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Abstract: Alzheimer’s disease (AD) is characterised by progressive neuronal atrophy and the loss of
neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily
operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence,
there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved
treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative
risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae)
is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the
nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to
inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-
1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS)
assays. In addition, this study aimed to quantify the acai berry’s antioxidant potential via hydrogen
peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the
ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai
aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase
enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging
and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and
displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain
nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore
provide a beneficial dietary component that limits the pathological deficits evidenced in AD.

Keywords: acai berry; Alzheimer’s disease; antioxidant; cholinesterase inhibitors; Euterpe

oleraceae; nutraceuticals

1. Introduction

Approximately one million people are affected by neurodegenerative diseases (NDDs)
in the United Kingdom, and more than 50 million people suffer worldwide from demen-
tia [1,2]. These diseases are of global concern as their prevalence is continuously increasing
and is associated with an enormous socioeconomic burden [3]. One widespread NDD is
Alzheimer’s disease (AD), which accounts for 60-80% of dementia cases and for which the
annual care costs for the USA alone have been estimated at around $244 billion [4,5]. This
progressive degenerative brain disease can be identified by clinical and histopathological
hallmarks [6]. The early-stage clinical symptoms of AD involve memory loss for new events
or conversations, lack of concern, and depression, with advanced symptoms including
behavioural changes, the inability to communicate or speak, difficulty swallowing and
walking, and a loss of a sense of direction [7]. Histopathological damage to the brain
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includes the deposition of plaques composed of 3-amyloid (Af) in the extracellular space
around neurons and intraneuronal threads of hyperphosphorylated tau protein (p-tau) that
are termed neurofibrillary tangles (NFTs) [6-8].

The pathogenicity of AD is complex, with pathomechanisms that include oxidative
stress, excitotoxicity, impaired mitochondrial function, and disrupted cholinergic signalling,
as well as toxic peptide and protein accumulations [8-17]. Multiple risk factors contribute to
the development of AD, with the greatest risk factor being age itself [18]. Other risk factors
include familial genetics [19,20] and sporadic mutations, as well as dietary influences and
other environmental factors, such as exposures to metals, pesticides, solvents, and other
neurotoxic agents [8,21-23].

The currently approved drugs for the symptomatic relief of mild-to-moderate AD are
acetylcholinesterase (AChE) inhibitors such as galantamine, rivastigmine, and donepezil,
as well as the N-methyl-D-aspartate receptor antagonist memantine [7,24,25]. Even though
these medications can potentially slow disease progression, none can prevent or stop
the course of the disease [26-28]. In addition, these treatments can cause adverse side
effects, including headaches, nausea, vomiting, diarrhoea, dizziness, confusion, and cardiac
arrhythmias [25,29,30]. The actions of drugs such as cholinesterase inhibitors (ChEIs) and
memantine involve the modulation of the levels and activity of neurotransmitters, such
as acetylcholine (ACh) and glutamate (Glu), respectively [24,25]. However, these drugs
were not originally developed to resolve other pathological mechanisms implicated in
the development and/or progression of AD, such as tissue damage from oxidative stress,
which has been detected in post-mortem brain tissue from AD patients [16,31-36]. Hence, a
search continues for other novel treatment strategies with additional activities that target
cholinergic deficits as well as other elements of AD pathology, with the expectation of
reduced side effects.

Nutraceuticals encompass dietary substances that have physiological benefits or confer
resistance to or protection from the development of diseases. The utilisation of nutraceu-
ticals and dietary supplements is expanding, with the proposed benefit of combatting a
number of diseases, including neurodegeneration [37,38]. Specifically, the dietary intake of
bioactive food compounds has been linked with the prevention of age-dependent memory
and cognition decline [39-41]. Clinical trials on patients with mild cognitive impairment
and healthy people of similar age have indicated that the regular intake of fruits, such
as grapes and berries, can have positive effects on cognition [42—45]. Certainly, there is
an actual or perceived assumption that a diet rich in fruit and vegetables is one that is
considered ‘healthy” and has the potential for the improvement or prevention of cognitive
decline [46-48].

