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Abstract: Isoxazole derivatives are significant enough due to their wide range of pharmacological
and therapeutic activities. The purpose of the current study is to use computational, in vitro, in vivo,
and extensive molecular approaches to examine the possible anti-ulcer activity of 4-benzylidene-3
methyl-1,2-isoxazol-5(4H)-one (MBO). Biovia Discovery Studio visualizer (DSV) was utilized for
virtual screening. A tissue antioxidant investigation, H+/K+-ATPase test, and anti-H. pylori activities
were carried out. ELISA, immunohistochemistry, and PCR methods were employed for the proteome
analysis. An ethanol-induced stomach ulcer model was used to examine the anti-ulcer potential
in rats. The binding affinities for MBO ranged from −5.4 to −8.2 Kcal/mol. In vitro findings
revealed inhibitory activity against H. pylori and the H+/K+-ATPase pump. It also enhanced levels
of glutathione, catalase, and glutathione-S-transferase and reduced lipid peroxidation levels in
gastric tissues of rats. In vivo results showed the gastro-protective effect of MBO (30 mg/kg) in
ulcerative rat stomachs. The proteomic study revealed decreased expression of inflammatory markers
(cyclooxygenase-2, p-NFkB, and TNF-α). In RT-PCR analysis, the expression levels of H+/K+-ATPase
were reduced. Furthermore, ADMET (absorption, distribution, metabolism, excretion and toxicity)
studies revealed that MBO has high GIT solubility and has a safer profile for cardiac toxicity. This
study suggests that MBO displayed anti-ulcer potential, which may have been mediated through the
inhibition of the H+/K+-ATPase pump, as well as antioxidant and anti-inflammatory pathways. It
has the potential to be a lead molecule in the treatment of peptic ulcers with fewer adverse effects.

Keywords: gastric ulcer; isoxazole; in-silico; anti-inflammatory; antioxidant; H+/K+-ATPase inhibition

1. Introduction

Ulcers are basically a disruption of the skin or mucus membrane marked by sloughing
of inflamed dead tissue. Peptic ulcer disease (PUD) is a chronic injury causing a mucosal
break or lesions in the stomach and duodenum, which can also occur anywhere from the
pylorus to the cardiac tissue [1]. Mucosal damage due to an ulcer in the stomach is specifi-
cally termed a gastric ulcer. In 2017, the reports estimated that circa 10% of the population
is affected by PUD, causing 15,000 deaths per year globally [2]. Gastric ulceration occurs
when the equilibrium between gastric offensive factors such as pepsin and acid secretion
as well as protective mucosal factors, including mucin secretion and antioxidant enzymes,
is disturbed [3]. Associated risk factors for PUD are H. pylori infection, Zollinger–Ellison
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syndrome, NSAID use and alcohol consumption [4]. The prevalence of H. pylori is around
50% globally; however, the prevalence is higher in developing countries [5].

PUD is characterized by epigastric discomfort, anorexia, nausea, vomiting and bloody
stools. Hence, the objective is to alleviate pain, cure the ulceration and prevent relapse.
Prevailing therapeutic options are anti-secretory medications, which include proton pump
inhibitors (PPIs), histamine (H2) receptor antagonists and cytoprotectives, while antimicro-
bials are preferred in H. pylori infection [6,7]. Clinical evaluation of conventional therapies
has demonstrated the incidence of drug interactions, various adverse effects in long-term
therapy, relapse and increased resistance of H. pylori [8]. Thus, the present study emphasizes
the development of novel and more effective anti-ulcer medication which can strengthen
defense mechanisms, inhibit aggressive factors and prevent ulcer formation.

Isoxazole nucleus belongs to the group of five-membered heterocycles containing oxy-
gen and nitrogen atoms. The unsaturated property of the molecule is contributed by two
carbon-carbon double bonds. It is a potent pharmacophore that occurs naturally as ibotenic
acid and is also present in a number of marketed drugs with diverse therapeutic activities,
such as valdecoxib, risperidone, cycloserine, dicloxacillin, sulfisoxazole, leflunomide and
danazol [8]. Due to its relatively easy synthesis, the isoxazole ring has been an object of
interest for chemists and pharmacologists from research groups all over the world. Its
chemical modifications include both connection of isoxazole with other aromatic, heteroaro-
matic or non-aromatic rings and substitution with different alkyl groups. Pharmacological
activities of substituted isoxazoles, such as antimicrobial, analgesic, antioxidant activity,
anti-inflammatory and anticancer activities, have been reported [9].

An adequate number of anti-ulcer therapies are available in practice that have brought
significant improvements to the ulcerative patient’s life. However, there is always a need
for the development of safer drugs. Thus, the goal of the present research is to explore the
anti-ulcer potential of 4-benzylidene-3 methyl-1,2-isoxazol-5(4H)-one by computational,
in vitro, in vivo and comprehensive molecular techniques (Figure 1).
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Figure 1. Chemical structure of 4-benzylidene-3 methyl-1,2-isoxazol-5(4H)-one (MBO).

2. Materials and Methods
2.1. Chemicals

Absolute ethanol was procured from Sigma Chemicals Co., Ltd. (St. Louis, MO,
USA). Omeprazole was obtained from a local pharmaceutical company. Avidin-biotin
Complex (ABC) and primary antibodies, including rat anti-TNF-α (SC-52B83), rat mon-
oclonal anti-p-NFkB (SC-271908) and rat anti-COX-2 (SC-514489), were acquired from
Santa Cruz Biotechnology (Dallas, TX, USA). 3,3-diaminobenzidine peroxidase (DAB),
5,5′-dithiobis (2-nitrobenzoic acid); (DTNB), GSH, and 1-chloro-2,4-dinitrobenzene (CDNB)
were acquired from Sigma Aldrich (St. Louis, MO, USA). Secondary antibody was obtained
from Abcam (ab-6789, Cambridge, UK), and proteinase K was purchased from MP Bio,
USA. H+/K+-ATPase activity assay screening kit (Catalog No: E-BC-K122-S), Rat p-NFkB
ELISA kit (Catalog No: E-EL-RO674), and rat TNF-α ELISA kit (Catalog No: E-EL-R0019)
were procured from Elabscience Biotechnology (Wuhan, China). Protein assay kit BCA
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(Catalog No: 23227, Waltham, MA, USA) was also used. All other reagents utilized were of
analytical grade.

