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Abstract: Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an in-

herently weak Raman signal, which strongly depends on the material, design, and fabrication of the 

substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on 

an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sam-

ple. It is not only chemically stable, but also shows reproducible trends in terms of geometry and 

plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like mor-

phology with different gap sizes at different lateral positions of the substrate. Extinction spectra 

show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned 

across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and meth-

ylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the 

shape of the extinction spectra allows for the correlation of SERS enhancement with surface mor-

phology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interpar-

ticle distances can be used for fast screening of analytes due to the lateral variation of the resonances 

within the same sample. 

Keywords: surface-enhanced Raman spectroscopy (SERS); SERS substrates; multiple plasmonic  

resonances; island film 

 

1. Introduction 

Since its discovery, Raman spectroscopy has attracted a lot of attention due to its 

selective molecular identification [1,2]. A major limitation is the inherently small Raman 

cross-section, which can be overcome with surface-enhanced Raman spectroscopy (SERS) 

[3]. On average, the Raman signal can be enhanced by a factor of 104–106, and sometimes 

even by a factor of 108 by exploiting surface enhancement effects [4–7]. However, the chal-

lenge to achieve such high enhancements is strongly dependent on the design and fabri-

cation of the SERS substrates. In many cases, a SERS substrate consists of noble metal 

nanoparticles (NPs), where the actual shape and distance of the NPs play a crucial role in 

SERS enhancement. The gap between the NPs has an especially significant impact on the 

SERS effect, since the electric field can be strongly enhanced in the gap due to confinement 

by the NPs [8–12]. Hence, the ideal SERS substrate needs to offer high Raman 
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enhancement, which can be altered by manipulating the size, shape, and interparticle dis-

tance of noble metal NPs, and good stability (physically and chemically) to withstand any 

analyte. Furthermore, the fabrication process should be reproducible, simple, and cost-

effective. 

There are plenty of SERS substrates available on the market, such as surface-rough-

ened films [13,14], colloidal NPs [15–17], metal/metal island films [18–21], etc. However, 

most of these substrates lack a certain combination of the aforementioned properties. A 

preferable substrate would be one that offers resonant excitation of plasmons in NPs and 

is stable, reproducible in geometry and plasmonic response, easy to prepare, and cost-

effective. Plenty of SERS substrates have been fabricated with the aim of an optimal com-

bination of the above-mentioned properties. 

Many investigated substrates rely on the uniformity of NP sizes and shapes [22–27]. 

This uniformity yields a uniform Raman enhancement profile, which allows reproducible 

SERS results. However, for rapid and extensive screening to find the optimal combination 

of properties for SERS, it is desirable to have a SERS substrate that offers multiple NP 

sizes, shapes, and gaps leading to variable resonances. 

Gradient assemblies of NPs with gradually changing sizes and densities have at-

tracted interest because of their varied applications [28–36]. These samples fulfill many of 

the criteria mentioned above. Due to the gradual variation in the size of the NPs, their 

plasmonic response varies. These assemblies allow manipulation and investigation of 

their material properties at the micro and nano scales. Several techniques have have been 

employed to fabricate gradient NP assemblies on various substrates [28,32,36–38]. How-

ever, the definite distribution of sizes, shapes, and interparticle distances between NPs 

can hardly be controlled, especially in micro and nanometer scale gradients. 

In this work, we report a facile method of fabricating non-uniform SERS substrates 

that not only have typical SERS substrate characteristics, but also inhomogeneity in NP 

sizes and gaps. We show that such a substrate offers multiple plasmonic resonances and 

that the SERS enhancement varies spatially for different analytes. Additionally, we show 

that the local surface morphology can be estimated by optical methods. Furthermore, it is 

easy to prepare, uncomplicated, and comparatively cost-effective. Such a substrate ena-

bles fast screening of analytes and is stable, with reproducible trends in the results. This 

approach shows high controllability for the fabrication of such SERS substrates at the mi-

cro and nano scales and increases the potential of practical applications of non-uniform 

SERS substrates. 