The Euterpe genus has roughly 28 species that are found across the Amazon basin
in Central and South America [49]. Two species, E. oleracea and E. precatoria, are widely
marketed for their edible fruit [49]. Within the Amazonas River Basin, E. precatoria is a native
variety and is commonly known as “acai-do-amazonas” [49], whereas E. oleracea, or “acai-
do-para,” is widely spread throughout the Amazon River estuaries, as well as in Guyana,
Venezuela, and the Brazilian estates of Para, Maranho, Tocantins, and Amapa [49,50]. These
species are palm trees with small, rounded, and clustered fruits approximately 0.9-1.3 cm in
diameter [49]. The mature fruit is dark purple and globose and has one seed covered with
a 2 mm juicy mesocarp layer [49]. Traditional medicines have utilised different parts of this
plant to treat a number of illnesses, including fever, gastrointestinal and skin conditions,
pain, and infectious diseases [49,51].

Collectively, there have been several clinical, animal, and cell-based studies that
have reported the potential health benefits of acai berries, including their antioxidant
activity [52-54]. Therefore, this study aimed to analyse the nutraceutical potential of
Euterpe sp. (in the form of aqueous and ethanolic extracts) for possible development as an
AD treatment via the ability to inhibit AChE and butyrylcholinesterase (BuChE); the study
also aimed to further delineate its antioxidant capabilities.
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2. Results
2.1. Acai Aqueous Extract Is a Cholinesterase Inhibitor

The acai berry aqueous extract significantly inhibited AChE activity in a concentration-
dependent manner over concentrations ranging from 1 x 10> ug/mL to 0.01 pg/mL,
but no further inhibition of AChE activity was observed at concentrations higher than
0.01 ug/mL (Figure 1A). The concentration of acai aqueous extract that produced a 50%
inhibition (ICsp) of AChE activity was estimated as 13.8 ug/mL using non-linear regression.
In contrast, the acai berry ethanolic extract showed a limited inhibition (1-19%) of AChE,
and only at the relatively high extract concentrations of 100 and 1000 ng/mL were there
inhibition levels of 16% and 19%, respectively; however, this was not statistically significant
(Figure 1B).
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Figure 1. Cholinesterase inhibition by acai aqueous and ethanolic extracts. AChE inhibitory activity
of acai aqueous extract (A) and acai ethanolic extract (B). BuChE inhibitory activity of acai aqueous
extract (C) and acai ethanolic extract (D). Histograms represent means & SEM for at least three
replicate assays at each extract concentration (n = 6). For the positive control inhibitors, 5 mM
azamethiphos and 5 mM ethopropazine hydrochloride were used for AChE and BuChE, respectively.
For marked significance * p < 0.05, ** p < 0.01, *** p < 0.001, and *** p < 0.0001.

The acai berry aqueous extract was also primarily a concentration-dependent in-
hibitor of BChE activity over concentrations ranging from 1 x 107> pug/mL to 0.01 pg/mL
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(Figure 1C). However, similar to the inhibition of AChE, a point of saturation was detected,
with the further inhibition of BuChE observed only at the highest concentration exam-
ined, i.e., 1000 pg/mL (43.6%) (Figure 1C). The concentration of acai aqueous extract that
inhibited BuChE activity by 50% (ICsp) was estimated as 6378 ng/mL using non-linear
regression. Similar to the inhibition of AChE, the acai berry ethanolic extract also showed a
limited inhibition of BuChE, with only marginal inhibition levels (12-22%) at concentrations
of 0.01 pg/mL or higher, and these effects were not statistically significant (Figure 1D).

2.2. Acai Aqueous and Ethanolic Extracts Exhibit 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Free
Radical Scavenging Activity