Chemical Information of MBO

Yellow crystal: mp 140–142 ◦C (Lit [2k] mp 142–144 ◦C); 1 H-NMR (300 MHz, CDCl3):
d 2.31 (s, 3H, CH3), 7.44 (s, 1H, ArCH=), 7.49–7.59 (m, 3H, Ar), 8.35 (dd, J = 1.3, 7.4 Hz,
2H, Ar); 13C-NMR (300 MHz, CDCl3): d 11.63 (CH3), 119.65 (C=, inside of isoxazolone
ring), 129.03 (Ar), 130.47 (Ar), 132.29 (Ar), 134.01 (Ar), 149.98 (ArCH=), 161.16 (C=N),
167.88 (C=O); IR (KBr) n: 1732 (C=O), 1620, 1100, 1216, 879, 763 cm−1 [9].

2.2. Animals

Sprague-Dawley rats obtained from Laboratory Animal Research Center, Riphah Insti-
tute of Pharmaceutical Sciences (RIPS), Islamabad, Pakistan, both male and female, weigh-
ing 150–200 g and kept in standard enclosures with a controlled environment (20–25 ◦C),
were fed ad libitum. All experimental procedures were conducted in combination with
the Laboratory Animal Resources, Commission on Life Sciences, National Research Coun-
cil [10] and endorsed by the ethics committee of Riphah Institute of Pharmaceutical Sciences
(Ref No: REC/RIPS/2021/003) (Islamabad, Pakistan).

2.3. In Silico Studies

To investigate ligand-protein affinity, the Autodock Vina program was used. Ad-
ditionally, 3D structures of protein targets were acquired from protein data bank RCSB
PDB (http://www.rcsb.org/pdb/, accessed on 1 June 2022). Protein targets involved
in gastric ulcer pathophysiology include H+/K+-ATPase (PDB ID: 5ylu), muscarinic M1
(PDB ID: 5CXV), histaminergic H2 (PDB ID: 7ul3), COX-1 (PDB ID: 6y3c), COX-2 (PDB
ID: 5f1a), TNF-α (PDB ID: 4TSV) and NFkB (PDB ID: 1A3Q) [11]. These protein tar-
gets were prepared via AutoDockTools (version 1.5.6, Scripps Research, San Diego, CA,
USA); water molecules were removed, whereas polar H-atoms and charges were added.
Structures of standard drug molecules were downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/search/, accessed on 1 June 2022). Reference drugs
used were omeprazole (PubChem CID 4594), pirenzepine (PubChem CID 4848), raniti-
dine (PubChem CID 3001055), aspirin (PubChem CID 2244) and curcumin (PubChem
CID 969516). These structures were downloaded in xml format and converted to PDB
format via Open Babel JUI software (Open Babel development team, Cambridge, UK). The
3D structure of MBO was drawn in PDB format through Biovia Discovery Studio Visualizer
Client 2016 (DSV v16.1.0.15350). The PDB formats of target proteins, standard drugs and
ligand molecules were converted to PDBQT format via AutoDockTools (version 1.5.6).
Molecular docking was carried out via Pyrx 0.8 and selecting Autodock Vina as docking
software [12,13]. The results were analyzed as the binding affinities/E-values (kcal/mol)
and best binding pose. Post docking analysis via Biovia Discovery Studio Visualizer Client
2016 (DSV v16.1.0.15350) was carried out using the one best pose with the lowest energy
value [14]. Furthermore, 2D and 3D images were evaluated to determine ligand and amino
acid residue interactions.

2.4. Anti H. pylori Activity

The antibacterial potential of MBO against H. pylori was assessed using the disc dif-
fusion technique. Strains of H. pylori in triplicate were obtained from gastric biopsies of
gastric ulcer patients with consent at the Care Endoscopy Clinics and Labs (Rawalpindi,
Pakistan). They were identified by microaerophilic growth (at 37 ◦C), colony morphology
and urease tests. Sterile McCartney bottles were used to store isolates at −80 ◦C. Metron-
idazole served as a positive control. The diameter of the zone of inhibition surrounding
each disc was measured and reported as the mean of inhibition diameters (mm) on treated
plates incubated for 3–5 days at 37 ◦C [15].

http://www.rcsb.org/pdb/
https://pubchem.ncbi.nlm.nih.gov/search/
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2.5. H+/K+-ATPase Inhibitory Assay

The inhibitory effect of MBO on gastric H+/K+-ATPase of rats was analyzed by using
the colorimetric method [16]. The commercially available colorimetric H+/K+-ATPase
activity assay screening kit (Catalog No: E-BC-K122-S; Elabscience) was used for analysis.
Stomach tissues kept in a bio-freezer (−80 ◦C) were homogenized and then subjected
to centrifugation at 3500 rpm for 10–15 min to obtain a supernatant. The supernatant
collected was then analyzed for the release of inorganic phosphate after ATP hydrolysis
spectrophotometrically at 660 nm. Here, 1 ATPase activity unit is defined as 1 µmol of
inorganic phosphorus released by ATP hydrolysis by ATPase of 1 mg of tissue protein per
hour. Findings were then expressed as µmol Pi/mg prot/h.

