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Abstract: The emergence of metal–organic frameworks (MOFs) in recent years has stimulated the
interest of scientists working in this area as one of the most applicable archetypes of three-dimensional
structures that can be used as promising materials in several applications including but not limited to
(photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so
on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably
high surface areas, but they also present many alternative procedures to overcome emerging obstacles.
Since the discovery of such highly effective materials, they have been employed for multiple uses;
additionally, the efforts towards the synthesis of MOFs with specific properties based on planned
(template) synthesis have led to the construction of several promising types of MOFs possessing large
biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where
the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic
MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the
peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim
of this review was to highlight their structure, characteristics, and some of their prominent present-
day applications.

Keywords: metalloporphyrins; metal–organic frameworks; porphyrins; synthetic strategies; biomimetic;
(photo-)catalysis; electrochemical utilization

1. Introduction

The recently emerged porous materials, metal–organic frameworks (MOFs)—typically formed
from metal ions/clusters bridged by multidentate ligands in an extended framework—have pro-
vided solutions to tackle challenges in areas such as catalysis [1–3], gas storge/separation [4,5],
biomimetic applications [6–8], drug delivery [9–11], electrochemical applications [12,13]
and biomedical chemistry [14,15]. Moreover, the structures can be tuned by replacing or
incorporating specific linkers or suitable unsaturated metal ions, in addition to adjusting
the pore size and/or geometry which substantially influence their catalytic behaviors to-
ward many substances participating in the reaction [16,17]. Amongst the main categories of
MOFs, porphyrin-based MOFs have demonstrated themselves as a tangible material able to
provide the properties of both MOFs and metalloporphyrin complexes in one scaffold [18].
Despite being synthesized less frequently than other types of MOFs and less often explored
in research, they have had considerable impact on multiple fields, particularly biomimetic
and biomedical ones as catalysts, owing to their resemblance to some molecules discovered
in nature [19].

Tetrapyrrole ligands such as porphyrin (or porphine in the unsubstituted form) and
related macrocycles chlorin and corrin are naturally occurring in several bioinorganic metal
complexes. The ability of the planar or nearly planar tetradentate ring system to stabilize
kinetically labile metal centers (i.e., MgII, NiII, FeII/III, CoII) results in the selective formation
of stable metal complexes containing an extensively conjugated π system (Figure 1).
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Thus, metalloporphyrins, due to their abundance in nature, have been explored 
during the last decades. The synthetic bioinspired complexes resemble in structure, 
central atoms, and properties the most common naturally occurring biomolecules such as 
hemoglobin which transports oxygen in animal bodies, chlorophyll which acts as a light-
scavenging antenna in photosynthesis inside plants, or vitamin B12 which is important for 
metabolism in the cells (Figure 2, Table 1) [20]. The combination of such favorable 
properties makes artificial metalloporphyrins highly suited for applications in 
photosynthesis [21], electrochemical [22], biosensing [23], biomedical [24] applications for 
tumor therapy [25] and bioimaging [26]. 

 
Figure 2. Naturally occurred MPs (metalloporphyrins) (A) iron(II)-porphyrin “Heme B in RBCs” to 
convey oxygen; (B) magnesium(II)-porphyrin “chlorophyll a” needed for plant photosynthesis; (C) 
cobalt(II)-porphyrin “methylcobalamin (as vitamin B12)” assisted to facilitate nerve system 
performances; (D) nickel(II)-porphyrin “Cofactor F430” accelerates methanogenesis in 
methanogenic archaea). Reprinted with permission from [20]. 

Figure 1. Representative structure of a metalloporphyrin complex with a porphine ligand core.