The ability of aqueous and ethanolic extracts of acai berry to act as free radical scav-
engers was assessed using a DPPH assay. Both extracts displayed DPPH radical scavenging
abilities and had similar concentration-dependent curves, although the aqueous extract
had a lower percentage of activity than the ethanolic extract over the concentration range
of 1000—4000 png/mL (Figure 2A). The antioxidants «-tocopherol (vitamin E), L-ascorbic
acid (vitamin A), and gallic acid all displayed higher free radical scavenging over the
concentration range of 10004000 pg/mL. The concentration of each of the agents that pro-
duced a 50% inhibition of free radical levels (IC5q) was calculated by non-linear regression
as 11.550 mg/mL for the acai aqueous extract and 791 ug/mL for the ethanolic extract.
By comparison, for x-tocopherol, L-ascorbic acid, and gallic acid, the ICsy values were
50 ug/mkL, 115 pg/mL, and 8 pug/mL, respectively. At the lower end of the concentrations
examined (from 0.01 ug/mL to 10 ug/mL), the aqueous extract displayed a similar antioxi-
dant capability to a-tocopherol, and the ethanolic extract surpassed that of «-tocopherol
and gallic acid (Figure 2B).
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Figure 2. DPPH radical scavenging activity of acai aqueous and ethanolic extracts. Acai antioxidant
activity was assessed via the percentage inhibition (radical scavenging) of DPPH over a concentration
range of 0.01-4000 pug/mL (A) and 0.01-10 pg/mL (B). Assays were performed in triplicate at each
extract concentration (1 = 6).
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2.3. Acai Aqueous and Ethanolic Extracts Exhibit 2,2'-Azino-bis-3-ethylbenzthiazoline-6-sulphonic
acid Radical Cation (ABTS®*) Scavenging Activity

Acai berry aqueous and ethanolic extracts exhibited ABTS®* scavenging activity in
a concentration-dependent manner that was approximately linear over the concentration
range of 1-1000 pug/mL (Figure 3). The acai ethanolic extract displayed a greater antioxidant
capacity than either L-ascorbic acid or a-tocopherol, with an ICsg of 461.6 pug/mL com-
pared to 690 ug/mL and an estimated 1270 pg/mL for L-ascorbic acid and x-tocopherol,
respectively. Gallic acid exhibited the greatest scavenging activity, with an ICsy of 8 ug/mL.
The acai aqueous extract showed the lowest antioxidant capacity, with an estimated ICsy of
30.541 mg/mL.

ABTS assay
2 150
S -~ Acai aqueous extract
ki -® Acai ethanolic extract
©
E, 100+ e -+ a-tocopherol
) O -¥- L-ascorbic acid
c
2 50 ~+- Gallic Acid
© |
b x __»
g 0 T T T 1
0 250 500 750 1000
Concentration (pg/mL)

Figure 3. ABTS®** scavenging activity of acai aqueous and ethanolic extracts. Acai antioxidant activity
was assessed as a percentage inhibition (radical scavenging) of ABTS over a concentration range of
1-1000 pg/mL. Assays were performed in triplicate at each extract concentration (1 = 6).

2.4. Acai Aqueous and Ethanolic Extracts Exhibit Hydrogen Peroxide (HyO,) Scavenging Activity

Both acai extracts displayed moderate but concentration-dependent H,O, scavenging
activity (Figure 4), with an inhibition percentage of 20-30% and estimated ICsy values
of 7.803 mg/mL for the aqueous extract and 1.479 mg/mL for the ethanolic extract. «-
Tocopherol and gallic acid were more potent H,O, radical scavengers, with ICsy values of
676 ng/mL and 737 pg/mL, respectively.
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Figure 4. H,O, scavenging activity of acai aqueous and ethanolic extracts. Acai antioxidant activity
was assessed as a percentage of the scavenging activity of HyO, over a concentration range of
1-4000 png/mL. Assays were performed in triplicate at each extract concentration (1 = 6).
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2.5. Acai Aqueous and Ethanolic Extracts Exhibit Hydroxyl Radical (* OH) Scavenging Activity

Both acai extracts exhibited hydroxyl radical (*OH) scavenging activity in a concentration-
dependent manner, as shown in Figure 5. In comparison to the acai aqueous extract, the
acai ethanolic extract showed higher antioxidant action, with an ICsy of 946 ng/mL, while
the ICsg of acai aqueous extract was estimated as 11.604 mg/mL. Gallic acid was a potent
*OH radical scavenger, with an ICsg of 0.7 ug/mL.
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Figure 5. Hydroxyl radical scavenging activity of acai aqueous and ethanolic extracts. Acai antioxi-
dant activity was assessed via the percentage of the scavenging of *OH. Assays were performed in
triplicate at each extract concentration (1 = 6).