2.6. Antioxidant Profile

The isolated gastric tissue of rats was subjected to homogenization and then cen-
trifuged at 1500 rpm for 30 min to collect the supernatant. The collected supernatant
was analyzed for glutathione (GSH), glutathione-S-transferase (GST), catalase and lipid
peroxidation (LPO) content assessment. The final product of DTNP and GSH oxidation is
2-nitro-5-thiobenzoic acid, which is yellow in colour. At 412 nm, absorbance was measured
using a microplate reader. GSH values were expressed as µmoles/mg of proteins. The
formation of CDNB conjugate determined the GST level, and absorbance was measured at
340 nm. It was expressed as µmoles of CDNB conjugate/min/mg of proteins. In the pres-
ence of catalase, degradation of H2O2 was measured using a microplate reader at 240 nm
absorbance, and values of catalase were expressed as µmoles H2O2/min/mg of proteins.
Levels of LPO were measured by the assessment of the MDA (malondialdehyde) end
product. Absorbance was determined at 532 nm and expressed in TBARS nmoles/min/mg
of proteins [17,18].

2.7. Ethanol-Induced Gastric Ulcer Model

For induction of gastric lesions, fasted rats (24 h) were randomly assigned to different
groups, with five animals in each group. As a negative control, Group I was given saline
(10 mL/kg body weight). Groups II, III, and IV were administered MBO at dosages
of 5, 10, and 30 mg/kg (p.o.), whereas Group V was given omeprazole (30 mg/kg) as a
positive control. One hour after all treatments, absolute ethanol (1 mL/100 g) was given
orally to each rat to induce gastric ulcers. All rats were sacrificed by cervical dislocation
after one hour of ethanol administration. Stomachs were cleansed with normal saline
after removal, and ulcer index in mm was calculated by assessing all lesions. Every
lesion’s surface area was calculated and scored according to the previously described
method by [19]. The ulcer index (UI) was calculated using the sum of the length (mm)
of all stomach lesions. The following formula was used to compute the percentage of
inhibition (% I):

% I = (USc − USt) × 100/USc

where USt represents the ulcer surface area of the test group, and USc represents the ulcer
surface area of the control group.

The data were analyzed using one-way ANOVA followed by Tukey’s posthoc test. For
molecular studies, gastric tissues were preserved at −80 ◦C in a bio-freezer.

2.8. Hematoxylin and Eosin (H&E) Staining

Absolute xylene (100%) was used for de-paraffinization of stomach tissue slides, and
then rehydration was accomplished by the use of ethanol (absolute) and ethanol dilutions
ranging from 100% to 70%. Subsequently, PBS was used for washing slides, and slides were
then placed in hematoxylin for 10 min. Furthermore, slides were then treated for 5 min
with 1% HCl solution and ammonia water and then washed with water. After that, for
5–10 min, eosin was applied to slides, washed with water and then dried off. Subsequently,
70%, 95%, and 100% serial dilutions of ethanol were used for dehydration of slides, and
then after fixation in xylene, coverslips were placed [20]. Microscopic images were taken
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using an Olympus light microscope (Olympus, Tokyo, Japan). Images were then analyzed
by Image J NIH (Wayne Rasband, Kensington, MA, USA). A total of 5 microscopic images
from each group were taken and analyzed for stomach tissue morphology, vacuolation and
cellular necrosis [21].

2.9. Immunohistochemistry (IHC) Investigation

Deparaffinized stomach tissue slides were treated with proteinase K (enzymatic tech-
nique) for antigen retrieval before being rinsed with PBS. Endogenous peroxidase activity
was inhibited by immersing slides in 3% H2O2 for 10 min. Normal goat serum (5% NGS
with 0.1% Triton X-100) was applied to slides after rinsing with PBS and incubated for
at least 1 h. Slides were treated with primary antibodies including rat anti-COX-2, rat
anti-TNF-α, and rat anti-p-NFkB (Dilution 1:100) and incubated at 4 ◦C overnight. The
slides were rinsed in PBS the next day, then treated with a biotinylated secondary antibody
(dilution factor 1:50) and again incubated for 1.5 h. After another PBS wash, the slides were
incubated in a humidified chamber for 1 h with ABC. In the last phase, staining of slides
was carried out by immersion in DAB chromogen. Slides were then rinsed in distilled water
and with ethanol for dehydration, followed by xylene fixation, and coverslips were placed
after applying mounting media. Immunohistochemical images (three images on each
slide) were taken with a microscope (Olympus, Japan) and saved in TIF format. COX-2,
TNF-α and p-NFkB expression was determined using Image J software (Wayne Rasband,
Kensington, MA, United States). According to the threshold intensity, the background of
images was optimized, and COX-2-, TNF-α- and p-NFkB-positive cells were analyzed and
represented as the relative integrated density of the samples in comparison to saline [22].

2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

In accordance with the manufacturer’s instructions (Elabscience, Wuhan, China), TNF-
α (Cat. #: E-EL-R0019) and p-NFkB (Cat. #: E-EL-RO674) expression was determined.
Stomach tissues (50 mg) kept in a bio-freezer (−80 ◦C) were subjected to homogenization
at 15 rpm × 1000 using SilentCrusher M (Heidolph, Schwabach, Germany) before being
centrifuged at 1350× g for 1 h. A supernatant was obtained. Total protein content was
determined by the BCA (bicinchonic acid) method. Using a 96-well plate in a kit, samples
were processed with specified antibodies, and absorbance was measured using a microplate
reader. Concentrations (pg/mL) were then normalized to total protein content in picograms
per milligram (pg/mg total protein), and the experiment was repeated at least three times.
For analysis, one-way ANOVA was performed, followed by Tukey’s posthoc test [23,24].

2.11. Real-Time Polymerase Chain Reaction (RT-PCR) Analysis

Following the homogenization of gastric tissues, the trizol method was used to extract
total ribonucleic acid (RNA) as specified by the manufacturer. From total RNA (1–2 µg),
cDNA was synthesized by reverse transcriptase enzyme, and cDNA was then amplified
by real-time PCR using a thermocycler [25]. The mRNA expression was normalized to
expression levels of beta-actin. For real-time quantitative PCR, the relative gene expression
was calculated using the 2∆∆-CT technique. Two primer sets, forward and reverse, were
used to enhance the annealing temperature, as shown in Table 1.

