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Abstract: Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug
repositioning. However, on the one hand, drug–target interactions prediction models usually consider
drugs or targets information, which ignore prior knowledge between drugs and targets. On the other
hand, models incorporating priori knowledge cannot make interactions prediction for under-studied
drugs and targets. Hence, this article proposes a novel dual-network integrated logistic matrix
factorization DTIs prediction scheme (Ro-DNILMF) via a knowledge graph embedding approach.
This model adds prior knowledge as input data into the prediction model and inherits the advantages
of the DNILMF model, which can predict under-studied drug–target interactions. Firstly, a knowledge
graph embedding model based on relational rotation (RotatE) is trained to construct the interaction
adjacency matrix and integrate prior knowledge. Secondly, a dual-network integrated logistic matrix
factorization prediction model (DNILMF) is used to predict new drugs and targets. Finally, several
experiments conducted on the public datasets are used to demonstrate that the proposed method
outperforms the single base-line model and some mainstream methods on efficiency.

Keywords: drug–target interactions prediction; knowledge graph embedding; dual-network inte-
grated logistic matrix factorization

1. Introduction

In recent years, the discovery of new drugs has enormous technology advancement
and research investment. However, an intended target is rarely bound to the drugs. This
may lead to off-target effects and extend drug development time. As a consequence, there
is a necessary need for researchers to develop new drugs in effective ways. Drug reposi-
tioning [1] is one of the essential and important part in the discovery of new drugs. Herein,
it should be pointed out that one of the fundamentals for computational drug repositioning
is to accurately predict drug–target interactions. There are abundant research studies for
DTI prediction over the past several decades including chemical genetic and proteomic
methods such as affinity chromatography [2] and expression cloning approaches [3]. How-
ever, because of laboratory experiments and physical resources, these methods can only
process a limited number of possible drugs and targets. Therefore, computational predic-
tion approaches [4,5] have received lots of attention when they can lead to a much faster
assessments of possible DTIs.

Mei et al. [6] proposed one of the approaches to predict drug–target interactions
computationally. A neighbor-based interaction-profile inference was used for both drugs
and targets. KRONRLS-MKL [7] researched a linear combination of multiple similarity
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measures to model the all similarity between drugs and targets. However, these models
used a simple linear combination technique to predict DTIs. In fact, such a linear setting may
not be appropriate when the linear relationship is not evident. In view of this bottleneck,
regularized least squares integrating with kernel fusion technique model (RLS-KF) [8]
employed a nonlinear kernel diffusion technique to combine different kernels and then
used the diffused kernel to perform DTIs prediction. As a result, the model has a better
performance than the linear combination models. However, when testing with 10-fold
cross-validation for the whole dataset, this model failed to produce satisfactory results.

Recently, a neighborhood regularized logistic matrix factorization (NRLMF) [9] was
developed to predict DTIs by using logistic matrix factorization and a neighborhood
smoothing method. The NRLMF model showed an encouraging result based on the
10-fold cross-validation. Moreover, the dual-network integrated logistic matrix factoriza-
tion (DNILMF) [10] based on NRLMF used matrix factorization to predict drug–target
interactions over drug information networks and showed significant improvements over
other methods on standard benchmarking datasets. Other models such as the DTI-CDF
and DTI-MLCD used machine learning-based methods. The DTI-CDF [11] used pseudo-
position specific scoring matrix (PsePSSM) to extract the evolution information of protein
sequence and added path-category-based muti-similarities feature (PathCS) based on the
heterogeneous graph of DTIs. The DTI-MLCD [12] utilized the community detection
method to facilitate muti-label classification. Nevertheless, in this case, the difficulty lies
in overdependence on known drugs and targets information, and the latent information
between drugs and targets might be absent. In view of this problem, the more advanced
prior-knowledge-based approaches have been proposed to satisfy various DTI tasks.

The current prior-knowledge-based approaches in this context are arguably the
DDR [13], the NeoDTI and the TriModel. The DDR used a multiphase procedure to
predict drug–target interactions from relevant heterogeneous graphs. In this effort, nonlin-
ear fusion was employed to combine different similarity indices as well as random walk
features from the input graphs. The NeoDTI [14] supported information about drugs and
targets. The TriModel [15] approached the DTI prediction problem as a link prediction in
knowledge graphs. In contrast, existing prior-knowledge-based prediction methods such
as DDR are best suited to finding new associations between well-studied drugs and targets
(useful for instance in the drug repurposing context). In the real word, under-studied drugs
and targets can be more easily obtained than well-studied drugs and targets. Therefore,
there is a critical need for methods that combine both priori knowledge and the ability to
predict under-studied drug–target interactions.