Thus, metalloporphyrins, due to their abundance in nature, have been explored during
the last decades. The synthetic bioinspired complexes resemble in structure, central atoms,
and properties the most common naturally occurring biomolecules such as hemoglobin
which transports oxygen in animal bodies, chlorophyll which acts as a light-scavenging
antenna in photosynthesis inside plants, or vitamin B12 which is important for metabolism
in the cells (Figure 2, Table 1) [20]. The combination of such favorable properties makes
artificial metalloporphyrins highly suited for applications in photosynthesis [21], electro-
chemical [22], biosensing [23], biomedical [24] applications for tumor therapy [25] and
bioimaging [26].
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Figure 2. Naturally occurred MPs (metalloporphyrins) (A) iron(II)-porphyrin “Heme B in RBCs”
to convey oxygen; (B) magnesium(II)-porphyrin “chlorophyll a” needed for plant photosynthesis;
(C) cobalt(II)-porphyrin “methylcobalamin (as vitamin B12)” assisted to facilitate nerve system
performances; (D) nickel(II)-porphyrin “Cofactor F430” accelerates methanogenesis in methanogenic
archaea). Reprinted with permission from [20].
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Table 1. Naturally occurring metalloporphyrin complexes [27].

Metal Ion Ionic Radius (ppm) * Naturally Occurring Complex

Mg2+ 72 Chlorophyll

Ga3+ 62 Gallium(III) porphyrin complexes have been found in crude mineral oil
but not in living organisms

(V=O)2+ ≈60 Vanadyl porphyrins are relatively abundant in certain crude oil
fractions but they have not been observed in living organisms

Fe2+ high spin
Fe2+ low spin
Fe3+ high spin
Fe3+ low spin

78 (too large)
61
65

55 (rather small)

Fen+ in various oxidation and spin systems is present in heme systems
such as hemoglobin

Co2+ 65 Cobalamins (vitamin B12)

Ni2+ 73 Cofactor F430 (catalyzes the reaction that releases methane in the final
step of methanogenesis in archaea), tunichlorin

* The ideal ionic radius for a proper in-plane coordination is 60–70 ppm. There have also been prepared many
artificial complexes containing mostly Mn3+ (≈60 ppm), Cu2+ (73 ppm) and Zn2+ (74 ppm).

The crystal engineering of MOFs based on metalloporphyrins, or tetrapyrrole ligands
in general, began in the early nineties [28]. The intercalation of tetrapyrrole ligands was
recently recognized to be driven mostly by weak dispersive forces and either an offset or
a proper π−π stacking with other components of the MOF [29–33]. Interestingly, there is
usually a lack of a stronger specific interaction between the porphyrin sheets themselves.
Therefore, the construction of a crystalline MOF depends very much on the additives and
their ability to provide suitable interactions and binding with metalloporphyrin and/or
other components [34–38].

On the other hand, further to metallization in their center [39], metalloporphyrin
complexes can also be additionally peripherally functionalized at meso- or β-positions [40]
(in Porphyrin, there are typically 12 positions that can be exchanged in the environs (Pyrrolic
rings containing the eight β positions and the other four meso ones which are attributed to
the methine substituents)) or even complexed by various (non-) transition metals providing
versatile moieties which had led to their use as spacers to construct several porphyrin-
based MOFs where they could serve either inside the pores (porphyrin@MOFs) [41] or as
linker merged in the architecture throughout the framework (porphyrinic MOFs) [42]. The
representative structures of synthetized derivatives of porphine are depicted in Figure 3.
They benefit from the extended π conjugated system throughout the planar molecule, which
moderates substitution of the metal ions and the functionalities of porphyrin itself [43].
Therefore, it illustrates exceptional electrochemical and photophysical exploitations while
possessing an extraordinary chemical and physical durability. Additionally, porphyrins
and their accessories normally have the strongest Soret band (400–450 nm) and a pack
of steadily reduced Q-bands located somewhere in the range of 500 to 700 nm in the
absorption spectrum [44]. These features have led them to be considered as one of the most
significant organic chromophores with remarkable adsorption bands in the visible region.
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Figure 3. Examples of some of the previously fabricated porphyrin linkers.