Table 1. Forward and reverse primer sequences.

Primer Sequences for H+/K+-ATPase and β-Actin

Primers Forward sequence (5′-3′) Reverse sequence (5′-3′)
Rat Beta-actin CCCGCGAGTACAACCTTCT CGTCATCCATGGCGAACT

H+/K+-ATPase (J02449) TATGAATTGTACTCAGTGGA TGGTCTGGTACTTCTGCT
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2.12. ADMET Analysis

ADMET (absorption, distribution, metabolism, excretion, and toxicity) are the essential
measurement tools for any compound before being elected as a drug candidate. The online
web tool swiss ADME (http://www.swissadme.ch/index.php, accessed on 1 June 2022)
was used to obtain ADME properties of the isolated flavone [26], and the pharmacokinetic
scores were predicted using the online web application pkCSM (http://biosig.unimelb.
edu.au/pkcsm/prediction, accessed on 1 June 2022).

2.13. Cardiac Toxicity

The blockage of the hERG channels is linked to fatal cardiac arrhythmias. The pre-
hERG 4.2 (http://predherg.labmol.com.br/predict, accessed on 1 June 2022), a web tool,
was used for early predictive cardiac toxicity.

2.14. Statistical Analysis

Through Image J software, morphological data were analyzed. The data were pre-
sented as mean SEM (n = 5). The findings were analyzed statistically using one-way
ANOVA, followed by a posthoc Tukey’s test using the Graph Pad program (GraphPAD,
San Diego, CA, USA). A p-value of less than 0.05 (p < 0.05) was regarded as significant.

3. Results
3.1. In Silico Analysis

Against different target proteins, MBO exhibited variable ACE (atomic contact energy)
values. MBO against H+/K+-ATPase pump, M1, H2, COX-1, COX-2, TNF-α and NFkB
exhibited an E-value of −7.4 Kcal/mol, −8.2 Kcal/mol, −6.2 Kcal/mol, −7.5 Kcal/mol,
−7.7 Kcal/mol, −5.4 Kcal/mol, and −5.7 Kcal/mol respectively. Omeprazole against the
H+/K+-ATPase pump exhibited an energy value of −8.2 Kcal/mol. Pirenzepine against
M1 exhibited an energy value of −8.7 Kcal/mol. Ranitidine against H2 exhibited an
energy value of −5.3 Kcal/mol. Aspirin against COX-1, COX-2 and TNF-α exhibited
E-values of −6.7 Kcal/mol, −6.8 Kcal/mol, and −4.9 Kcal/mol, respectively. Curcumin
against NFkB exhibited an E-value of −5.8 Kcal/mol. Table 2 summarizes the E-values
(kcal/mol), hydrogen bonds, and amino acid residues making H-bonds with the best-
docked poses of MBO and standard drugs. The 2D and 3D depictions of MBO and
standard drug interactions with their protein targets are shown in Supplementary Figures
S1–S14A,B. Standard inhibitors of the pathways are omeprazole, pirenzepine, ranitidine,
aspirin, Cox-1, Cox-2 and curcumin. The amino acids are alanine (ALA), aspartic acid
(ASP), asparagine (ASN), arginine (ARG), cysteine (CYS), glycine (GLY), glutamine (GLN),
glutamic acid (GLU), histidine (HIS), isoleucine (ILE), leucine (LEU), lysine (LYS), proline
(PRO), phenylalanine (PHE), serine (SER), tyrosine (TYR), tryptophan (TRP), threonine
(THR), and valine (VAL).

Table 2. E-values (Kcal/mol) and post-dock analysis of best pose of MBO and standard drugs
with targets.

Target
Proteins

MBO STANDARD DRUGS

E-Value
(Kcal/mol)

No of H
Bonds

Binding Residues
Forming H Bonds Standard E-Value

(Kcal/mol)
No of H
Bonds

Binding Residues
Forming H Bonds

H+/K+ ATPase
(PDB ID:5ylu) −7.4 1 SER A:871 Omeprazole −8.2 3

ALA A:339,
CYS A:813,
ASP A:137

Muscarinic M1
(PDB ID:5CXV) −8.2 1 SER A:109 Pirenzepine −8.7 - -

http://www.swissadme.ch/index.php
http://biosig.unimelb.edu.au/pkcsm/prediction
http://biosig.unimelb.edu.au/pkcsm/prediction
http://predherg.labmol.com.br/predict
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Table 2. Cont.

Target
Proteins

MBO STANDARD DRUGS

E-Value
(Kcal/mol)

No of H
Bonds

Binding Residues
Forming H Bonds Standard E-Value

(Kcal/mol)
No of H
Bonds

Binding Residues
Forming H Bonds

Histaminergic
H2

(PDB ID: 7ul3)
−6.2 - - Ranitidine −5.3 3

ASN A:292,
ALA A:232,
LYS A:231

Cox-1
(PDB ID:6y3c) −7.5 1 GLN A:203 Aspirin −6.7 2 THR A:206,

HIS A:207

Cox-2
(PDB ID:5f1a) −7.7 1 SER A:530 Aspirin −6.8 2 TYR A:385,

VAL A:523

TNF-α
(PDB ID:4TSV) −5.4 1 GLN A:67 Aspirin −4.9 2 GLY A:68

GLN A:67

NFkB
(PDB ID: 1A3Q) −5.7 1 ARG B:103 Curcumin −5.8 2 SER B:108,

THR B:149

3.2. Effect of MBO on H. pylori Inhibition

The anti-H. pylori activity of MBO and metronidazole was evaluated in vitro by disc
diffusion assay. Table 3 presents the zone of inhibition diameter (mm) at concentrations
of 0.5, 1, 2, 4, 8, 16 and 32 µg/disc and MIC50 (µg/mL) values of three clinical strains of
H. pylori. MBO shows MIC50 (minimum inhibitory concentration 50, µg/mL) values of
15, 14 and 14 for strains I, II and III, respectively. Metronidazole shows MIC50 (µg/mL)
values of 4, 6 and 4 for strains I, II and III respectively.