Motivated by the previous studies [10,16], a novel dual-network integrated logistic
matrix factorization DTI prediction scheme via relational rotation knowledge graph embed-
ding (Ro-DNILMF) approach is proposed in this article. This model combines knowledge
graph embedding and DNILMF. Firstly, we add the tanh function as an optimization func-
tion into knowledge graph embedding to produce better results in this task. Secondly, we
construct an interaction adjacency matrix by knowledge graph embedding model based
on relational rotation (RotatE) [16] to improve information integrity. Finally, we add the
interaction adjacency matrix into DNIMLF to predict interactions between new drugs and
new targets.

The remainder of this article is organized as follows. We briefly introduce basic
concepts and related work in Section 2, such as the DNIMLF and RotatE. Section 3 details
the proposed Ro-DNILMF model for drug–target interactions prediction task. Experimental
results and discussions are presented in Section 4, and the conclusion and the future work
are prospected in Section 5.

2. Related Work
2.1. Principle of the DNILMF

DNILMF is a predicting drug–target interactions model proposed by Hao et al. [10]. It
inherits a majority of features and indicates the superiority of the neighborhood regularized
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logistic matrix factorization (NRLMF) [9]. The logistic matrix factorization of DNILMF
is especially suitable for binary variables and the diffused kernels matrices considering
the drug–target profile information to predict the new drug or target. Many researchers
have made some work of DNILMF in recent years [17,18], and the architecture of DNILMF
is shown in Figure 1. Firstly, the target sequence similarity matrix, chemical structure
similarity matrix and interaction adjacency matrix are used as input data. Secondly, to
infer new drugs and targets information, the Gaussian kernel matrix and the latent variable
matrix are presented by the interaction adjacency matrix. Thirdly, the final kernel matrix
is composed of integrating drug or target neighbor information. Finally, the final kernel
matrix is added into the logic function to yield interaction probabilities between drugs
and targets.
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Figure 1. Basic architecture of DNIMLF.

2.1.1. Data Preparation

The given input training data consist of the target similarity matrix, the drug similarity
matrix and the interaction adjacency matrix. The target sequence similarity matrix is
denoted by Sct (similarity scores among proteins for both datasets are computed using a
normalized version of SmithWaterman score [19]), which is a N×N square matrix (number
of targets, N). The drug similarity matrix is denoted by Scd (similarity scores among
compounds for both datasets are computed using the SIMCOMP tool [20]), which is a
M×M square matrix (number of drugs, M). The interaction adjacency matrix is denoted
by Ycn, where Ycn[d, t] = 1 if drug d interacts with target t, and Ycn[d, t] = 0 otherwise, as
shown in Figure 1A–D.

2.1.2. Definition

In the DNILMF model, “known drug”, “new drug”, “known target” and “new target”
are defined as follows [8]. A “known drug” refers to a drug that has at least one interaction
with targets (e.g., D1 in Figure 1A,B, respectively), while a “new drug” refers to a drug
that does not have any interaction with targets (e.g., D1 in Figure 1C,D, respectively) in
the dataset. A “known target” refers to a target that has at least one interaction with drugs
(e.g., D1 in Figure 1A,C, respectively), but a “new target” refers to a target that does not
have any interaction with drugs (e.g., D1 in Figure 1B,D, respectively) in the dataset.

2.1.3. Latent Matrix and Gaussian Kernel Matrix Construction

The goal of this model is to use known drugs and known targets to derive new drugs
and new targets information. Specifically, the algorithm deduces the known drug/target
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interaction profiles to build a new drug/target latent matrix and the Gaussian kernel matrix.
The known drug/target interaction profile (denoted separately by Yu and Yv for the known
drug u interaction profile and the known target v interaction profile) are inferred by Ycn. For
example, for a known drug u, the interaction profile is calculated by its nearest neighbors
in which their interactions are extracted from Ycn. The known target v interaction profile,
Yv, is calculated in a similar way. After that, the new drug/target latent variable matrix
(denoted separately by Di and Tj for the new drug i latent variable matrix and the new
target j latent variable matrix) is calculated by Yu/Yv. The formulations are as follows:

Di =
1

∑u∈M+(i) Siu
cd

∑ Siu
cdYu (1)

Tj =
1

∑v∈N+(j) Sjv
ct

∑ Sjv
ct Yv (2)

where Siu
cd is the similarity score between new drug i and known drug u and Sjv

ct is the
similarity score between new target j and known target v. Once drugs/targets profiles are
inferred for all new drugs and targets, the Gaussian kernel matrices denoted by Kgd(di, dx)

(x = 1, 2, 3, . . . , M) and Kgt
(
tj, tz

)
(z = 1, 2, 3, . . . , N) are calculated as Formulas (3) and (4).

Those are

Kgt
(
tj, tz

)
= exp

−
∣∣∣Ytj −Ytz

∣∣∣2
ϕ

 (3)

Kgd(di, dx) = exp

(
−
∣∣Ydi
−Ydx

∣∣2
ϕ

)
(4)

where Yt. is the new target interaction profile, Yd. is the new drug interaction profile and ϕ
is the kernel bandwidth.

2.1.4. Final Diffused Matrix Construction

To add the similarity network information between drugs and targets into the model,
the final diffused matrices for drugs and targets (denoted by Sd for drugs and St for
targets) are combined with the similarity matrices Sct, Scd and the Gaussian kernel matrices
Kgd
(
di, dj

)
, Kgt

(
ti, tj

)
. These matrices are normalized and symmetrized. The resulting

matrices are status similarity matrices, which are denoted by P(1), P(2), P(3) and P(4),
respectively for Sct, Scd, Kgd

(
di, dj

)
, and Kgt

(
ti, tj

)
. Status similarity matrices are iterated

with a given iteration step number, t, for drugs and targets, respectively. After the iteration
process is finished, the final diffused matrices are generated. For details of the calculation
procedure, the previous studies [21] can be referred.

2.1.5. Interaction Probabilities Score Calculation

The interaction probability score is key to the predicting interaction between drugs
and targets. A high score indicates a higher chance of a drug–target interaction. To obtain
the interaction probability score, a logistic function is used to yield scores between drugs
and targets with the above final drug diffused matrices Sd and the final target diffused
matrices St. The formulation is as follows:

P =
exp

(
αDTT + ρSdDTT + τDTTSt

)
1 + exp(αDTT + ρSdDTT + τDTTSt)

(5)

where α, ρ, τ are the corresponding smoothing coefficients with the summation of them as
1 and TT denotes the transpose of T.
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2.2. RotatE

RotatE is a knowledge graph embedding model by relational rotation in complex space.
It is able to model and infer three patterns (i.e., symmetry/antisymmetric, inversion, and
composition) from the observed facts. The process of the RotatE method can be illustrated
as follows. Firstly, in order to initialize knowledge graph embeddings, three types of
relation patterns are defined. Then, after the distance between the source entity to the target
entity is calculated, self-adversarial negative sampling is used to optimize embeddings.
Finally, the score function is proposed to measure the salience of a candidate triplet.

2.2.1. Three Relation Patterns Definition

Specifically, for given triplet (h, r, t), h represents the source entity, t represents the
target entity, and r is the relation between h and t. RotatE defines each relation as a rotation
from the source entity to the target entity. Relation types are symmetry/antisymmetric,
inversion, and composition. According to the existing literature [22], three types of relation
pattern definitions are as follows:

A relation r is symmetric(antisymmetric) if ∀h, t

r(h, t)⇒ r(t, h)(r(h, t)⇒ r¬(t, h))

The relation r1 is inverse to relation r2 if ∀h, t

r2(h, t)⇒ r1(t, h)

The relation r1 is composed of the relation with r2 and r3 if ∀h, t, z

r2(h, t) ∧ r3(t, z)⇒ r1(h, z)

2.2.2. Embeddings Optimization

RotatE initializes its embeddings with random noise. It updates them by self-adversarial
negative sampling so as to score the true triplets much higher than the corrupted false
triplets. The negative sampling loss function is obtained by:

L = − log σ(γ− dr(Θ(h), Θ(t)))−
n

∑
i=1

p
(
h′i , ri, t′i

)
log σ

(
dr
(
Θ
(
h′i
)
, Θ
(
t′i
))
− γ

)
(i = 1, 2, 3 . . . , Trin) (6)

where σ is the optimization function, γ denotes the fixed margin, Trin is the number of
triplets, Θ(·) is the embedding, p

