl radical) scavenging
actions [27,28].

Furthermore, the molecular mechanisms underlying the pharmacological and genetic
effects of EGFR revealed that Aβ enhances the EGFR kinase activation in the hippocampus
and cortex regions, and it can cause neuroinflammation, neurodegeneration, and memory
dysfunctions [28,29]. These results also agree with other studies, where EGFR activation
with Aβ1–42 oligomer treatment caused neurodegeneration via the expression of kinase
proteins involved in EGFR/Ras signaling pathways [13]. Furthermore, a lower GE oral
dose (1–5 mg/kg) with intermittent administration was reported to produce a better effect
on neuroprotection than the daily dose (40 mg/kg; cancer treatment dose) regimen [13,30].
Current results and literature reports support our histopathological observations.

Furthermore, the administration of Aβ1–42 oligomer enhances the brain’s AChE ac-
tivity (hippocampus, cortex, and cerebellum regions). This is the hallmark of Aβ1–42
oligomer-induced neurodegeneration and memory dysfunction [31]. The inhibitor of acetyl-
cholinesterase activity, i.e., donepezil, is known to produce neuroprotective, antioxidant,
and anti-inflammatory actions in brain tissue [32]. Similarly, GE showed a reduction in
AChE against the Aβ1–42 oligomer-associated neurotoxicity. GE possesses potential antioxi-
dant and anti-inflammatory properties for neuroprotective actions [27,33]. Moreover, GE
is known to possess an ameliorative effect on nicotinic acid-based parasympathomimetic
stimulation and arecoline-induced activation of EGFR via muscarinic acetylcholine recep-
tor (mAChR3) [34]. However, autocrine acetylcholine readily activates EGFR signaling
via muscarinic receptor-3 (M3), which leads to altering the neuronal rejuvenation pro-
cess [35,36]. Hence, the treatment of GE and DP was shown to produce a reduction in
AChE activity level, which is essential for the improvement of memory functions. This is
the first report to reveal that the treatment of GE produced a reduction in AChE activity
level and improvement of memory function against the Aβ1–42 oligomer toxicity.

4. Materials and Methods
4.1. Animals

In this research work, disease-free Swiss albino male mice (12 months old; 20–35 g)
were used. Animals were maintained in the central animal house at AIMST University with
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a standard laboratory diet (Soon Soon Oilmills Sdn Bhd, Penang, Malaysia). The animal
was allowed access to water ad libitum. Natural light and dark cycles (12 h/12 h) were
maintained. The macro-environmental temperature and humidity of animal houses were
25 ◦C and 50%. The experimental protocol was approved by the AIMST University Animal
Ethics Committee (AUAEC/FOM 2020/02—Amendment No. 1). Animals were cared for
as per the guidelines of AUAEC.

4.2. Chemicals

Amyloid (Aβ1–42; Biotek Abadi, Cayman Chemicals, USA), gefitinib (Merck Sdn. Bhd.,
Selangor, Malaysia), donepezil (Alkem Laboratories Limited, Lower Parel, Mumbai, In-
dia), ketamine hydrochloride injection (Dechra Pharmaceuticals PLC, Northwich, United
Kingdom), xylazine (XYLAMAX®, Bimeda Canada), 5,5′-dithiobis-(2-nitrobenzoic acid),
acetylthiocholine iodide, thiobarbituric acid, 1,1,3,3-tetra methoxy propane, reduced glu-
tathione, Folin-Ciocâlteu reagent, and bovine serum albumin were purchased from Merck
& Co., Inc., Osaka, Japan.

4.3. Preparation of Aβ1–42 Oligomer

Aβ1–42 oligomer solution was freshly prepared before intracerebroventricular (i.c.v.)
injection. Briefly, Aβ1–42 protein was dissolved in filtered phosphate-buffered saline (PBS:
1 µg/µL), consisting of 10 mM sodium-dihydrogen phosphate (NaH2PO4), disodium
hydrogen phosphate (Na2HPO4), and 100 mM of sodium chloride (NaCl) dissolved in
glass-distilled deionized water (pH = 7.5). The Aβ1–42 solution was then incubated at 37 ◦C
for over 3 days before use [37].