2. Results and Discussion 

Several non-uniform samples were prepared as described in the Materials and Meth-

ods section; one of them has been illustrated in Figure 1. For ease of explanation, we la-

beled the substrates as S1, S2, and S3. Figure 1a shows a schematic of such non-uniform 

SERS substrates (S1, S2, S3), where the center of the evaporation source is marked as “C”. 

Figure 1b shows SEM images of the points marked P1 to P9 in Figure 1a. The SEM image 

at P1 shows that the substrate is covered by relatively spherical NPs. On the contrary, the 

SEM image at P2 shows the formation of connected Au islands forming percolation paths, 

which gradually increase in size until P5. This inhomogeneity occurs since points P2 to P5 

are closer to the center, such that more metal is deposited in this region, and the thermal 

annealing of the sample leads to the formation of connected Au islands [39]. 
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Figure 1. (a) Schematic of non-uniform SERS substrates S1, S2, and S3 marked with points P1 to P9 (black, points where 

SEM images were taken), and with points 1 to 40 (orange, points where extinction spectra were acquired); the length of 

each substrate is 40 mm. (b) SEM images (P1 to P9) at corresponding points marked in (a). (c) Au particle size distribution 

at points P1, P8, and P9, and (d) average size of gaps between Au NPs/islands at points P1 to P9. 

Afterwards, SEM images at points P6 and P7 show a slow transition from a connected 

island-like morphology towards particle-like features. Finally, points P8 and P9 of S3 are 

further away from the center and are covered by relatively spherical particles. Figure 1c 

shows the particle size distributions at points P1, P8, and P9, as determined with the image 

processing software ImageJ. At P1, the average particle size (radius) is 15 ± 10 nm, and 

moving across the island film to P8 leads to larger particles with 20 ± 13 nm. The largest 

particle density with the smallest particles is observed at P9, with an average particle size 

of 10 ± 6 nm. The average particle sizes at points P2 to P7 cannot be easily determined 

since the substrate is covered with connected Au islands. An important parameter for 

SERS enhancement is the gap between the particles/islands. Figure 1d shows the average 

gap size between Au NPs and Au islands at points P1 to P9. The gap sizes were evaluated 

in the image processing software Gwydion. At point P1, the average gap size between the 

Au NPs is 11 ± 4 nm. As can be seen in the SEM images, at P2, the surface morphology 

changes from NPs to an island film, which leads to an increase in the gap size to 42 ± 6 nm 
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and 52 ± 5 nm at P2/P3, respectively. Moving further towards the center C of the whole 

sample at P4/P5, the average gap size between islands gradually decreases to 45 ± 3 nm 

and 32 ± 3 nm. In this area, more metal is deposited, and the thermal annealing of the 

sample leads to the formation of larger connected islands with smaller gap sizes. Moving 

further across the substrate, the trend is reverted, and the average gap size increases again 

at P6 to P8, and decreases when NPs are formed at P8/P9. Finally, at point P9, the average 

gap size is 11 ± 3 nm, which is similar to P1. This morphology is similar for different fab-

ricated substrates within the limits of the production process of inhomogeneous samples, 

as can be seen in the supporting information in Figure S1. 

Figure 2a shows a contour plot of extinction spectra acquired across samples S1, S2, 

and S3 shown in Figure 1. Spectra were recorded at 40 different locations, as shown sche-

matically in Figure 1a along the substrates (cf. “horizontal position” in Figure 2a,e). The 

selected extinction spectra in Figure 2b–d correspond to points P1–P9 of the SEM images 

of S1, S2, and S3 in Figure 1b. The horizontal position locationof P1 to P9 can be seen in 

Figure 2a. 

 

Figure 2. (a) Contour of the extinction spectra acquired across substrates S1, S2, and S3, as denoted 

schematically in orange at 40 locations in Figure 1a. The black markers illustrate the maximum of 

each spectrum. (b) Corresponding extinction spectra of S3 at points P7, P8, and P9, (c) corresponding 

extinction spectra of S2 at positions P4, P5, and P6, (d) corresponding extinction spectra of S1 at 

positions P1, P2, and P3, and (e) LSPR, amplitude and symmetry factor of extinction spectra in (a). 
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In general, the extinction maximum of the spectra (illustrated by the black markers 

in Figure 2a) acquired across the three substrates shifts to longer wavelengths from S1 to 