2.6. Acai Aqueous and Ethanolic Extracts Exhibit Nitric Oxide (*NO) Scavenging Activity

The percentage of *NO scavenging increased in proportion to the concentration of
the acai extracts, as displayed in Figure 6. The acai ethanolic extract exhibited greater
inhibition activity than the aqueous extract; it had an estimated 1Csy of 4.544 mg/mL,
whereas the estimated ICs of the aqueous extract was 12.932 mg/mL. The standard BHA
displayed a higher scavenging ability at lower concentrations, but these reached saturation
such that the estimated ICsy was 135.437 mg/mL, which was higher than either of the
two acai extracts.

Nitric oxide scavenging assay
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Figure 6. Nitric oxide (*NO) scavenging activity of acai aqueous and ethanolic extracts. Acai
antioxidant activity was assessed via the percentage of the scavenging of *°NO. Assays were performed
in triplicate at each extract concentration (1 = 6).
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2.7. Acai Aqueous and Ethanolic Extracts Exhibit Lipid Peroxidation Inhibitory Activity

The concentration-dependent inhibition of lipid peroxidation was observed after
incubation with either the acai berry aqueous or ethanolic extract, as shown in Figure 7.
Both extracts displayed relatively moderate anti-lipid peroxidation in comparison with
BHA. The acai aqueous extract displayed greater antioxidant activity than the ethanolic
extract, with estimated ICsy values of 4.862 mg/mL and an estimated ICsy of 438.8 mg/mL,
respectively; BHA had an ICs5g of 4 pg/mL. At the highest concentration examined, i.e.,
1000 pug/mL, the inhibition of lipid peroxidation was 36.5% =+ 0.51 and 26.8% = 1.60 for
the acai aqueous and ethanolic extracts, respectively, and 82.8% =+ 0.16 for BHA.
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Figure 7. Lipid peroxidation inhibitory activity of acai aqueous and ethanolic extracts. Acai antioxi-
dant activity was assessed via the percentage of the inhibition of malondialdehyde (MDA) production.
Assays were performed in triplicate at each extract concentration (1 = 6).

The ICsj values for each of the cholinesterase and antioxidant assays are included in
Table 1.

Table 1. The approximate IC5p values (mg/mL) of acai aqueous extract, acai ethanolic extract, o-
tocopherol (vitamin E), L-ascorbic acid (vitamin A), gallic acid, and butylated hydroxyanisole (BHA)
for the AChE, BuChE, DPPH, ABTS, H,O,, *OH, *NO, and LPO assays.

Sample AChE BuChE DPPH ABTS H,0; *OH *NO LPO

Acai aqueous extract 0.014 6.378 11.550 30.541 7.803 11.604 12.932 4.862

Acai ethanolic extract NS NS 0.791 0.462 1.479 0.946 4.544 438.8
a-tocopherol - - 0.050 1.270 0.676 - - -
L-ascorbic acid - - 0.115 0.690 - - - -
Gallic acid - - 0.008 0.008 0.737 0.001 - -

- - - - - 135.437 0.004

Butylated hydroxyanisole

(-), Not evaluated; NS, not significant.

2.8. Acai Aqueous and Ethanolic Extracts Exhibit Reducing Power Activity

The direct reduction of Fe[(CN)¢l3 to Fe[(CN)g], provides a determination of the
reducing capacity of a plant compound [55]. The reducing capacity of acai berry aqueous
and ethanolic extracts was concentration-dependent but relatively low compared to L-
ascorbic acid over the 1000-8000 pg/mL concentration range, as shown in Figure 8. The acai
ethanolic extract exhibited more antioxidant capacity than the aqueous extract. However, at
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the lower concentrations of 0.001-10 ug/mL the reducing capacities of the two acai extracts
were similar and matched that of L-ascorbic acid (results not shown).

Reducing power assay
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Figure 8. Reductive capacity of different concentrations of plant extracts from acai berry. Plant
reducing power was measured by the ability to reduce ferric (Fe3*) to ferrous (Fe?*) iron (OD density
change at 700 nm). The positive control was L-ascorbic acid (vitamin C). Assays were performed in
triplicate at each extract concentration (1 = 6).

2.9. Total Phenolic and Total Flavonoid Content of Acai Berry Extracts

The total phenolic content (TPC) and total flavonoid content (TFC) of the acai aqueous
and ethanolic extracts were quantified and are included in Table 2. Acai ethanolic extract
displayed higher levels of phenolic and flavonoid contents.