4.4. Induction of AD Mouse Model

In mice, AD was induced by intracerebroventricular (i.c.v.) injection of Aβ1–42 oligomer
under anesthetic condition by a mixture of ketamine (75 mg/kg) and xylazine (5 mg/kg).
According to the established procedure by Paxinos and Franklin [38], a total of 4 µg/4 µL
of Aβ1–42 oligomer solution was injected into the lateral ventricles of mouse brain (2 µL
on each side) at stereotaxic coordinates (anteroposterior—0.2 mm; mediolateral—1.0 mm;
dorsoventral—2.5 mm) taken from the atlas of the mouse brain [39]. Animals in the normal
group received 0.9% NaCl injections, and animals in all the other groups were injected with
Aβ1–42 solution.

4.5. Experimental Protocol

Five groups of male adult Swiss albino mice (n = 8) were employed in this study.
Group I served as a normal control group. Group II served as the AD group. AD was
induced by intracerebroventricular (i.c.v.) injection of Aβ1–42 (4 µg/4 µL) into the lateral
ventricles of mouse brain (2 µL bilaterally). Groups III and IV served as the test compound
treatment groups, i.e., gefitinib (GE) at doses of 2 and 4 mg/kg, with oral administration on
days 10, 13, 16, 19, 22, 25, and 28. Group V served as the reference drug treatment group,
i.e., donepezil (DP, 2 mg/kg), with oral administration from the 10th to 28th days.

Behavioral training for the Morris water maze test (MWM) was performed from the
23rd to the 26th day, and the behavioral response was recorded on the 27th day. On the 28th
day, the animal was sacrificed, and brain tissue samples were collected for histopathological
evaluation and biomarker estimation. The molecular mechanisms were confirmed by
estimation of biomarkers such as brain acetylcholinesterase (AChE), reduced glutathione
(GSH), and thiobarbituric acid reactive substances (TBARS) activities in the hippocampus,
cortex, and cerebellum of mouse brain. The micro-anatomical changes were analyzed by
histopathological observation of mouse brains using hematoxylin and Eosin (H&E) stain.
The details of the experimental protocol are illustrated in Figure 5.
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Aβ1–42, beta-amyloid peptide; AD, Alzheimer’s disease; DP, donepezil; GE, gefitinib; i.c.v.; intracere-
broventricular; MWM, Morris water maze test.

4.6. Screening of the Effect of GE in AD-Associated Neurobehavioral Changes

Neurobehavioral changes associated with AD were assessed at different time intervals.
Behavioral training for the Morris water maze test (MWM) was performed from the 23rd to
26th day, and, on the 27th day, the behavioral response was recorded.

Assessment of Learning and Memory Using the Morris Water Maze (MWM) Test

The MWM test was modified from a previously described method by Morris [40]
and Parle [41]. The MWM test was conducted to assess the learning and memory of the
animals. Behavioral training for MWM was performed from the 23rd to the 26th day, and
the behavioral response was recorded on the 27th day. This is a swimming-based model
where the animal learns to escape onto a hidden platform. The apparatus consisted of a
large circular pool (150 cm in diameter, 45 cm in height, filled to a depth of 30 cm with
water maintained at 37 ◦C± 1 ◦C). The MWM test apparatus was divided with two threads
fixed at right angles to each other on the rim of the pool, and the tank was divided into four
equal quadrants. A submerged platform (10 cm2) was placed inside the target quadrant,
1 cm below the surface of the water (Figure 6). The position of the platform was kept
unaltered throughout the training session. Each day, four consecutive training trials were
given to each animal with intertrial gaps of 5 min. The mouse was gently placed in the
water between quadrants, facing the wall of the pool with the drop location changing for
each trial, and allowed 90 s to locate the submerged platform. The animal was allowed
to stay on the platform for 20 s. If it failed to find the platform within 90 s, it was guided
gently onto the platform and allowed to remain there for 20 s. Each animal was subjected
to four training trials each day for four consecutive days (Table 4). The starting position
was changed with each exposure as mentioned below, and the target quadrant (Q4) was
kept constant throughout the training period. On day 4, the escape latency time (ELT) to
locate the hidden platform in MWM was noted as an index of acquisition or learning.
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Table 4. Behavioral assessment patterns of days vs. quadrants.