S2, and to shorter wavelengths from S2 to S3. Furthermore, the full width at half maximum 

(FWHM) of the extinction spectra changes from S1 to S3. The extinction spectra of S1 in 

Figure 2a and the spectra at P1 to P3 in Figure 2d show that the localized surface plasmon 

resonance (LSPR) is comparably narrow at position P1 and gradually red shifts, broadens, 

increases in intensity, and becomes more asymmetric towards position P3. This trend con-

tinues until the middle of substrate S2, where the spectra are highly asymmetric and are 

tailing towards larger wavelengths. Moving further to S3, this trend is reverted and the 

spectral maximum shifts to the blue. Furthermore, the spectral peak sharpens, decreases 

in intensity, and becomes more symmetric. On substrate S3 the spectral shape is similar 

to that on S1, and the spectra exhibit a well-defined maximum, indicating a localized plas-

mon resonance. This alteration of the spectral shape allows us to draw conclusions on the 

film morphology at the different positions on the substrate. At the beginning/end of S1/S3, 

the spectra show a clear LSPR resonance, similar to that of a gold sphere [40–42]. This is 

also supported by the SEM images in Figure 1b. However, comparing the spectral position 

of the experimental extinction maxima with simulations based on Mie’s theory of spheri-

cal gold particles (see supporting information in Figure S2a), it is obvious that the experi-

mental resonances show a large red shift. This indicates a significant contribution of cou-

pling between the NPs, which is favorable for SERS experiments, as it creates intense 

hotspots in the gaps [43]. Moving towards S2, the spectral maximum shifts further to the 

red, which suggests that the particle size and/or the coupling between the particles in-

creases. The SEM images in Figure 1b show that the film morphology changes from NPs 

to a connected Au island film towards the center C. Here, more material is deposited due 

to the evaporation geometry. This morphology change is also visible in the extinction 

spectra, since they further red shift, increase in intensity, and become strongly asymmetric 

in the center of the three substrates. In particular, this asymmetry can be a measure of the 

film morphology, where a large asymmetry indicates an island-like film, and a small one 

suggests spherical NPs. These effects are summarized in Figure 2e, where the spectral 

maximum, the amplitude, and the symmetry factor are shown as a function of the hori-

zontal position. The LSPR spectral position and the intensity of the spectra correlate with 

each other and show similar trends. Moving across the three substrates, the LSPR (shown 

in black) red shifts from 580 nm to 660 nm and remains approximately constant at 630 nm 

on S2. For S3, the LSPR blue shifts from 620 nm to 570 nm. The intensity shows a similar 

trend, and the maximum extinction is observed at the center C. An increase in intensity 

indicates an increase in optical cross-section due to more material being deposited in those 

regions and vice versa. This is supported by SEM images in Figure 1b. Additionally, we 

characterized the asymmetry of the spectra by a symmetry factor, which is the ratio of the 

difference of the areas on the right and left sides of the spectral maximum normalized to 

the full area of the spectrum (see supporting information in Figure S2b). A negative sym-

metry factor means that the area under the curve on the long-wavelength side of the spec-

tral maximum is larger than the area on the shorter-wavelength side. This symmetry fac-

tor is shown by the green markers in Figure 2e. In general, the symmetry factor is anticor-

related with the spectral maximum and the intensity. As the LSPR red shifts, the extinction 

spectrum is increasingly tailing towards larger wavelengths, and thus, the symmetry fac-

tor shifts to increasingly negative values. It remains approximately constant for S2 and 

gradually decreases in amplitude for S3, indicating that the extinction spectra are becom-

ing more symmetric. Hence, a symmetry factor close to zero indicates a particle-like mor-

phology, and a negative symmetry factor indicates a connected island film. 

The potential of such a non-uniform substrate for SERS is shown by using 1,2-bis(4-

pyridyl) ethylene (BPE) and methylene blue (MB) as analytes. For this purpose, droplets 

of suspensions of the respective analyte are positioned on the substrate, as shown in the 

Materials and Methods section below. The analyte BPE was evaluated at 12 different hor-

izontal positions, whereas 20 horizontal positions for MB were analyzed across the 
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substrate. Note: Due to the symmetry of the substrate, the 12 or 20 droplets were placed 

at distances of 2–3 mm between positions P1 and P5 by hand. The focus spot sizes for the 

SERS measurements is in the order of few μm, much larger than the size of the individual 

nanostructures and much smaller than the droplet size. 