(
h′i , ri, t′i

)
represents the weight of the negative sample

and dr(Θ(h), Θ(t)) is the distance function. p
(
h′i , ri, t′i

)
is calculated as Formula (7), that is

p
(
h′i , ri, t′i

)
=

exp β
(

fr
(
Θ
(
h′i
)
, Θ
(
t′i
)))

∑i exp β
(

fr
(
Θ
(
h′i
)
, Θ
(
t′i
))) (7)

where β is the temperature. The distance function is as follows:

dr(Θ(h), Θ(t)) =‖Θ(h)Θ(γ)−Θ(t)‖ (8)

where ‖·‖ is Euclidean distance and denotes the Hadamard product.

2.2.3. Score Function Definition

The score function scores true triplets much higher than the corrupted false triplets. To
measure the salience of a candidate triplet (h, r, t), the score function is defined as follows:

fRotatE(Θ(h), Θ(r), Θ(t)) = −‖Θ(h)Θ(r)−Θ(t)‖2 (9)

DNILMF can achieve good performance on new drugs and targets. However, it does
not incorporate prior knowledge, which is important to enhance predictive accuracy. RotatE
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can achieve good performance on known drugs and targets, but it is not suited to finding
new associations between new drugs and targets. Therefore, to improve the DNILMF
performance, a novel DTIs prediction method combined with DNILMF and RotatE called
Ro-DNILMF is proposed in this article.

3. Our Proposed Prediction Scheme
3.1. Architecture

In this section, we describe the proposed model Ro-DNILMF for drug–target interac-
tions prediction. This scheme adopts the knowledge graph embedding model to integrate
prior knowledge. As the basic prediction model, DNILMF is used to predict interactions
between new drugs and targets. It is graphically illustrated in Figure 2. Three main stages
are included: data preparation, constructing the interaction adjacency matrix, and training
DNILMF model. Firstly, all of the input data are integrated into triples. Then, the RotatE
model is trained to optimize embeddings by the negative sampling loss function. The
self-adversarial temperature method in the negative sampling loss function is used to
choose temperature. The interaction adjacency matrix is generated by the score function
so as to integrate prior knowledge into the prediction model. Finally, the new interaction
adjacency matrix is applied on the DNILMF model. Latent variable matrix and the final dif-
fused matrix are integrated into logistic function so as to obtain the interaction possibilities
between new drugs and targets.
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Data Preparation

The knowledge graph embedding model requires data to be modeled in a triplet form,
where the objective is to predict new links between entities. In the case of drug discovery,
the input data include each triplet (h, r, t), the target sequence similarity matrix, Sct, and
chemical structure similarity matrix, Scd.
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3.2. Interaction Adjacency Matrix Construction with RotatE
3.2.1. Embedding Initialization

As illustrated in Figure 2, it is necessary for all triplets to initialize embeddings by
RotatE. The entity embeddings, Θ0(h) and Θ0(t), are initialized by random noise. The
relation embeddings, Θ0(r), are calculated based on Euler’s identity:

eiθ = cos θ + i sin θ

Relation types include symmetry/antisymmetric, inversion, and composition. If a rela-
tion r is symmetry or antisymmetric, each element of its embeddings Θ0(r), i.e., ri, satisfies:

ri = e0/iπ = ±1

If two relations r1 and r2 are reverse, each element of their embeddings, r1i and
r2i, satisfy:

r1i = eiθ1 , r2i = r1i

If a relation r3 is a combination of two relations r1 and r2, each element of their
embeddings, r1i, r2i and r3i, satisfy:

r1i = eiθ1 , r2i = eiθ2 , r3i = eiθ3

where θ3 = θ1 + θ2. Each triplet embedding ((Θ0(h), Θ0(r), Θ0(t))) is initialized.

3.2.2. Embedding Optimization

In order to update embeddings, self-adversarial negative sampling is used to train
distance dr(Θ(h), Θ(t)) to reduce the distance of true triplets and enlarge the distance
of corrupted false triplets. The negative sampling loss function is obtained by Formula
(6). According to the problem of inefficiency for the traditional temperature of hand-
crafted sampling, a method called self-adversarial temperature is adopted to choose the
temperature with the current training level. The negative sampling probability is calculated
by Formula (7), and the temperature, denoted by β, is obtained by

β =
β0

1 + ω(i)
i = 1, 2, . . . , n (10)

where β0 is initial temperature and ω is the sigmoid function. The final values of each
triplet embedding (Θ(h), Θ(r), Θ(t)) are generated by Formulas (6) and (8).