Along this line of study, many of the literature reviews have chiefly concluded that
one of the several ways to resolve these kinds of issues is the immobilization of porphyrin
inside or by anchoring them to the surface and as struts in the MOF framework [45].
Such functionalization would result in a tremendous improvement in their stability (for
central atoms without an ideal ionic radius (Table 1)) [27] and their catalytic performances
when completely within the MOF architecture in comparison with their homogeneous
counterparts [14]. Nonetheless, these kinds of inclusion not only would boost their stability
and hamper their suicidal tendency for self-quenching, but also enhance the activation of
some inert molecules [46] In this minireview, we described the pertinent synthetic processes
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by which porphyrin-based MOFs are fabricated, and some of their popular utilizations
were succinctly discussed.

2. Synthesis Procedures of Porphyrin-Based MOFs

By either integrating porphyrins/metalloporphyrins inside pores freely in situ or by
grafting on the surface using post-synthetic methods and/or as part of the network compo-
nent, porphyrin-based MOFs could be easily constructed. However, downsizing MOFs to
the nanoscale will even more profoundly develop their size-dependent properties when
encapsulating or accompanying such proactive molecules for any related applications [14].

2.1. In Situ Method of Porph@MOFs Synthesis

Inspired by these facts, some promising routes to combine porphyrin derivatives into
MOF frameworks emerged such as porphyrin@MOFs (porph@MOFs). These include the
entrapment of (metallo-) porphyrins into the cavities or the decoration of the surface of
MOFs where the former method can be performed using one-pot fabrication in situ, and the
latter can be executed post-synthesis. In contrast to in situ assembly in which free porphyrin
basis/metalloporphyrin are entrapped by MOF precursors (metal ion and ligand) by self-
assembly simultaneously (ship-in-a-bottle) [46], the post-synthetic method which occurs by
anchoring to the exterior or the inclusion of them inside the MOF pores is mainly based on
weak chemical interactions such as hydrogen bonding, electrostatics, van der Waals forces
and others, between the pre-obtained MOF and porphyrin base/metalloporphyrin [47].
The simplicity and straightforwardness of porphyrin entrapping by in situ formation led
to this path being applied extensively by many researchers working in this field even
though the post-functionalization requires the acknowledgement of some issues such as
the creation of a suitable interaction between these two materials [14,20]. Parameters that
should be considered before postsynthetic fabrication include the activation of MOF pores
and channels by guest solvent removal inside the structure during synthesis to allow for
the incorporation of porphyrin instead, the dimensions in terms of shape and size of the
porphyrin encapsulated into the cavities should be appropriate, and the stimulus required
to initiate bond construction between the porphyrin and MOF structure.

As described above, embedded porph@MOF can be prepared by the in situ mixing
of pre-synthesized porphyrins and MOF reactants (metal ion salt and linkers). A series
of metalloporphyrin-decorated Cu-based MOFs with a coral-like shape (named as M-
TCPP@Cu) were obtained using a one-pot reaction strategy [48]. Accordingly, the resulting
MOFs were developed through intermediate enrichment-enhanced conversion to assist the
electrochemical reduction of CO2 to C2H4. The respective porph@MOFs were obtained by
dissolving H3BTC and TCPP/M-TCPP in a mixture of ethanol and DMF followed by the
addition of Cu(NO3)2·3H2O in aqueous solution in situ to produce M-TCPP@Cu-MOF (M
= Fe, Co, Ni). An ionic Mn-metalloporphyrin was reported which is presented in Figure 4
that was encapsulated into the interior pores of ZIF-8 by a simple method through which
all the precursors in DMF were sealed in a Teflon-lined autoclave and heated at 140 ◦C
for 2 days [49]. The crystals were then used as heterogeneous catalysts for a cycloaddition
reaction of CO2 with epoxides.
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CO2 to epoxide. Reprinted with permission from [49].