The most intense peak of BPE, namely the benzene ring stretching (C-H) at 1608 cm−1, 

was chosen for analysis. Raman measurements and corresponding extinction spectra ac-

quired at the same specified points (without analyte) are shown in Figure 3a–c. Please 

note that different substrates were used for the SEM characterization in Figures 1 and 2 

and for the SERS experiments in Figure 3 due to carbon residuals after the SEM measure-

ments. 

 

Figure 3. (a) Extinction spectra acquired (without analyte) at 12 lateral positions across the substrate 

used for SERS of BPE. (b) Raman spectra of BPE (1 μL—0.25 × 10−3 M) acquired at the same 12 posi-

tions. (c) SERS intensity of BPE (@1608 cm−1)—blue curve, spectral maxima of the extinction spectra 

shown in (a)—black curve, symmetry factor of the extinction spectra shown in (a)—green curve, (d) 

Extinction spectra acquired (without analyte) at 20 lateral positions across another gradient SERS 

substrate used for MB. (e) Raman spectra of MB (1 μL—0.25 × 10−3 M) acquired at the same 20 posi-

tions. (f) SERS intensity of MB (@1625 cm−1)—blue curve, spectral maxima of the extinction spectra 

shown in (d)—black curve, symmetry factor of the extinction spectra shown in (d)—green curve. 

The extinction spectra in Figure 3a were acquired before deposition of the analytes 

and show a similar trend as previously observed in Figure 2, suggesting a continuous 

transition from spherical particles at position 1 to a connected islands film at position 12. 

The extinction maxima of these spectra are shown in Figure 3c by the black line as a func-

tion of the horizontal position. The values are determined using an in-house MATLAB 

script that also considers the asymmetry of the curve, since in curves 10 to 12, the maxima 

are no longer discernible. The spectral shape of the extinction spectra suggests that this 
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substrate covers the morphology change between points P1 and P5 of the substrate shown 

in Figures 1 and 2. For this substrate, there is a red shift from approximately 550 nm at 

position 1 to 670 nm at position 12. This means that the particle sizes are small at the be-

ginning and gradually increase in size until a connected Au island film is obtained. Note 

that adding water droplets for the SERS measurements is expected to systematically shift 

the LSPR resonances to longer wavelengths. The transition from NPs to an island film can 

again be seen by the broadening and decreasing symmetry of the extinction spectra. The 

symmetry factor as a function of the horizontal position is plotted in Figure 3c—green 

line. The spectrum remains symmetric and only broadens gradually until position 3, indi-

cating that the particles in this region just increase in size, but remain roughly spherical. 

Moving towards position 12, islands are forming and increasing in size. As a consequence, 

the gap sizes first increase and then decrease again when the islands become larger. 

Hence, the morphology at positions 1–12 roughly correlates with the SEM images in Fig-

ure 1b of P2–P5. Figure 3b shows a series of Raman spectra of BPE at the 12 positions, and 

the Raman intensity variation as a function of the horizontal position is summarized in 

Figure 3c—blue line. The most intense peak of BPE (@1608 cm−1) is chosen to clearly visu-

alize the Raman enhancement along the 12 lateral positions. However, all other peaks of 

BPE show the same trend, as can be seen in Figure 3b. The Raman intensity of the 1608 

cm−1 peak increases from position 1 to 3. Here, the red shift of the extinction spectra sug-

gests that the NP size increases. The maximum Raman enhancement is observed at posi-

tion 3, where the film morphology is still particle-like with comparably small gaps and 

the extinction maximum in water is presumably spectrally close to the excitation wave-

length (633 nm, black dashed line in Figure 3b). Hence, there is a strong absorption of the 

excitation light and, as a result, the plasmon excitation is very efficient, and the small gaps 

are creating intense hotspots, further enhancing the Raman intensity. Afterwards, the Ra-

man intensity gradually decreases from position 4 to position 8. The extinction maximum 

at these lateral positions red shifts from 605 nm to 625 nm, and the symmetry factor grad-

ually decreases from positions 4 to8. This suggests that the film morphology changes from 

particle-like to connected islands with larger gaps (see Figure 1). These larger gaps lead 

to a comparably small Raman enhancement. Hence, this film morphology is not favorable 

to efficiently enhance the Raman signal of BPE, at least compared to the other morpholo-

gies. From position 11 to 12, the extinction maximum further red shifts from 630 nm to 