Table 2. Total phenolic (TPC) and flavonoid (TFC) contents of acai berry aqueous and ethanolic extracts.

Acai Berrv Extracts Total Phenolic Content Total Flavonoid Content
Yy (mg GAE/g) (mg QUER E/g)
Acai aqueous extracts 19.42 £ 0.40 1.26 £ 0.11
Acai ethanolic extracts 101.39 +4.61 11.78 £ 1.42

Values represent means =+ standard error of the mean (SEM) of triplicate assays (1 = 6). GAE: gallic acid equivalent;
mg QUER E/g: milligram quercetin equivalents/gram of extract.

3. Discussion

The present study evaluated the nutraceutical and, hence, the therapeutic potential of
acai berry extracts via their ability to act as ChElIs; also assessed were the additional benefits
of free radical scavenging and antioxidant activities. The current first-line treatment for
mild-to-moderate AD is to treat the cholinergic deficit experienced by AD patients via
a transient inhibition of AChE to increase the signal longevity of the neurotransmitter
acetylcholine (ACh) [24,25,56]. However, ChEI treatment can induce adverse reactions
and only addresses one component of the AD disease pathology (insufficient ACh levels),
whereas multiple elements of cellular dysfunction may contribute to the disease, including
oxidative stress [25,30-36,57]. Hence, there is an unmet need to tackle disease aetiology,
for example, through a multipronged treatment strategy [57,58]. Indeed, animal models of
AD have demonstrated improvements in cognitive function and behavioural defects after
antioxidant therapy [59,60].

The aqueous extract from the acai pulp contained an agent(s) capable of inhibiting
both AChE (estimated ICsg of 13.8 pg/mL) and, to a lesser extent, BuChE (estimated ICsy of
6.378 mg/mL). Interestingly, the agent(s) binding the cholinesterases presumably reached
a point of saturation at an approximate concentration of 0.01 ug/mlL, such that further
enzymatic inhibition was limited. This may result from finite binding at the esteratic and /or
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peripheral binding sites of AChE or BuChE [61-64]; this question can be probed further
once the active agent(s) is/are purified. By comparison, the ethanolic extract displayed
minimal anti-AChE and anti-BuChE activities; there were only minor reductions in activity
evident at the highest concentrations of extract, and these did not reach significance. This
may reflect the solvation of the agent(s) within water alone (rather than ethanol) since
water is a more polar solvent than ethanol. Ultimately, a range of extraction methods and
solvents may be needed to isolate active agents such as polyphenols, with the solvation of
specific phytochemical(s) governed by the polarity of the solute of interest [65].

Specifically, for acai berry phytochemical extractions, an independent study reported
that water as a solvent produced the highest yields of polyphenols and flavonoids as
compared with methanol and ethanol alone [66], although this may be improved further
if a hydroalcoholic extraction is undertaken (50% ethanol) [67]. Herein, the benefit of an
aqueous extraction as a method for the possible isolation of soluble ChEI(s) and their future
purification and identification was evident.

Chemicals able to target and simultaneously inhibit both AChE and BuChE, rather
than AChE alone, may offer improved clinical efficacy to combat the increased levels
of BuChE in AD patients, with a reduction in side effects [68-71]. However, neither of
the drugs currently approved by the US Food and Drug Administration (FDA), namely
donepezil and galantamine, are potent BuChE inhibitors (BuChE ICsy values of 5 pM
and 12.6 uM, respectively), whereas rivastigmine, which was originally extracted from a
medicinal plant, is a relatively potent AChE and BuChE inhibitor (IC5y values of 4 and
13 nM, respectively) [72,73]. It will be of interest in future studies to determine whether
the same agent(s) within the acai aqueous extract is/are responsible for inhibiting both
AChE and BuChE, and to determine the relative potency of the inhibitor(s). A comparison
of the anti-AChE activity of the extracts/fractions of 54 plant species used guidelines that
considered an ICsp < 20 pg/mL as high potency, moderate potency as an ICsg > 20 pug/mL
but < 200 pg/mL, and low potency as an ICsg > 200 pug/mL but < 1000 pg/mL [72]. The cut-
offs for potency related to the average ICs value for galantamine, reported in the literature
as approximately 2 uM (or 0.575 pg/mL), multiplied by a factor of 10 [74]. Accordingly, the
aqueous extract of acai fruits, with an ICsq of 13.8 ug/mlL, was an extract of high potency
and therefore has potential use as an effective ChEL