Table 3. In vitro antibacterial activity of MBO against three clinical strains of H. pylori using disc-
diffusion method (values expressed as mean + SEM (n = 3).

Zone of Inhibition (mm) at Concentrations (µg/disk) MIC50
(µg/mL)Samples 0.5 1 2 4 8 16 32

STRAIN I

MBO 1.66 ± 0.33 2.33 ± 0.33 4 ± 0.57 6.66 ± 0.33 9 ± 0.57 12 ± 0.57 15.33 ± 0.88 15
Metronidazole 3.66 ± 0.33 4.66 ± 0.33 5.33 ± 0.66 7 ± 0.57 10.33 ± 1.20 14.66 ± 0.88 22 ± 1.15 4

STRAIN II

MBO 1.66 ± 0.33 3 ± 0 4.66 ± 0.33 7.33 ± 0.66 9.66 ± 0.33 13 ± 0.57 16 ± 0.57 14
Metronidazole 4 ± 0.57 5 ± 0.57 5 ± 0.57 7.33 ± 0.88 10.33 ± 1.20 15 ± 1 20.66 ± 1.33 6

STRAIN III

MBO 2.33 ± 0.33 3.66 ± 0.33 5 ± 0.57 8.33 ± 0.88 9 ± 0.57 13.33 ± 0.88 16.33 ± 0.88 14
Metronidazole 4 ± 0.57 4.66 ± 0.33 5.66 ± 0.88 8 ± 1.15 11.33 ± 0.66 15.66 ± 0.33 22.66 ± 0.66 4

3.3. Effect of MBO on Rat Gastric H+/K+-ATPase Inhibition

MBO significantly inhibits the H+/K+ ATPase comparable to omeprazole (*** p < 0.001), as il-
lustrated in Figure 2. MBO inhibits H+/K+-ATPase enzyme activity at 40.25 µmol Pi/mg prot/h,
while omeprazole inhibits the H+/K+-ATPase activity at 30.29 µmol Pi/mg prot/h.

3.4. Effect on Oxidative Stress Markers

GSH, GST, catalase and LPO levels in rat stomach tissues were 49.36 + 0.49 µmoles/mg,
70.50 + 0.57 µmoles of CDNB conjugate/min/mg, 32.23 + 0.42 µmoles H2O2/min/mg, and
46.00 + 0.57 nmoles/min/mg, respectively, in the saline (10 mL/kg) group. In the ethanol
(1 mL/100 g) group, GSH, GST, and catalase levels decreased to 15.80 + 0.60 µmoles/mg,
18.66 + 0.46 µmoles of CDNB conjugate/min/mg, and 10.50 + 0.55 µmoles H2O2/min/mg,
respectively, and LPO levels increased to 118.53 + 0.56 nmoles/min/mg. GSH, GST, and
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catalase levels increased in the MBO (30 mg/kg)-treated group to 34.83 + 0.61 µmoles/mg,
55.5 + 0.60 µmoles of CDNB conjugate/min/mg, and 22.4 + 0.48 µmoles H2O2/min/mg,
respectively, and LPO levels were decreased to 51.60 + 0.51 nmoles/min/mg. In the omepra-
zole (30 mg/kg) group, GSH, GST, and catalase levels raised to 40.53 + 0.50 µmoles/mg,
61.93 + 0.78 µmoles of CDNB conjugate/min/mg, and 27.5 + 0.37 µmoles H2O2/min/mg,
respectively, and LPO levels reduced to 60.50 + 0.47 nmoles/min/mg. Here, ### p < 0.001
versus saline group, *** p < 0.001 versus ethanol groups as illustrated in Figure 3A–D.
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Figure 2. Effect of MBO on rat gastric H+/K+-ATPase activity. Inhibitory effect was analyzed using
the colorimetric method. Values expressed as mean ± SEM (n = 3). Significance at *** p < 0.001,
### p < 0.001.

3.5. Effect of MBO on Ethanol-Induced Gastric Ulcer Model

MBO exhibited an anti-ulcer effect in a dose-dependent manner. Table 4 illustrates
that oral administration of MBO decreased the absolute ethanol-induced gastric lesions
in comparison to the control group. MBO at 5 mg/kg, 10 mg/kg and 30 mg/kg caused
20%, 40% and 90% inhibition, respectively (*** p < 0.001 vs ethanol group). Omeprazole
(30 mg/kg) induced 90% inhibition. Macroscopic examination revealed the rat’s gastric
mucosa, as shown in Figure 4.

Table 4. Protective effect of MBO and omeprazole against ethanol (1 mL/100g)-induced gastric ulcer
model in rats.

Treatment Ulcer Index % Inhibition

Saline 10 mL/kg 0 100
Ethanol 1 mL/100 g 10 ± 0.1 ### 0

MBO (5 mg/kg) + Ethanol 1 mL/100 g 8 ± 0.039 *** 20
MBO (10 mg/kg) + Ethanol 1 mL/100 g 6 ± 0.086 *** 40
MBO (30 mg/kg) + Ethanol 1 mL/100 g 1 ± 0.067 *** 90

Omeprazole (30 mg/kg) + Ethanol 1 mL/100 g 1 ± 0.061 *** 90

Values expressed as mean +SEM (n = 5). One-way ANOVA followed by post hoc Tukey’s test. ### p < 0.001 saline
group, *** p < 0.001 vs ethanol group.
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Figure 4. Gross appearance of gastric mucosa in rats: (A) treated with saline 10 mL/kg. (B) Severe
lesions are observed with absolute ethanol (1 mL/100g) treatment along with hemorrhagic necrosis
of gastric mucosa. (C–E): MBO treatment groups at doses of 5 mg/kg, 10 mg/kg and 30 mg/kg,
respectively. (F) Pre-treated with omeprazole (30 mg/kg). The gastric lesions were reduced with
increased doses of MBO and omeprazole compared to ulcer control. At 30 mg/kg, MBO showed the
most effective gastro-protective action.
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3.6. Histopathological Examination

Figure 5 illustrates the histopathological analysis of the gastric tissues. In H&E stain-
ing, gastric cells were analyzed to assess whether they were in a normal state or displayed
any changes in cell morphology. The saline group (10 mL/kg) shows normal cell mor-
phology with intact shape and size of gastric cells. The ethanol group (1 mL/100g) shows
cellular necrosis and disrupted cell boundaries. In comparison, cell shape, size, bound-
aries and vacuolation were restored in the MBO (30 mg/kg) and omeprazole (30 mg/kg)
treatment groups.