650 nm, and the symmetry factor also becomes more negative, suggesting a further 

growth of the islands. As previously observed in Figure 1, further growth of the islands 

leads to a reduction in the gap size, resulting in the small increase in the Raman intensity 

towards position 12. 

To demonstrate that such a non-uniform SERS substrate offers fast screening of opti-

mal SERS conditions for different molecules, we compare the results obtained for BPE 

with those obtained for MB. A fresh non-uniform SERS substrate was fabricated, and MB 

was about equidistantly deposited at 20 different lateral positions across the substrate. 

Raman measurements and corresponding extinction spectra (without analyte) acquired at 

those points are shown in Figure 3d–f. Again, the extinction spectra in Figure 3d show a 

trend suggesting a gradual transition from spherical particles at position 1 to a connected 

islands film at position 20. The extinction maxima of these spectra are shown in Figure 3f 

by the black line as a function of the horizontal position. Similar to Figure 3a, the extinction 

spectra suggest that the substrate film morphology in the range of points 1 to 20 is com-

parable to that between points P1 and P5 of the sample shown in Figures 1 and 2. For this 

substrate, there is a red shift from approximately 560 nm at position 1 to 660 nm at position 

20 and a similar evolution of the spectral shape. This means that the morphology of all 

three substrates shown here changes in a very similar way under identical substrate prep-

aration. The symmetry factor as a function of the horizontal position is plotted in Figure 

3f—green line. The spectrum remains symmetric and only broadens gradually until posi-

tion 10, depicting that the particles in this region just increase in size, but remain roughly 

spherical. Moving further across the substrate, islands are forming and increasing in size. 
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As a consequence, the gap sizes first increase and then decrease again when the islands 

become larger. This covers the morphology change observed in the SEM images in Figure 

1b of P1–P5. Figure 3e shows a series of Raman spectra of MB at the 20 positions; the most 

intense peak of MB (@1635 cm−1) is chosen to clearly visualize the Raman enhancement 

along the 20 lateral positions. However, all other peaks of MB show the same trend, as can 

be seen in Figure 3e. The Raman intensity variation of the 1635 cm−1 peak as a function of 

the horizontal position is shown in Figure 3f—blue line. The Raman intensity from posi-

tion 1 to 20 has a wavy nature, which requires further investigation. The maximum Raman 

enhancement is observed at position 14, where the Au film consists of connected islands 

with comparably small gaps with an extinction maximum without analyte (610 nm) spec-

trally close to the excitation wavelength (633 nm, black dashed line in Figure 3d). Hence, 

there is a strong absorption of the excitation light and, as a result, the plasmon excitation 

is very efficient and the small gaps are creating intense hotspots, further enhancing the 

Raman intensity. Afterwards, the Raman intensity gradually decreases from position 14 

onwards to position 20. 

Since we have used different substrates for BPE and ME, it is important to compare 

the results for similar substrate morphologies. This is shown in Figure 4 by plotting the 

SERS intensity against the extinction maximum of the substrate (without analyte). 

 

Figure 4. Plot comparing the SERS intensity for the two molecules BPE and MB to the extinction 

maximum of the LSPR (without analyte). 