3.2.3. Interaction Adjacency Matrix Construction

To construct the interaction adjacency matrix, the score function, fRotatE, is trained
to score triplet (Θ(h), Θ(r), Θ(t)) by Formula (9) and select new relations. If fRotatE has a
higher score than the minimum passing score denoted by ξ, the relation r is added into the
interaction adjacency matrix, Y′cn[h, t] = 1 as a new element; otherwise, Y′cn[h, t] = 0. The
interaction adjacency matrix integrates prior knowledge, which is good preparation for
DTIs prediction in the next stage.

3.3. Predicting DTI with DNILMF

As shown in Figure 2, the interaction adjacency matrix Y′cn is constructed by RotatE.
It is integrated into DNILMF as one of input matrices, together with Sct and Scd.

3.3.1. Latent Variable Matrix and Gaussian Kernel Matrix Construction

Combined with the above interaction adjacency matrix Y′cn, the drug i latent variable
matrix denoted by D′ i and the target j latent variable matrix denoted by T′ j are generated
to predict new DTIs. The important steps are summarized as follows: (1) the interaction
profile is built. For a known drug u, the interaction profile, Y′u, is calculated by its nearest
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neighbors in which their interactions extracted from Y′cn. For a known target v, the interac-
tion profile, Y′v, is calculated in the same way; (2) the latent variable matrix is calculated by
the multiplication of the similarity score with interaction profile. According to Formulas (1)
and (2), the latent matrices, D′ i and T′ j, are calculated by the following equations:

D′ i =
1

∑u∈M+(i) Siu
cd

∑ Siu
cdY′u (11)

T′ j =
1

∑v∈N+(j) Sjv
ct

∑ Sjv
ct Y′v (12)

where Y′u and Y′v are separately the known drug u interaction profile and the known
target v interaction profile. According to Formulas (3) and (4), the Gaussian kernel matrices,
denoted by K′gd(di, dx) (x = 1, 2, 3, . . . , M) for drug i and K′gt(ti, tz) (z = 1, 2, 3, . . . , N), for
target j can be calculated by

K′gt(ti, tz) = exp

−
∣∣∣Y′ti
−Y′tz

∣∣∣2
ϕ

 (13)

K′gd(di, dx) = exp

−
∣∣∣Y′di
−Y′dx

∣∣∣2
ϕ

 (14)

where Y′t.
is the drug/target interaction profile. Thus, after the above calculation, D′ i, T′ j,

K′gd(di, dx), and K′gt(ti, tz) are constructed.

3.3.2. Final Diffused Matrix Construction

In the DNILMF model, the final diffused matrix is constructed to integrate neighbor
information between drugs and targets. The final diffused matrix is calculated by the
Gaussian kernel matrix and the similarity matrix. Specifically, for a new target, the similarity
matrix Sct is first converted into the kernel matrix according to previous studies [23]. By
normalizing and symmetrizing both the target kernel matrix and the target Gaussian kernel
matrix, the status matrix, denoted by P(1) and P(2), is constructed for the target kernel
matrix and the target Gaussian kernel matrix, respectively. The final diffused matrix is
calculated by the multiplication of local similarity matrix L for each P matrix with the status
matrix after t iterations. The local similarity matrix for each P matrix is calculated by the
following equation:

L(i, j) =

{ P(i,j)
∑k∈Ni

P(i,k) , j ∈ Ni

0, others
(15)

where Ni denotes the nearest neighbors of target i and k is the number of nearest neighbors.
It can be noted that this operation makes the similarities among non-nearest neighbors to
zero. P(1)

t+1 and P(2)
t+1 are calculated by the following equation:

P(1)
t+1 = L(1)P(2)

t

(
L(1)

)T
(16)

P(2)
t+1 = L(2)P(1)

t

(
L(2)

)T
(17)
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where P(1)
t+1 is the status matrix of the target kernel matrix after t iterations, and P(2)

t+1 is
the status matrix of Kgt

(
ti, tj

)
after t iterations. To make P(1)

t and P(2)
t symmetrical, in each

iteration, the status matrices, P(1)
t and P(2)

t , are further changed as follows:

P(1)
t = P(1)

t+1 + I (18)

P(1)
t = P(1)

t+1 + I (19)

where I denotes the identity matrix. After t steps, the final target diffused matrix, S′t , is

calculated by P(1)
t and P(2)

t . For a new drug, after applying the same steps, we can also
obtain the final drug kernel matrix S′d.