Molecules 2022, 27, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 5. Effect of MBO on ethanol-induced stomach ulcers analyzed by histopathological tech-

nique. Gastric tissues (n = 5) from each experimental group were processed for histological changes 

after 1 h of ethanol treatment. Magnification 40×. (A) Saline 10 mL/kg; (B) ethanol 1 mL/100g; (C) 

MBO 30 mg/kg + ethanol 1 mL/100g; (D) omeprazole 30 mg/kg + Ethanol 1 mL/100g. Green, orange, 

blue, and yellow arrows represent well-demarcated and rounded cells, disruption of morphological 

cell boundaries, vacoulation and cellular necrosis, respectively. 

3.7. Immunohistochemistry (IHC) Analysis 

In the ethanol group (1 mL/100g), the expression of COX-2, TNF-α and p-NFkB is 

increased in gastric tissues (### p < 0.001 versus saline group). In the MBO (30 mg/kg) and 

omeprazole (30 mg/kg) treatment groups, their expression is significantly reduced (*** p < 

0.001 versus ethanol group), as presented in Figure 6A,B. 

A B 

C D 

Figure 5. Effect of MBO on ethanol-induced stomach ulcers analyzed by histopathological technique.
Gastric tissues (n = 5) from each experimental group were processed for histological changes after
1 h of ethanol treatment. Magnification 40×. (A) Saline 10 mL/kg; (B) ethanol 1 mL/100g; (C) MBO
30 mg/kg + ethanol 1 mL/100g; (D) omeprazole 30 mg/kg + Ethanol 1 mL/100g. Green, orange,
blue, and yellow arrows represent well-demarcated and rounded cells, disruption of morphological
cell boundaries, vacoulation and cellular necrosis, respectively.

3.7. Immunohistochemistry (IHC) Analysis

In the ethanol group (1 mL/100g), the expression of COX-2, TNF-α and p-NFkB is
increased in gastric tissues (### p < 0.001 versus saline group). In the MBO (30 mg/kg)
and omeprazole (30 mg/kg) treatment groups, their expression is significantly reduced
(*** p < 0.001 versus ethanol group), as presented in Figure 6A,B.
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Figure 6. (A) represents the inhibitory effect of MBO against COX-2, TNF-A, and p-NFkB expression
in gastric tissues of rats using the immunohistochemical technique (Magnification 40×). Saline,
ethanol, MBO 30 mg/kg and omeprazole group. (B) Graphical representation of severity scores of
stomach injury in different groups calculated by relative integrated density. Values expressed as
mean ± SEM (n = 4). One-way ANOVA with posthoc Tukey’s test. ### p < 0.001 vs. saline group,
*** p < 0.001 vs. ethanol group.

3.8. Effect of MBO on Inflammatory Markers by ELISA

Figure 7A,B illustrates the effect of MBO on TNF-α and p-NFkB in the stomach tissues
of rats. MBO significantly decreased the TNF-α and p-NFkB expression levels in the
treatment group compared to the negative control group (*** p < 0.001 versus ethanol
group, ### p < 0.001 versus saline group). One-way ANOVA was used to evaluate the data,
followed by a posthoc Tukey’s test. Isolated stomach tissues from the ethanol-administered
group exhibited an increased TNF-α and p-NFkB expression of about 3931.37 + 32.65 and
3732.5 + 100.0 pg/mL of total protein, respectively, compared to the normal saline-treated
group. MBO (30 mg/kg) caused a significant decrease in TNF-α and p-NFkB expression
of 2705 + 20.41 pg/mL and 1812.5 + 87.77 pg/mL of total protein, respectively, compared
to the negative control group. Omeprazole also caused a decrease in the expression of
TNF-α and p-NFkB of about 2215 + 53.07 pg/mL and 552.5 + 38.78 pg/mL of total protein,
respectively, compared to the negative control group.

3.9. Effect of MBO on Expression of H+/K+-ATPase through RT-PCR Analysis

RT-PCR is conducted to demonstrate the expression of H+/K+-ATPase in an ethanol-
induced gastric ulcer model. The H+/K+-ATPase mRNA levels in the ethanol-administered
group were increased compared to the normal saline-treated group. MBO (30 mg/kg)
caused a significant decrease in expression levels, whereas omeprazole also reduced the
expression compared to the negative control group (*** p < 0.001 versus ethanol group,
### p < 0.001 versus saline group), as shown in Figure 8. One-way ANOVA was used to
evaluate the data, followed by a posthoc Tukey’s test.
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Figure 7. (A,B) represents effect of MBO on TNF-α and p-NFkB expression in gastric tissue of rats.
After 1 h of ethanol treatment, animals were sacrificed; stomachs were isolated and stored at −80 ◦C.
Stomach tissues were homogenized as described in the methods section, and TNF-α and p-NFkB
levels were measured by ELISA assay. Values expressed as mean ± SEM (n = 3). *** p < 0.001;
### p < 0.001. Analyzed by one-way ANOVA followed by posthoc Tukey’s test.
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Figure 8. Effects of MBO in H+/K+-ATPase expression in ethanol-induced gastric ulcer model. The
mRNA levels of H+/K+-ATPase were measured by RT-PCR using specific primers. Significance at
*** p < 0.001 vs. ethanol group; ### p < 0.001 versus saline group. Analyzed by one-way ANOVA
followed by posthoc Tukey’s test.