The highest SERS intensity for BPE (solid blue line in Figure 4) is obtained at position 

3, where the maximum extinction of the substrate without analyte is at 585 nm. At this 

position, the film morphology is particle-like with small gaps. On the other hand, the 

highest SERS intensity for MB (dashed blue line in Figure 4) is obtained at position 14 with 

a substrate resonance without analyte at approximately 610 nm. At this position, the film 

consists of connected islands with small gaps. Hence, these two different molecules show 

two different laterally separated resonant positions on a non-uniform SERS substrate. This 

indicates that the type of non-uniform SERS substrate produced for this study offers mul-

tiple resonant conditions. Depending on the excitation wavelength and properties of the 

molecules, the maximum enhancement is observed at different lateral positions on those 

samples. This is a clear indication that these types of gradient samples can be used to 

screen for the optimal SERS conditions for different molecules. This also shows that metal 

islands can be tuned hassle-free and can be used as comparatively low-cost SERS sub-

strates. Furthermore, the parameter range of these substrates can be further expanded by 

different annealing processes or by patterning of the underlying substrate. 
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3. Materials and Methods 

3.1. Non-Uniform Metallic Au Particles Substrate Fabrication 

The SERS substrates were prepared by metal evaporation in a vacuum evaporator 

(Plassys MEB400, France) using the thermal evaporation mode. The evaporation rate was 

0.03 nm/s monitored by a built-in quartz crystal sensor. The working pressure was 1.0 × 

10−6 Torr. Prior to metal evaporation, the glass substrates were washed with a mixture of 

detergent (Decon 90) and ddH2O (1:9 volume ratio) in an ultrasonic water bath at 50 °C 

for 20 min, and then dried within an N2 stream. Figure 5a shows a schematic of a conven-

tional metal evaporation technique to deposit layers of uniform thickness covering the 

whole substrate. Non-uniform SERS substrates were fabricated by evaporating a thin 

layer of gold (Au), followed by thermal annealing, which leads to the formation of Au 

NPs/islands. To attain non-uniform deposition of metal NPs, the sample holder, contain-

ing bare glass substrates, was placed very close to the source. This arrangement is shown 

in Figure 5b. The distance between source and substrate in this work was 70 mm. After-

wards, the sample is thermally annealed at 250 °C for 30 s on a hot plate. Figure 5c shows 

an optical image of the resultant non-uniform Au SERS substrates. The sample holder can 

hold 3 glass substrates of 22 mm × 40 mm each; the non-uniformity is extended over the 3 

glass substrates and is even visible by the naked eye (Figure 5c). 

 

Figure 5. (a) Schematic of vacuum evaporator for metal deposition in the conventional method (for 

approximately uniform thickness of metal deposition), (b) schematic of vacuum evaporator for the 

metal deposition with non-uniform thickness, and (c) resulting non-uniform SERS substrates on 

glass. 
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3.2. Extinction Spectra 

Extinction spectra were recorded in two confocal systems (Setup 1: Figure 2a–c and 

Figure 3a, Setup 2: Figure 3d). The region of interest in each case is illuminated with a 

nearly collimated white light source under normal incidence. The transmitted light is col-

lected by an objective, spatially filtered by either an optical fiber or a pinhole, and detected 

by a spectrometer [44,45]. Due to the spatial filtering, signal from an area of ∼10 μm di-

ameter is recorded. All measurements were conducted at room temperature and ambient 

conditions.  

Setup 1: Illumination takes place with a halogen light bulb in a LabRAM 800HR 

equipped with an Olympus BX41 microscope. The transmitted light is collected by a 20× 

objective (NA 0.45) and coupled into an Ocean Optics QE 65,000 spectrometer through a 

200 μm fiber.  

Setup 2: Illumination takes place with a halogen light bulb in a Nikon Ti-U inverted 

microscope. The transmitted light is collected by a 20× objective (NA 0.5) and spatially 

filtered by a 200 μm pinhole in the image plane before entering an Ocean Optics QE 65,000 

spectrometer.  

Extinction was evaluated in the spectrometer software according to 

Extinction = −log10 (Ts/T0), 

where T0 represents the light intensity transmitted through a bare glass, and Ts is the in-

tensity transmitted through the fabricated gradient SERS substrates. Both T0 and Ts were 

first corrected for the dark current of the spectrometer’s CCD detector. 