3.3.3. Interaction Probability Calculation

Using the latent variable matrices and the final kernel matrices, the interaction proba-
bilities P′ between new drugs and targets are yielded. The equation is as follows:

P′ =
exp

(
αD′T′T + ρSdD′T′T + τD′T′TSt

)
1 + exp

(
αD′T′T + ρSdD′T′T + τD′T′TSt

) (20)

4. Experimental Results
4.1. Data Preparation and Experimental Settings

To demonstrate the effectiveness of our proposed scheme, it is thoroughly evaluated on
the Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset [24], DrugBank dataset [25]
and Yamanishi_08 dataset [26], respectively.

4.1.1. Dataset Preparation

The KEGG dataset is a large benchmark dataset covering metabolismus, cellular
processes, diseases, drug pathways, genetic information processing, environmental infor-
mation processing, and organismal systems. The total training drug sample is 10,979, the
target sample is 13,959, and the interaction sample is 12,112.

The DrugBank dataset can be considered as both a bioinformatics and a cheminfor-
matics resource. The total training drug sample is 1482, the target sample is 1408, and the
interaction sample is 9881 in our experiment.

The Yamanishi_08 dataset represents the most frequently used gold standard datasets
in the previous state-of-the-art models. It is used to validate the proposed model for DTIs
prediction. The dataset is classified into four groups: enzymes (EN), which has 445 drugs
and 664 targets; ion channels (IC), which has 210 drugs and 204 targets; G-protein coupled
receptors (GPCR), which has 223 drugs and 95 targets; and nuclear receptors (NR), which
has 54 drugs and 26 targets. All of samples are trained in our experiment. The information
of datasets is shown in Table 1.

Table 1. Dataset information.

Dataset Group Drugs Proteins DTIs

Yamanishi_08

EN 445 664 2926
IC 210 204 1476

GPCR 223 95 635
NR 54 26 90

ALL 932 989 5127
KEGG - 10,979 13,959 12,112

DrugBank - 1482 1408 9881
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4.1.2. Experimental Environment

This presented method can be easily performed on a laptop. All experiments are
conducted on the laptop configured by NOIDIA GeForce MX250, 8G memory, Intel Core
i5-1021 CPU 1.60-GHz processor, and the operating system is Window 1064 bit.

4.2. Results and Discussion

In this section, we comprehensively evaluate the superior performance of the pro-
posed method in many aspects: parameter setting, the optimization function determina-
tion of Ro-DNILMF, performance of the score function in Ro-DNILMF, performance of
Ro-DNILMF under different samples, and comparative results with some mainstream
prediction methods.

4.2.1. Parameter Setting of Ro-DNILMF

In this section, according to previous studies [10,27], we give the range of parameters
as follows: embedding dimension k ∈ [125, 1000], batch size b ∈ [128, 2048], fixed margin
γ ∈ [3, 30], the smoothing coefficient α ∈ [0.5, 1], ρ ∈ [0, 0.25], and τ ∈ [0, 0.25], the
number of neighbors K ∈ [5, 10]. The detailed information is shown in Table 2.

Table 2. The parameter settings.

Parameter Value

k 125 250 500 750 1000 -

b 128 256 512 1024 2048 -
γ 3 6 9 12 24 30
α 0.5 0.6 0.7 0.8 0.9 1
ρ 0.25 0.2 0.15 0.1 0.05 0
τ 0.25 0.2 0.15 0.1 0.05 0
K 5 6 7 8 9 10

4.2.2. The Optimization Function Determination of Ro-DNILMF

In order to improve the computational efficiency of the loss function, the optimization
function is used. This function can map the distance discrete values to a certain range. This
experiment gives the performance of optimal function including sigmoid function and tanh
function. The sigmoid function is a common optimization function that maps the distance
between the fixed margin γ and the distance dr to [0, 1]. The formulation is as follows:

σsigmoid(x) =
1

1 + exp(−x)
(21)

The tanh function extends the mapping range to [–1, 1] based on the sigmoid function.
The formulation is as follows:

σtan h(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(22)

Mean Reciprocal Rank (MRR) and Hit at N (H@N) are standard evaluation measures
for the Yamanishi_08 dataset.