3.10. Pharmacokinetics and ADMET

The physicochemical and absorption, distribution, metabolism, excretion, and toxicity
(ADMET) characteristics of the MBO were deeply investigated and discussed in Table 5.
According to Table 5, the MBO showed good results within the limit for lipophilicity,
insolubility, size, polarity, and flexibility. The oral bioavailability chart of MBO is mentioned
in Figure 9. Among all six factors, only the instauration was out of the limit.
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Table 5. Pharmacokinetic and ADMET values of MBO.

Properties Parameters MBO

Physicochemical Properties

MW a (g/mol) 187.19 g/mol
Rotatable bonds 1

HBA b 3
HBD c 0

Fraction Csp3 0.09
TPSA d 38.66

Lipophilicity Log Po/w

iLOGP 1.95
XLOGP3 2.23
MLOGP 1.95

Consensus 2.15

Absorption

Human intestinal absorption 97.16%
Caco2 permeability 1.339
Skin Permeability −2.466

P-glycoprotein Substrate No

Distribution
Blood-brain barrier Permeability 0.382

CNS permeability −1.973

Metabolism

CYP3A4 substrate No
CYP2D6 substrate No
CYP2D6 inhibitor No
CYP1A2 inhibitor Yes
CYP2C19 inhibitor No
CYP3A4 inhibitor No

Excretion
Total clearance 0.662

Renal OCT2 substrate No

Toxicity

Oral rat acute toxicity (LD50)(mol/kg) 2.231
Oral rat Chronic toxicity (LOAEL) (mg/kg) 2.188

Hepatotoxicity Yes
hERG I Inhibitor No
hERG II Inhibitor No

AMES toxicity No
Max. Tolerated Dose (human)

(log mg/kg/day) 0.733

Fathead Minnow (log mM) 1.108
Tetrahymena pyriformis (log ug/L) 0.902

Skin sensitisation Yes
a Molecular weight, b H-bond acceptor, c H-bond donor, d Topological polar surface area.
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HIA and CNS absorption are essential parameters checked for every drug before its
entry for drug formulation in the pharmaceutical field or clinical trials [26,27]. Blood–brain
barrier penetration is essential, as compounds that act on the central nervous system (CNS)
must cross through the blood–brain barrier, and the compounds that are not active on the
CNS should not intersect to avoid adverse effects on the CNS [27]. As mentioned in Table 5,
the MBO displayed a high gastrointestinal absorption (HIA) with less BBB permeability,
indicating that MBO shows a low occurrence for adverse CNS effects.

Figure 8b shows the BOILED-EGG curve. The BBB penetration and GI absorption
(HIA) of the substances may be predicted by this method. There are two areas: one for the
GI absorption zone (HIA) and the other for BBB penetration (yolk). Neither GI absorption
nor BBB penetration is indicated if any component is found in the gray zone. Furthermore,
MBO did not show that it is a P-gp substrate; it is not sensitive to the efflux mechanism of
P-gp, which is used by many cancer cell lines to develop resistance to drugs [28], as shown
in Figure 8b.

MBO showed 97.1% absorption orally. It has poor penetration into the CNS. MBO
only showed inhibition for a specific CYP1A2 cytochrome, which means that MBO can
be sensitive to these specific targeted cytochrome drugs. However, for the remaining
cytochromes, MBO did not show any inhibition, which shows its safety in the case of drug-
drug inhibition. It has a total clearance of 0.662, as mentioned in Table 5. MBO showed
hepatotoxicity inhibition, which means that it can cause hepatotoxicity, but for hERG I and
hERG II, MBO was totally safe. Skin sensitisation is also an important parameter for many
biomolecules [29]. The compound MBO was skin sensitive. In addition, MBO showed no
environmental toxicity.

Cardiac Toxicity

The FDA requires that every biomolecule be tested for hERG safety before it may be
used as a therapeutic candidate. hERG blockage has been connected to deadly cardiac
arrhythmias. Using pred-hERG results to predict cardiac toxicity, the likelihood map for
MBO is shown here (Figure 10). Attributions to hERG blockage, both positive and negative,
are shown in the figure. Increasing the number of contour lines and the intensity of the
green color shows that an atom or fragment has made a more positive contribution to the
hERG blockage. With a 60% confidence level, the pred-hERG projected that MBO would be
non-cardiotoxic. The findings have revealed that MBO is safe for cardiovascular toxicity.
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4. Discussion

Peptic ulcer disease (PUD) is a global health dilemma. Its etiology is complex and
multifactorial, with increased rates of recurrence [30]. Novel approaches are needed to
prevent gastric ulceration and hyperacidity and their recurrence [31]. The current study
investigates the protective effects of MBO in peptic ulcer disease. The aim of this research
study was to explore the anti-ulcer potential of MBO by molecular docking, in vitro and
in vivo analysis and confirmation of its pharmacological effects at the molecular level using
different molecular approaches.



Molecules 2022, 27, 5065 15 of 18

The affinity of ligands to specific protein receptors is analyzed by molecular docking
studies. In silico studies have a key role in drug development and discovery and are
used as a primary tool for structure-based evaluation and for indicating specific targets
with binding affinity [32]. The ligand MBO was docked in the active pocket of H+/K+-
ATPase, M1, H2, COX-1, COX-2, TNF-α and NFkB targets that are likely associated with
gastric ulcer pathophysiology. Ligand and protein complex binding affinity is determined
by their binding energy values, hydrophobic interactions and hydrogen bonding. The
literature reveals that the lower the atomic contact energy value, the higher the binding
affinity and the more stable the ligand-protein complex will be [33]. On the basis of energy
values against different target proteins involved in gastric ulcer pathophysiology, the order
of ligand affinity with the receptors was revealed as TNF-α > NFkB > H/K- > H+/K+

ATPase > COX-1 > COX-2 > M1 as compared to standard drugs. In this research study,
MBO possesses the lowest energy value against TNF-α, suggesting that MBO has maximum
binding affinity against TNF-α, which plays a key role in the inflammatory cascade.