2.2. Postsynthetic Procedure of Porph@MOFs Fabrication

For the postsynthetic fabrication of functionalized porph@MOFs, they can be either
physically absorbed on the exterior or captured into the cavities, and a specific MOF
must be prepared in advance; subsequently, the previously formed porphyrins are in-
corporated to or grafted on the MOF structure. Next, the metal can be exchanged in
porphyrin via controlled-immersion of the final material in a solution of metallic salts.
A post-synthetic modification (PSM) of a porphyrin-engulfed MOF to enhance the se-
lective adsorption of CO2 over CH4 was reported [50]. The trapped porphyrin used as
a structure-directing agent to provide a “ship-in-a-bottle” mode led to template-based
Cd-porph@MOM-11 (MOM; metal–organic materials). In Figure 5a, the effect of the
exchange of some cationic organic guests such as H2ppz2+ with Li+ on the selectivity
of the adsorption of H2 over N2 was assessed. Remarkably, the results presented that
ppz (1,1′,4′,1”,4”,1”′-quaterphenyl-3,5,3”′,5”′-tetracarboxylate) demonstrated significant
kinetic trap for both the N2 and H2 ads-des process whilst Li displayed an increment in
the pore volume size and more importantly a relatively higher H2 isosteric adsorption
heat [51]. In another case, noncatenated hydroxyl-substituted MOF were introduced and
replaced by Li+ and Mg2+ ions to convert pendant alcohol to metal alkoxides in order
to upgrade the H2 uptake reversibly (Figure 5b). Exchanging was performed via the
immersion of as-fabricated MOF in THF solvent (Tetrahydrofuran) to replace the pri-
marily occupied solvent DMF (N-N-Dimethylformamide). Afterwards, the stirring of
the respective MOF in an excess of Li+[O(CH3)3−] in CH3 CN/THF solvents was per-
formed to exchange Li+ ions which boosted the hydrogen adsorption ability of the MOF
significantly [52]. The illustration in Figure 5c [53] indicates that the MOF of the for-
mula Zn2(NDC)2(diPyNI) (NDC = 2,6-dicarboxylate, diPyNI = N,N′-di-(4-pyridyl)-1,4,5,8-
naphthalenetetracarboxydiimide) was reduced by Li0. The interaction imposed by H2 − Li+

inside MOF pores improved its competence to adsorb H2 which was most likely increased
by the augmented ligand polarizability and framework displacement. Furthermore, the ex-
perimental work in [50] with some modifications of a combination of the first two methods
mentioned in Figure 5d submerged single crystals of the prefabricated Cd-porph@MOM-11
into metal chloride salt solutions, with meso-tetra(N-methyl-4-pyridyl) porphine tetrato-
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sylate (TMPyP) in methanol serving as a template for PSM, and formed a basis for MOF
formation via single-crystal-to-single-crystal ion exchange processes.
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Figure 5. Three basic ways of introduction of open metal sites by PSM synthetic routes to MOFs:
(a) cationic guests or organic cations exchange (blue balls) with metal cations (red balls); (b) replace-
ment of a hydroxy protons with Li+ and Mg2+ ions (red balls); (c) chemical reduction of MOM with
Li (red balls) and (d) fourth method is a combination of the first two—a collaborative attachment
of metal (red balls) chloride (blue ones) salts to anion and cation binding sites. Besides, the sticks
and the crescent-shaped bowls attached to sticks are porphyrin-encapsulated inside MOM-11 and
cation/anion binding sites. Reprinted with permission from [50].

2.3. Porphyrinic-Oriented MOFs

With regard to porphyrinic MOFs, porphyrin or metalloporphyrin functioning as
an organic linker is one of the main components in the framework, which coordinates
with secondary building units (SBUs). Accordingly, the choice of suitable shape, size and
geometry that meet the desired pore structure to load substrate molecules and to catalyze
several reactions efficiently on the surface depends entirely on the rational selection of
porphyrins and SBUs. While the insertion of (metallo-) porphyrins not only equips MOFs
with new functionality, they can also maintain or bring about far better stability and
diversity across the building blocks. As a consequence, the catalytic performances of
these types of porous coordination networks could be simply upgraded by regulating
Lewis-acid metal active sites and designing well-qualified circumferential functionalities
on metalloporphyrins [46]. In line with the previous statements, various parameters such
as temperature, solvent, reaction time and the method as well as proper metal nodes and
porphyrins chosen, could additionally determine the final product [14].