The results of the optimization function based on the tanh function and sigmoid
function are shown in Table 3. It shows that the best MRR scores of the sigmoid function
and the tanh function are 0.723 and 0.743, respectively. The H@1 and the H@3 score of
the sigmoid function are lower than the tanh function. In a Hit@10 comparison, the tanh
function tops the sigmiod function by at most 0.093. In conclusion, the results of the tanh
function are better than the sigmoid function (e.g., the highest score of the tanh function is
0.884, while the highest score of the sigmoid function is 0.817). We think it is caused by the
distance between the fixed margin γ and the distance dr. The tanh function can calculate
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the distance both positive and negative (−1, 1) and the sigmoid function can only calculate
positive ones (0, 1).

Table 3. The results of the optimization function.

Sigmoid Tanh

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
EN 0.683 0.490 0.524 0.741 0.692 0.537 0.547 0.732
IC 0.359 0.512 0.537 0.817 0.467 0.564 0.582 0.861

GPCR 0.723 0.509 0.518 0.803 0.743 0.521 0.539 0.884
NR 0.436 0.427 0.469 0.654 0.584 0.433 0.486 0.747

The blue part 0.817 is the best performance of the sigmoid function and the blue part 0.817 is the best performance
of the tanh function.

4.2.3. Performance of the Score Function in Ro-DNILMF

To measure the salience of the score function in Ro-DNILMF, this part trains different
embedding models including TransE [28], ComplEX [29] and RotatE on the DrugBank
dataset. The score function in TransE is −h + r− t, and the score function in ComplEX is
Re
(
r, h, t

)
, where Re(x) is a real vector component. The score function in RotatE is shown

in Formular (9).
Figure 3 shows Hit@N with different embedding models trained by the best optimal

parameters. In Figure 3a, the highest hit score is RotatE (79%) and the maximum difference
is 30%. In Figure 3b, the highest hit score is RotatE (88.4%) and the maximum difference is
26%. In Figure 3c, the highest hit score is RotatE (88.5%) and the maximum difference is
14%. These results show that the values of the RotatE model are higher than the ones of
any embedding models. It is caused by RotatE, which defines each relation as a rotation
from the source entity to the target entity, and relation types determination will produce
better generalization results.
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4.2.4. Performance of Ro-DNILMF under Different Samples

In order to test the prediction performance of the Ro-DNILMF model under different
samples, area under curve of receiver operating characteristic (AUC) and area under
precision-recall curve metrics (AUPR) are evaluated on the KEGG dataset. This experiment
increases the number of training samples from 0 to 2000 with 100 training samples each
time. As can be seen from Figure 4, the Ro-DNILMF model is more robust than the DNILMF
model in the case of fewer samples. When the training sample is 100, the AUC score of the
Ro-DNILMF model is 0.903, while the AUC score of the DNILMF model is 0.59. When the
training sample is 1000, the AUPR score of the Ro-DNILMF model is 0.96, while the AUPR
score of the DNILMF model is 0.72. When the training sample is 1500, the AUC score of
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the Ro-DNILMF is 0.965, while the AUC score is 0.892. When the training sample is 2000,
the AUPR score of the Ro-DNILMF model is 0.972, while the AUPR score of the DNILMF
model is 0.945. These results show that the Ro-DNILMF model converges significantly
faster than the DNILMF model with the increasing number of training samples.
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4.2.5. Comparison with Other Mainstream Methods

We further compare the presented method with other state-of-the-art methods, such
as BLM-NII, KRONRLS-MKL, NRLMF and DNILMF. The comparative results are shown
in Figure 5. Note that all of the comparative methods are tuned with optimal parameters as
previous works [10,30–32]. The performance of each method is tested on the Yamanishi_08
dataset, and it is evaluated with AUC and AUPR. As can be seen from Figure 5, the scores of
BLM-NII and KRONRLS-MKL are also lower than the scores of the other methods. NRLMF
and DNILMF take higher AUC and AUPR scores on the EN dataset. For the proposed
method, although it has a bit of a lower score than the NRLMF and DNILMF methods on
the EN dataset, its AUPR score and AUC score can obviously achieve the highest ones on
other three datasets (AUPR score: 72.6%, 91.2% and 62.5% on other three datasets, AUC
score: 94.5%, 98.6% and 91.3% on other three datasets).
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4.2.6. Comparison with Other Combination Models