In addition to ChEI activities, the acai extracts displayed useful radical scavenging
and antioxidant activities; they were able to scavenge DPPH, ABTS, *OH, H,O,, and *NO
free radicals, and they exhibited ferric ion reduction. Similarly, other independent studies
have reported the high antioxidant capacity of the acai berry against superoxide (O?*™)
and peroxyl radicals (RO;) [75]. Acai also displays useful neuroprotective activity, and
it can prevent rotenone-induced oxidative damage [76]. Acai pulp also reduced nitrite
radicals (NO?~) in mouse brain BV-2 microglial cells in vitro [53]. Acai flower and spike
fractions (as well as the fruit) also contain agents able to inhibit nitric oxide production [77].
In addition, in a pilot study with human volunteers, the antioxidant capacity of plasma was
elevated by 2.3- and 3-fold after the consumption of acai juice and pulp, respectively [78]. It
is also promising to note that an in vivo study demonstrated that an acai-rich diet reduced
markers of oxidative stress in brain regions of aged rats [79].

The current study also demonstrated that acai extracts have anti-lipid peroxidation
effects, in support of studies in vitro [75] and in vivo [54]. The significant inhibition of lipid
peroxidation was also detected post-consumption of a juice blend (of which acai was the
predominant ingredient) in a pilot study with human volunteers [52].

Research has considered the chemical composition of the acai berry and its antioxidant
potential and has detected the presence of numerous polyphenols and flavonoids, such as
anthocyanins [52,76-78,80,81] (refer also to Supplementary Table S1). Phytochemicals such
as these may provide the basis for the acai extract to neutralise free radicals and potentially
limit oxidative stress, such as that associated with AD aetiology, but further in vitro and
in vivo studies are required to confirm the potential use of acai berry extracts as a treatment
option for AD. Ultimately, a diet that incorporates acai berries may provide the ongoing
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benefit of a diet rich in antioxidants along with the possibility of sustained cholinergic
signalling that may limit the likelihood of developing or indeed the progression of NDDs
such as AD.

4. Materials and Methods
4.1. Chemicals and Reagents

All chemicals were purchased from Sigma (Poole, UK) unless otherwise specified.

4.2. Preparation of Ethanolic and Aqueous Extracts of Acai Berry (Euterpe oleracea)

An ethanolic extract of acai berry was prepared by the maceration of 300 mg/mL of
commercially available freeze-dried acai pulp and skin powder purchased from NaturaleBio
(Organic product under EU Directive 834/2007, purchased via Amazon.co.uk) in 70%
ethanol for 48 h. The macerated sample was shaken 3 times daily to assist solvation and
then filtered using a bottle-top filter. Filtrates were dried at 45-50 °C for 24 h in a water
bath to obtain the ethanolic dry extracts [76,82]. The aqueous extract (10 mg/mL) was
prepared using methods as described by Wong et al. (2013) [83]. The freeze-dried acai pulp
and skin powder was weighed and extracted by dissolving in phosphate-buffered saline
(PBS) and by vigorous vortexing. The extract was centrifuged at 400 rpm and filtered using
a 0.20 um syringe to obtain a clear solution.