By applying peripherally functionalized porphyrin/metalloporphyrin as spacer or
multidentate ligands directly with metal ions/clusters could lead to the formation of
porphyrinic MOFs. Displayed clearly in Figure 6, the porphyrinic MOF PCN-222/MOF-
545 (free base-H4TCPP and [Zr6(µ3-O)8(O)8]8− node) was used to selectively oxidize 2-
chloroethyl ethyl sulfide (CEES) to a less toxic 2-chloroethyl ethyl sulfoxide (CEESO) at
room temperature and neutral pH. The photooxidation of this mustard-gas simulant under
mild conditions by exploiting these porous materials as photosensitizer within a half-life of
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up to 13 min was found to be one of the most convenient methods for the detoxification of
such a poisonous compound [54].
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Figure 6. Comparison of free-base PCN-222/MOF-545 (fb-1). (a) Tetrakis(4-carboxyphenyl)porphyrin
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Facile insertion of H3PW12O40 inside the solvothermally prefabricated free-base PCN-
222 MOF was investigated for the photocatalytic synthesis of some bioactive N-heterocycles
such as Nifedipine, Nicardipine, Nicotinic acid (Vitamin B3), and Pyridoxine (Vitamin B6)
under visible-LED light irradiation [55]. The porphyrinic Zr-MOF scaffold was constructed
by employing TFA and BA as modifiers followed by post-modification with POM to
construct the POM@PCN-222 composite.

3. Practical Applications of Metalloporphyrin Metal–Organic Frameworks

In fact, the use of metalloporphyrin MOFs for versatile applications mostly stems
from (metallo-) porphyrins segments, as described earlier, as they have a square planar
structure providing permanent π-electrons delocalization within porphyrin which leads
to many potential applications regarding their various characteristics and wide-ranging
functions. For example, solar cells, light harvesting [56] and molecular electronic originate
from visible light absorption. The catalytic activities of metalloporphyrins indicates their
suitability as (photo-) catalysts [16], electrocatalysts [42] and biomimetic catalysts [10].
Metal ions’ sensing and realization abilities can be achieved via the modulation of their
optical and electronic nature derived from the coordination of the metal site and their axial
connection to molecules. Last but not least, their similarity to several molecules operating
in the core site of the vital proteins in humans, has led to them being frequently used for
plenty of biological utilizations such as biocompatibility, imitating functions in numerous
biological systems [9,23,46], effectual removal and longer resistance against tumors, as
they have less side effects, and they have also been largely employed as photosensitizers
for photodynamic therapy (PDT) [25,26]. Concomitantly, their fluorescence properties
suggest that porphyrin-based photosensitizers are beneficial fluorescence imaging-guided
therapy systems for tumor or a multitude of diseases [57,58]. Table 2 summarizes the most
significant recent research concerned with the (photo-) catalysis, and electrochemical and
biomedical applications of porh@MOFs constructions.
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Table 2. Representative list of metalloporphyrin metal–organic frameworks and their applications.

MOF Porphyrin Another
Component

Synthetic
Procedure Application Refs

Pt(II)TMPyP@rho-ZMOF (In) TMPyP 4,5-H3ImDc In situ Anion sensing [40]
M-TCPP@Cu-MOFs (M = Fe,

Ni, Co) TCPP H3BTC In situ Electrochemical
CO2 conversion [48]

[TMPyPMn(I)]4+(I−)4@ZIF-8 TMPyP In situ CO2
transformation [49]

(Mn, Co)-TCCP@ZIF-67 TCPP In situ Electrochemical O2
reduction [59]

CoTMPP@ZIF-8 TMPP In situ Water oxidation [60]
PC-MOFs (Zr) TCPP Cypate In situ PDT/PTT [61]

Fe(Salen)@PIZA-1 (Co) TCPP In situ OER [62]
Fe-TPP@ZIF-8-L TPP In situ ORR [63]

FeTCPP@MOF-SA TCPP SA In situ DNA sensing [64]
Fe3O4@CoTHPP@UiO-66 THPP Fe3O4 PSM Oxidation catalysis [2]