To verify the contribution of RotatE, we compare the performance of RotatE with
previous knowledge graph embedding models on the Yamanishi_08 dataset, including
TransE, DisMult [33], HolE [34], ComplEx [29], and ConvE [35]. In this experiment, these
embedding models, including RotatE, are combined with DNILMF and NRLMF, respec-
tively. For all combined models, the AUC and AUPR scores are shown in Table 4. Although
Ro-DNILMF has better performance than the combination model of RotatE and DNILMF
caused by the optimization function, the combination model of the RotatE model and
the DNILMF model outperforms the other combined models. It is noted that almost all
of the combination models outperform the baseline model. We think it is caused by the
knowledge graph embedding model added to the prediction models. New information of
samples will produce better performance.

Table 4. Comparative results of the presented method and other combination models.

Metrics Embedding
Model Predicting Model EN IC GPCR NR

AUPR

-
-

NRLMF 0.812 0.785 0.556 0.449
DNILMF 0.869 0.887 0.684 0.483

Ro-DNILMF 0.863 0.912 0.726 0.625

TransE
NRLMF 0.816 0.789 0.560 0.478
DNILMF 0.873 0.889 0.684 0.535

DisMult
NRLMF 0.815 0.786 0.574 0.497
DNILMF 0.872 0.893 0.687 0.530

HolE
NRLMF 0.813 0.795 0.587 0.513
DNILMF 0.889 0.903 0.695 0.573

ComplEx NRLMF 0.824 0.793 0.593 0.510
DNILMF 0.886 0.904 0.703 0.542

ConvE
NRLMF 0.818 0.814 0.609 0.526
DNILMF 0.873 0.903 0.721 0.568

pRotatE NRLMF 0.820 0.817 0.614 0.523
DNILMF 0.886 0.905 0.715 0.567

RotatE
NRLMF 0.823 0.826 0.627 0.527
DNILMF 0.860 0.908 0.724 0.590

AUC

- NRLMF 0.966 0.943 0.930 0.851
DNILMF 0.971 0.962 0.933 0.856

Ro-DNILMF 0.967 0.986 0.945 0.913

TransE
NRLMF 0.966 0.944 0.930 0.859
DNILMF 0.968 0.964 0.933 0.854

DisMult
NRLMF 0.965 0.947 0.932 0.864
DNILMF 0.968 0.963 0.934 0.867

HolE
NRLMF 0.966 0.946 0.931 0.873
DNILMF 0.971 0.975 0.936 0.875

ComplEx NRLMF 0.967 0.969 0.940 0.884
DNILMF 0.972 0.982 0.938 0.891

ConvE
NRLMF 0.965 0.974 0.939 0.873
DNILMF 0.970 0.979 0.937 0.886

pRotatE NRLMF 0.964 0.981 0.938 0.896
DNILMF 0.971 0.982 0.939 0.893

RotatE
NRLMF 0.970 0.982 0.939 0.901
DNILMF 0.969 0.984 0.940 0.903

The green part is the performance of the Ro-DNILMF model and the blue part is the best performance of the other
combination models.

5. Conclusions and Future Work

Ro-DNILMF is an efficient drug–target interactions prediction model, which was
designed based on RotatE and DNILMF. This method used RotatE to learn efficient vector
representation for both drugs and targets, and it constructed the interaction adjacency ma-
trix to integrate prior knowledge. Our study trained DNILMF to predict new drugs/targets
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interactions. This method faced an increasingly prior knowledge problem in the real world.
The prior knowledge was combined with predicting new drugs/targets, and the prediction
accuracy was surprisingly improved.

What is more, the tanh function was added into RotatE to greatly increase general-
ization capability. Experiments conducted on the benchmark datasets proved that the
proposed method achieved high efficiency and better effectiveness than many other popu-
lar methods. Our experiments also showed that prediction model with knowledge graph
embedding can improve accuracy.

In future work, we will further explore the relationship of drug–target interactions
and annotation information, and we will even extend this method to many complicated
applications. Last but not least, the selected prediction of our model will be validated in
laboratory experiments to demonstrate the clinical relevance of our results.
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