Days Quadrants

Day 1 Q1 Q2 Q3 Q4

Day 2 Q2 Q3 Q4 Q1

Day 3 Q3 Q4 Q1 Q2

Day 4 Q4 Q1 Q2 Q3

On the fifth day, the water was made opaque with white-colored nontoxic dye. The
platform was removed, and each mouse was allowed to explore the pool for 90 s. In all four
quadrants, the mean time spent was noted. The mean time spent by the mouse in the target
quadrant searching for the hidden platform was noted as an index of retrieval or memory.
The experimenter, after dropping the animal at the pool, always stood in the same position.
Proper care was taken regarding the relative location of the water maze concerning other
objects in the laboratory so that prominent visual clues were not disturbed during the total
duration of the study. All of the trials were completed between 9:00 a.m. and 6:00 p.m.

4.7. Estimations of Tissue Biomarker Changes

On the 28th day, all the animals were anesthetized with diethyl ether. Thereafter, ani-
mals were sacrificed, and brain tissues were collected for the estimation of brain biomarker
changes such as AChE, TBARS, and GSH levels. The details of all biomarker estimations
are explained below.

4.7.1. Estimation of AChE as an Indication of Cholinergic Neurochemical Alteration
in CNS

AChE levels of brain tissues were estimated using the method described by Ellman
et al. [42]. Briefly, 500 µL of brain supernatant was mixed with 0.25 mL of Ellman’s reagent
5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB (0.001 M)), and it was allowed to develop a
yellow color chromogen. The principles of in vitro AChE estimation are described below.

Acetyl thiocholine iodide
Cholinesterase → Thiocholine + Acetate . . . Step 1.

Thiocholine + DTNB→ Trinitrobenzoate chromogen . . . Step 2.
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In step 1, acetylcholine esterase reacts with acetylthiocholine iodide and forms the
thiocholine and acetate products. In step 2, thiocholine reacts with DTNB to form the
trinitrobenzene chromogen (yellow color). Corresponding to changes in absorbance (OD,
optical density), the changes in yellow color chromogens were quantified using a spec-
trophotometer (DU 640B Spectrophotometer, Beckman Coulter Inc., California, USA) at 420
nm. The OD values were used for further calculation of the AChE activity level according
to the following formula:

R =
δ O.D.×Volume of the assay (3 mL)

ε×mg of protein
,

where ‘R’ is the rate of enzyme activity in ‘n’ moles of acetylthiocholine iodide hydrolyzed/
min/mg of protein, ‘δ O.D.’ is the change in absorbance/min, and ‘ε’ is the extinction
coefficient, i.e., 13,600/M/cm.

4.7.2. Estimation of TBARS as an Indication of Lipid Peroxidation

The TBARS level of brain tissue was estimated as described by Ohkawa et al. [43].
Briefly, 0.2 mL of brain tissue supernatant of homogenate was mixed with 0.2 mL of 8.1%
sodium, 0.2 mL of 8.1% sodium dodecyl sulfate, 1.5 mL of 30% acetic acid, and 1.5 mL of
0.8% of thiobarbituric acid (TBA) in a test tube. The total volume of 4 mL was made up with
distilled water. Next, test tubes were incubated at 90 ◦C for 1 h. After that, 1 mL of distilled
water was added, before centrifuging at 4000 revolutions per minute (rpm) for 10 min.
A pink color chromogen was developed. The principle of in vitro TBARS estimation is
described below.

MDA + TBA→ MDA− TBA2.