Fe-TCCP@NU-1000 TCPP PSM photochemical
CO2 reduction [3]

MTX@PCN-221 TCPP PSM Drug delivery [11]

MA-HfMOF-PFC(PFP)-Ni-Zn PFP and PFC EDA-
maltotriose PSM PDT [25]

NMOF (Fe)@SF TCPP GSH PSM CDT/PDT [65]
UiO-66@porphyrin TPP-SH PSM PDT [66]

FeTCCP@PCN-333 (Fe) TCPP PSM ORR and HER [67]

PEG–coated-PCN@PL TCPP PEG and PL PSM
Chemo-

sonodynamic
therapy

[68]

Hf-NU-1000 (Fe) TCPP Porphyrinic Tandem oxidation
catalysis [19]

PCN-222/MOF-545 (fb-1) TCPP Porphyrinic Mustard gas
photooxidation [54]

PCN-601, PCN-602 (Ni) TCPP Porphyrinic C-H bond
halogenation [69]

USTC-8(In, Cu, Co, Ni, Cd) TCPP Porphytinic H2 photochemical
production [70]

PCN-601 (Cu, Co, Fe, Ni) TPPP Porphyrinic Photocatalytic CO2
reduction [71]

PCN-224 (Zr) TCPP Vancomycin Porphyrinic Antibacterial
(PDT) [72]

[Cd3(tipp)(bpdc)2]·DMA·9H2O TIPP H2bpdc Porphyrinic C-C bond
formation [73]

2D-Zr-MOFs TCPP Porphyrinic Photocatalytic
polymerization [74]

Fe-TBP TBPP Porphyrinic PDT [75]

ZJU-18, ZJU-19 and ZJU-20 TOCPP Porphyrinic Alkylbenzenes
oxidation [76]

FTPF (Cu, Nb, Zn) TPyP NbOF5 Porphyrinic CO2 fixation [77]
Cu(TCMOPP) and

Ni(TCMOPP) TCMOPP Porphyrinic Alkylbenzenes
oxidation [78]

TMPyP = 5,10,15,20-tetrakis(1-meyhyl-4-pyridinio)porphyrin, THPP = 5,10,15,20-tetrakis(4-
hydroxyphenyl)porphyrin, TMPP = 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin, TPP = 5,10,15,20-
tetrakisphenylporphyrin, TCMOPP = 5, 10, 15, 20-tetrakis [4-(carboxymethyleneoxy)phenyl]porphyrin,
TBPP = 5,10,15,20-tetrakis(p-benzoato)porphyrin, TOCCP = 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin,
PFP = 5,15-bis(4-carboxylphenyl)-10,20-bis(pentafluorophenyl)porphyrin, PFC = 5,15-bis(4-carboxylphenyl)-
10,20-bis(pentafluorophenyl)chlorin, H2bpdc = biphenyl-4,4-dicarboxylic acid, DMA = N,N-
dimethylacetamide, CDT = chemodynamic therapy. PDT = photodynamic therapy, PTT = photother-
mal therapy, ORR = oxygen reduction reaction, HER = hydrogen evolution reaction, GSH = glu-
tathione, MTX = Methotrexate, PEG = poly(ethylene glycol), PL = piperlongumine, SA = streptavidin,
Salen = bis(salicylaldehyde)ethylenediimin.
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3.1. Efficacious Catalytic Utilization