H. pylori is a lifelong colonizer of the gastric mucosa of humans and is a known eti-
ological factor for the development of a wide spectrum of gastrointestinal diseases, i.e.,
peptic ulcers, gastric adenocarcinoma, mucosa-associated lymphoid tissue (MALT) lym-
phoma and chronic gastritis [34]. H. pylori disrupts the protective mucous lining of the
stomach, penetrates the mucus layer, attaches to the epithelial cells and allows gastric acid
to penetrate and cause ulcers. The urease enzyme secreted by H. pylori converts urea to
ammonia, which contributes to its survival in an acidic environment. An immune response
against bacterial proteins can be initiated, which results in chronic inflammation [35]. In
this study, the in vitro anti-H. pylori activity of MBO was investigated. The MIC50 (µg/mL)
values of three isolated strains indicated that it possesses moderate antibacterial activity
against H. pylori. The findings also revealed that the possible anti-ulcer effect of MBO may
be related to a mechanism of H. pylori inhibition. Previous studies reported that various
antibacterial drugs containing an isoxazole nucleus in their structure, including sulfisoxa-
zole, oxacillin, cloxacillin and sulfmethoxazole, have been marketed for the treatment of
infectious diseases [36]. This provides us with evidence that the antibacterial property of
the MBO compound is attributable to the isoxazole nucleus.

In this paper, an ethanol-induced gastric ulcer model was used to evaluate the gastro-
protective activity of MBO. Ethanol is a gastro-toxic agent which stimulates the H+/K+-
ATPase pump, resulting in the secretion of gastric acids and pepsin. Ethanol-evoked gastric
ulcer injury is characterized by epithelial loss, mucosal edema and hemorrhagic lesions
with cell necrosis [37]. MBO treatment in the in vivo animal model caused a significant
reduction in the ulcer index. A dose-dependent anti-ulcer effect of MBO was determined at
5, 10 and 30 mg/kg, with the highest protection observed at the 30 mg/kg dose.

The detrimental effect of ethanol on the mucosa is mediated by oxidative stress, with
the generation of reactive oxygen species (ROS) causing cellular damage in the stomach.
There is induction of numerous endogenous antioxidant enzymes for ROS scavenging [38].
Hence, oxidative stress serves a crucial role in the pathogenesis of stomach ulcers. MBO
causes a reduction in gastric lipid peroxidation and enhances GSH, GST and catalase
levels, which indicates that the anti-ulcerogenic property of MBO may be linked to its
antioxidant profile.

Further, ethanol-evoked ROS are a critical factor that initiate an inflammatory cas-
cade with the release of pro-inflammatory cytokines, which exacerbate inflammation [39].
Monitoring the inflammatory mediators could also be an effective way of inhibiting gastric
lesions, so TNF-α, p-NFkB and COX-2 levels were analyzed. ELISA assays were carried out
to quantify the protein expression of TNF-α and p-NFkB, which revealed MBO (30 mg/kg)
caused a significant decrease in expression. Hence, the protective effect of MBO could
be attributed to its anti-inflammatory activity. These findings are further supported by
immunohistochemistry analysis of the gastric tissues. MBO protects the gastric tissues by
decreasing the expression of inflammatory markers COX-2, TNF-α and p-NFkB. Finally, mi-
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croscopic examination of gastric tissues in the histological analysis showed improvements
in cellular infiltration and cell morphology in the MBO-treated group.

Gastric acid is secreted by the parietal cells present in the stomach. The H+/K+-ATPase
pump in parietal cells transports hydrogen ions in the stomach with the cytoplasmic
hydrolysis of ATP. Hyperactivity of the proton pump results in the hypersecretion of acid,
which leads to ulcers. The gastric proton pump is a potential target; its inhibition decreases
acid production and ultimately heals ulcers [5]. Proton pump inhibitors (PPIs) are used in
practice for ulcer management, but their use is limited because of their adverse effects. In
this research study, MBO was investigated via an in vitro H+/K+-ATPase inhibitory assay,
which showed that it significantly reduces ATP hydrolysis by the gastric ATPase, hence
demonstrating proton pump inhibitory activity similar to the standard drug omeprazole,
an irreversible proton pump inhibitor. Additionally, the results of the molecular docking
study revealed that MBO exhibited an energy value of −7.4 Kcal/mol, while the standard
drug omeprazole an exhibited energy value of −8.2 Kcal/mol against the H+/K+-ATPase
pump. Hence, the anti-ulcer activity of MBO may be due to proton pump inhibition, as
revealed by molecular docking and the in vitro inhibitory assay.

RT-PCR is an efficient molecular technique that quantifies a specific region of DNA [30].
RT-PCR analysis was performed for confirmation of the anti-ulcer mechanism of MBO at
the molecular level. Findings revealed that H+/K+-ATPase expression levels in the MBO
(30 mg/kg)-treated group were significantly reduced. Hence, RT-PCR analysis verified that
MBO exhibits its gastroprotective effect by a proton pump-inhibitory mechanism.

5. Conclusions

The research study reveals that 4-benzylidene-3 methyl-1, 2-isoxazol-5(4H)-one (MBO)
showed E-values of −5.4 to −8.2 Kcal/mol against particular target proteins involved in
gastric pathophysiology. MBO exhibited anti-ulcer potential, mediated probably through
H+/K+-ATPase pump inhibition and antioxidant and anti-inflammatory mechanisms,
which demonstrates its therapeutic value in peptic ulcer disease management. These find-
ings provide insight into the development of more suitable and effective anti-ulcer therapy.
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