In the lipid peroxidation process, the active lipid peroxidation byproducts, i.e., malon-
dialdehyde (MDA) readily react with TBA and form the intermediate MDA–TBA2 adduct
and water. This adduct has a pink color. Using a spectrophotometer (DU 640B Spectropho-
tometer, Beckman Coulter Inc., CA, USA) at 532 nm, the changes in absorbance of the pink
color chromogen were recorded. A standard curve was prepared with absorbance value
(y-axis) versus reference standard concentration (x-axis), i.e., 1,1,3,3-tetra methoxy propane
(TMP) 0–100 nmol/mL. Using the following formula, the level of TBARS was quantified:

TBARS
(

nmol
ml

)
=
δ O.D. sample

ε× PL
×DF,

where ‘δ O.D.’ is the change in absorbance/min, ε is the extinction coefficient, i.e.,
1.56 × 105/m/cm, DF is the dilution factor, and PL is the path length. The calculated
level of MDA (nmol/mL) value was further integrated with mg of protein. The net value
of MDA was expressed as nmol of MDA per mg of protein.

4.7.3. Estimation of GSH as an Indication of Oxidative Stress

The GSH level of brain tissue was estimated using the method described by Ellman [44].
Briefly, the brain tissue supernatant was mixed with 10% w/v trichloroacetic acid (1:1
ratio) to make the protein precipitations. After that, at 4 ◦C, the test tube samples were
centrifuged at 1000 rpm for 10 min. About 0.5 mL of clear aliquot was mixed with 2 mL
of 0.3 M disodium hydrogen phosphate. Thereafter, 0.25 mL of 0.001 M freshly prepared
5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) solution was added. In 1% w/v sodium citrate
solution, the DTNB was dissolved, and it developed a yellow color chromogen. The
principle of in vitro GSH estimation is described below.

DTNB + GSH→ TNB.

GSH readily reacts with DTNB and produces the yellow color chromogen product i.e.,
5-mercapto-2-nitrobenzoic acid (TNB). Using a spectrophotometer (DU 640B Spectropho-
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tometer, Beckman Coulter Inc., California, USA) at 412 nm, the changes in absorbance of
yellow color chromogen were recorded. The standard curve was prepared with absorbance
value (y-axis) versus reference standard concentration (x-axis), i.e., GSH 10–100 µmol/mL.
The GSH level was quantified using the following formula:

GSH =
δ O.D. Standard− (y− intercept)

Slope
×DF× 2,

where ‘δ O.D.’ is the change in absorbance of the standard, y-intercept is the y-intercept of
the linear curve value from the standard plot, slope is the value obtained from the standard
plot, DF is the dilution factor, and 2 denotes the conversion of one oxidized glutathione
to two reduced glutathione. The calculated level of GSH (µmol/mL) value was further
integrated with mg of protein. The net value of GSH was expressed as µmol of GSH per
mg of protein.

4.8. Analysis of Mouse Brain Histopathological Changes

After the completion of behavioral studies, the animals were sacrificed on the 28th
day, and the mouse brains were collected. The brain tissues were fixed with neutral
buffered 10% paraformaldehyde solution. The tissue block was prepared with paraffin
wax. The embedded mouse brain blocks were used for the coronal sectioning under the
semi-automatic cryo-microtome device. The 5 µm sectioned tissues were used for the
further process of H&E staining. The stained slides were observed for histopathological
changes in the hippocampus and cortex region of mice brains under 400×magnification.
The histopathological changes were noted and compared with normal and reference control
animal tissue sections.

4.9. Statistical Analysis

All results were expressed as the mean ± standard deviation (SD). The behavioral
data were statistically analyzed using two-way analysis of variance (ANOVA) followed
by the Bonferroni post hoc test, and the data of tissue biomarkers, i.e., AChE, TBARS, and
GSH levels, were analyzed using one-way ANOVA followed by Tukey’s multiple range
test using Graph pad prism version 5.0 software. A p-value < 0.05 was considered to be
statistically significant.

5. Conclusions

Our study showed that the administration of GE could ameliorate the Aβ1–42 oligomer-
induced toxicity due to its potential epidermal growth factor receptor kinase-inhibitory
action. Furthermore, GE also possessed free-radical scavenging action, prevented lipid per-
oxidation, and regulated acetylcholine levels in various parts of the mouse brain. Therefore,
GE can be a novel agent for the prevention of AD and other neurodegenerative disorders
such as multiple sclerosis, Parkinson’s disease, neuropathic pain, and dementia.
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