Regarding catalytic traits, a series of highly stable mesoporous metalloporphyrin
Fe-MOFs; PCN-600 [M-TCPP (M = Mn, Fe, Ni, Cu, Co)] was synthesized utilizing prefabri-
cated [Fe3O(OOCCH3)6] as building blocks [79]. They also demonstrated high durability
in aqueous solution with a pH in the region of 2–11 and exhibited extremely high stability
even in basic media. Using PCN-600(Fe) as an efficient catalyst to mimic the peroxidase
function in the co-oxidation of phenol and 4-AAP (4-Aminoantipyrine), it was found that
they exhibit excellent activity in similar reactions. More recently, the photophysical char-
acterization of remarkably water-persistent PCN-223 MOFs formed from free porphyrin
bases, meso-tetrakis(4-carboxyphenyl) porphyrin (TCPP), has been studied by employing
transient absorption spectroscopy to demonstrate its highly efficacious light harvesting and
energy transfer ability throughout the framework [56]. Figure 7 vividly illustrates the acyl
transfer reaction between pyridylcarbinol (PC) and N-acylimidazole (NAI) after employing
isoreticular zirconium-based MOFs, which shows that the degree of catalysis, however,
relies remarkably on both the identity of the PC and of the MOF. In fact, relative rates
differ by as much as 20-fold [80]. For the first time, the C-H bond halogenation reactions of
cyclohexane/cyclopentane [69] were performed successfully using the porphyrinic PCN-
602 (Mn) structure in a basic system. The pyrazolate-based porphyrinic MOF rendered
superior durability in various coordinating anions in basic media which are extensively
utilized in several catalytic reactions. PCN-602(Mn3+) has been acknowledged to be an
extremely efficacious heterogeneous C–H halogenation catalyst of inert hydrocarbons upon
basic ambience [81].
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Figure 7. Molecular architecture of (a) PCN-222, (b) NU-902, and (c) MOF-525. (d–f) Attributed
Zr6-oxo nodes and the linker (e) carboxylate form of Zn − TCPP) are presented on the right, and (g,h)
Lewis acid-catalyzed acyl transfer reaction between pyridylcarbinol (PC) and N-Acylimidazole (NAI)
performed by Zirconium-Based (Porphinato)zinc(II) MOF. Reprinted with permission from [80].

3.2. Precious (Photo-)Electrocatalytic Exploitation

With respect to their photocatalytic and electrochemical properties, acid-base resistant
Zr-phenolate metalloporphyrin scaffolds have been utilized for CO2 photoreduction under
visible light irradiation [82]. Light harvesting uniqueness derives from porphyrinic units
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along with highly stable Zr-oxide chains; catalytically active metal ion centers also have
significantly enhanced sorption and catalytic traits. Furthermore, amongst them, ZrPP-1-Co
represented its catalytic competence in terms of entrapping CO2 into the pores effectually
and also due to its high photocatalytic activity and selectivity over CH4 to reduce CO2 to
CO practically upon visible light radiance [61].

Recently, the incorporation of the fullerene C60 into porph@MOFs found that, theo-
retically, it could increase photoelectric conductivity by preventing the delocalization of
π-electrons donor−acceptor interactions which may reduce electric conductivity. TD-DFT
calculations [83] revealed that the electron transfer from a porphyrin to C60 either through
direct near-infrared transitions or via photoinduced electron-transfer under visible-light
excitation not only substantially prolongs electron–hole recombination and charge sepa-
ration lifetime, but it also enhances its optoelectronic properties considerably. In another
survey, the successful fabrication of novel rare-earth metal USTC-8(In) porphyrin-based
MOFs was demonstrated. The synthesized materials were investigated to determine their
stability in harsh acidic-basic media and photocatalytic H2 production performances. Ad-
ditionally, in this case the In(III) ions easily disassembled from the porphyrin rings by
exerting light radiation and readily hampered the recombination of e–h (electron-hole
recombination). Therefore, the photocatalytic proficiency of metalloporphyrin MOFs (with
Cu, Ni, and Co) improved considerably [70]. As shown in Figure 8, the Co-TCPP and
Mn-TCPP immobilized into the ZIF-67 framework and pyrolyzed in an argon atmosphere
yielding a diverse series of Co@NC-x and Mn@NC-x MOFs, which can be used as electro-
catalysts for oxidation–reduction reactions (ORR). The insertion of a metalloporphyrin in
ZIF-67 makes much more of the Co(Mn) and N sources available and Co-Nx active sites
accessible for electrocatalysis [59]. More recently [71], different metal substitutions (Fe, Co,
Cu) of metalloporphyrin in the PCN-601 (Ni-TPP) framework were tested in a catalyzed
CO2 photoreduction. The results indicated that PCN-601(FeTPP) and PCN-601(CoTPP)
are ideal candidates for photocatalysis. It is noteworthy to express that the catalysis of
PCN-601(FeTPP) would meaningfully outperform that of PCN-601(CoTPP).
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3.3. Profitable Biomedical Manipulation