3.3. SERS Experiments 

A LabRAM 800HR from Horiba equipped with an Olympus BX41 microscope, a 

632.8 nm laser and a 10× (NA = 0.3) objective in a reflection configuration was used for 

illumination and collection of the Raman signal. SERS experiments were performed with 

1,2-bis(4-pyridyl) ethylene (BPE) with a concentration of 0.25 × 10−3 M and methylene blue 

(MB) with a concentration of 0.25 × 10−3 M in water. The excitation and emission maxima 

of the fluorescent molecule BPE are located at 388 nm and 456 nm, respectively [46,47], 

whereas the excitation and emission maxima of MB are located at 400 nm and 686 nm, 

respectively [48]. For the SERS experiments, droplets of 1 μL each were about equidis-

tantly deposited on the substrate (corresponding to droplets with diameters of several 100 

μm at a spacing of ~2–3 mm), and spectra were acquired rapidly before the droplets dried. 

The location of the droplets is denoted as “horizontal position” in the evaluation of the 

SERS spectra. Drying of the analyte might cause a non-uniform distribution of the analytes 

over the substrate surface, resulting in accumulation of the analyte at SERS hotspot re-

gions, eventually hindering a correct characterization of the substrate [49,50]. Further-

more, it is worthwhile to validate the SERS substrate in solution to show its usefulness as 

a molecular sensor. All the measurements were conducted at room temperature and am-

bient conditions. 

3.4. Scanning Electron Microscopy (SEM) 

SEM images were acquired with a Schottky Jeol 6500F at 2 kV, a secondary electron 

detector, and an accelerating voltage of 0.5 to 30 kV. 
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4. Conclusions 

We have demonstrated a straightforward strategy to design and fabricate non-uni-

form SERS substrates that offer a wide range of resonance wavelengths for faster screen-

ing of analytes. The substrates were fabricated in a metal evaporator by placing the sample 

holder close to the Au source. The substrate was characterized with SEM and shows a 

continuous transition from Au NPs to connected Au islands and back at different lateral 

positions. The intensity maximum of the extinction spectra showed that the resonances of 

such substrates vary over a wide range from 560 nm to 680 nm. Furthermore, the spectral 

shape of the extinction spectrum allows us to draw conclusions on the Au film morphol-

ogy in that region. A comparatively sharp and symmetric spectrum originates from NPs, 

while a broad and asymmetric spectral shape indicates a connected island morphology. 

Additionally, the intensity of the spectra increases, since the optical cross-section is in-

creased for islands with a larger area. Hence, acquiring an extinction spectrum can serve 

as an easy tool to characterize the morphology of an Au film based on the previous 

knowledge from the SEM images. The SEM images also reveal that the gap size between 

NPs/islands varies with the amount of material being deposited in that region. Smaller 

gap sizes between particles and islands create hotspots that increase the Raman enhance-

ment. Such substrates are suitable to finding the optimal surface morphology for SERS. 

We investigated the SERS efficiency for BPE and MB and found that the maximum SERS 

enhancement for these molecules occurs at different lateral positions and thus, for differ-

ent surface morphologies. For the non-resonant molecule BPE, the strongest enhancement 

was observed when the extinction maximum was close to the excitation laser wavelength, 

while the film morphology is still particle-like with small gaps was maintained. However, 

this was not the case for the resonant molecule MB, where it was favorable to have the 

extinction maximum at an about 20 nm longer resonance wavelength (possibly still closer 

to the excitation laser wavelength), even though the actual morphology consists of con-

nected islands with larger gaps. (Note that the measured extinction maximawill be shifted 

to longer wavelengths when the analyte is added.) Hence, such non-uniform SERS sub-

strates provide cost-effective and fast screening of analytes, show reproducible trends, 

and are reliable and easy to fabricate. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/molecules27165097/s1, Figure S1: SEM images of different fabri-

cated substrates (substrate 1—red and substrate 2—blue) at the same position P1 and P5 to denote 

micro and nanoscale reproducibility. Figure S2: (a) Normalized extinction spectra at points P1, P8, 

and P9 (solid lines—red, blue, black) compared to normalized simulated extinction spectra from 

Mie theory for spherical gold NPs with radii of 10 nm, 15 nm, and 20 nm (dashed lines—red, blue, 

black), (b) schematic and equation to determine the symmetry factor of an extinction curve. 
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