Concerning biological and biomimetic applications, recently, the loading of polyethy-
lene glycol (PEG)-coated PCN-222 with a pro-oxidant drug, piperlongumine (PL), was
effectively demonstrated to cure breast cancer cells by chem–photodynamic combination
therapy. Interestingly, in this experiment, sonodynamic therapy methods were employed
to generate reactive oxygen species (ROS) by executing a safe nanosonosensitizer MOF
in order to heal the patients suffering from these kinds of fatal diseases which lead to
exceptionally increased ROS production [68]. A vancomycin-incorporated PCN-224 with
antibacterial properties of vancomycin and highly sensitive photodynamic therapy activity
of PCN-224 as a dual antibacterial agent was used to combat Gram-positive bacteria such
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as S-aureus [72]. The results displayed synergistic antibacterial competence combined with
specific targeted activities under white LED illumination, making it as a promising strategy
for antimicrobial therapy.

In one of the most recent methods to overcome the restriction caused by oxidative
damages to cellular components resulting from interruption in redox homeostasis, a syn-
ergistic strategy including chemodynamic therapy (CDT) combined with photodynamic
therapy (PDT) generated by Fe (III)-TCPP and glutathione (GSH) under optical laser ir-
radiation was performed in Xue’s lab which is represented in Figure 9 [65]. After being
capped by silk fibroin (SF) on the surface to construct NMOF@SF, it was utilized to carry
tirapazamine (TPZ) prodrug and deliver it to mediate the reduction of Fe(III) to Fe(II).
Taking advantage of the high bioimmunity and treatment particularity of NMOF provided
through the Fenton-like ability of Fe (II) and TCPP-moderating feature combination in MOF
coupled with GSH alternation to GSSG (Glutathione disulfide), this procedure successfully
contributed to completely eradicating tumor in vivo and in vitro.
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Figure 9. Schematic presentation of the construction procedure of NMOF@SF NPs and their practical
mechanism for tumor-specific redox chemodynamic therapy (CDT) combined with photodynamic
therapy (PDT) created by Fe (III)-TCPP and glutathione (GSH) upon laser irradiation. Reprinted with
permission from [65].

4. Summary and Remarks

Principally, the remarkable tunability, considerable porosity, biocompatibility, high
surface areas and biodegradability of MOFs render them as a novel applicable material in
many areas of chemistry. At the same time, porphyrin-based metal–organic frameworks



Molecules 2022, 27, 4917 13 of 16

integration can modify the possible instability and self-oxidation (quenching) deriving
from free porphyrins in physiological environments as well as improve the physiochemical
traits by incorporating the peripheral functionalities or multiple metal ions either on
porphyrins or MOFs in a single architecture. The porphyrin-based MOFs discussed here
were classified as follows: (1) (metallo-) porph@MOFs where porphyrin and their metalized
derivatives are encapsulated inside the pores of MOFs, (2) postsynthetic porphyrin-based
MOFs in which porphyrin can either be grafted on the surface or entrapped within the
pores and (3) porphyrinic MOFs constructed through the linking of (metallo-) porphyrin
peripheral functionalities on α or β positions or by the insertion of the most commonly
unsaturated transition metal ions coordinated chemically to the ligand to construct a 1, 2
or 3D network. These approaches not only improve their stability, but they also result in
better performances in (photo-) catalysis, electrocatalysis and mimicking biological systems.
With the above considerations in mind, the introduction of (metallo-) porphyrins to MOFs
has inhibited self-destructive oxidation and more importantly fostered the stability and
reactivity of porphyrin molecules when confronting harsh media efficiently.
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