4.3. Cholinesterase Activity Assessments

Based on the method of Ellman et al. (1961) [84], the ability of the acai berry extracts
to inhibit the activity of AChE and BuChE was assessed in a 96-well microtiter plate.
Ten pL of acai aqueous or ethanolic extracts (concentration range from 1 x 107° pg/mL
to 1000 pg/mL) was mixed with 150 pL of 0.38 mM 5,5-dithio-bis-(2-nitrobenzoic acid)
(DTNB), 3 uL of 0.5 U/mL AChE enzyme from Electrophorus electricus (electric eel) (Sigma,
C3389, Irvine, UK) or BuChE enzyme from equine serum (Sigma, C75120, Irvine, UK), and
43 pL of phosphate buffer (Gibco™ PBS, pH 7.4, ThermoFisher, Stafford, UK). Samples were
incubated for 20 min at room temperature; then, the reaction was initiated by the addition of
4 puL of 35 mM of acetylthiocholine iodide (ATCI) substrate for AChE or butyrylthiocholine
iodide (BTCI) substrate for BuChE, and the absorbance was measured at 412 nm every
30 s for 5 min using a Varioskan™ LUX multimode microplate reader (ThermoFisher,
UK). Reagent blanks were performed in the absence of AChE or BuChE. The positive
(inhibitor) control for AChE assays was an organophosphate pesticide, azamethiphos (QMX
Laboratories Ltd., Thaxted, UK) at 5 mM, capable of the irreversible inhibition of AChE [85].
For BuChE assays, ethopropazine hydrochloride (QMX Laboratories Ltd., Thaxted, UK)
at 5 mM was used as a recognised inhibitor of BUChE [86]. The percentage of AChE or
BuChE activity remaining after incubation with acai extracts was calculated relative to the
enzyme only (the negative control), which was designated as 100% enzymatic activity. The
acai extract concentrations producing 50% inhibition (ICsp) of AChE or BuChE activity
were determined. The assays were performed in duplicate for at least three independent
experiments, after which a mean was calculated.

4.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Activity

The antioxidant capacities of acai aqueous and ethanolic extracts over the concentra-
tion range of 0.01-4000 ug/mL were evaluated by monitoring the ability to reduce the
stable free radical di(phenyl)-(2,4,6 trinitrophenyl)iminoazanium (DPPH) according to
a previous publication [87]. DPPH was dissolved in ethanol at a final concentration of
0.1 mM, then 160 uL of this solution was added to 20 uL of either acai extract or L-ascorbic
acid, a-tocopherol, or gallic acid as positive control antioxidants, and the material was
mixed with 20 uL of distilled water. Antioxidant standards were evaluated using the same
concentration range as the acai extracts. The mixture was incubated for 40 min in the dark
at 37 °C, and then the absorbance was read using a Varioskan™ LUX multimode microplate
reader (ThermoFisher, Stafford, UK) at 517 nm as an endpoint measurement. Antioxidant
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activity was calculated as a percentage of the DPPH radical scavenging activity according
to the following equation:

DPPH scavenging activity (%) = (A0 — A1)/A0 x 100

where A0 is the absorbance of the control without extract or positive control, and Al is the
absorbance of the sample.

4.5. Radical 2,2'-Azino-bis-3-ethylbenzthiazoline-6-sulphonic acid Cation (ABTS®*)
Scavenging Activity

The ability of the acai extracts to scavenge ABTS** was determined according to the
procedure of Acharya (2017) [88], with some modifications. Briefly, ABTS (7 mM) and
potassium persulfate (2.45 mM) solutions were prepared in distilled water. A working
solution was then prepared by combining 3 mL of each stock solution and letting them
react for 12-16 h in the dark at room temperature (25 °C). The interaction of ABTS with
potassium persulfate led to the formation of the ABTS radical cation (ABTS**) [88]. The
solution was then diluted by mixing 1 mL ABTS radical solution with 25 mL of PBS to
obtain an absorbance of 0.70 at 750 nm, as monitored using a Varioskan™ LUX multimode
microplate reader (ThermoFisher, Stafford, UK). A total of 200 uL reaction mixture per well
was assessed, comprised of 190 uL of radical solution followed by 10 uL of standard or
plant extracts at a concentration range of 1-1000 pug/mL. The plate was shaken for 10 s at
medium speed and incubated for 5 min in the dark. Then, the absorbance was measured at
750 nm. The activity of the acai extracts was compared with other antioxidant standards,
i.e., L-ascorbic acid, a-tocopherol, and gallic acid. The ability of the extracts to scavenge
ABTS** was calculated using the following equation:

ABTS®" scavenging activity (%) = (A0 — A1)/A0 x 100
where AQ is the absorbance of the control, and Al is the absorbance of the sample.

4.6. Hydrogen Peroxide (HyO;) Scavenging Activity

Humans are exposed to HyO, either directly through mitochondrial metabolism or
indirectly from the environment. H,O, is widely considered a cytotoxic agent, and the
rapid breakdown of HyO; can produce a *OH that can initiate lipid peroxidation and
cause protein and DNA damage [89]. The H,O, scavenging ability of the acai extracts
was measured using the method of Alam et al. (2013) [90], with modifications. In 200 uL
total solution per well of a 96-well plate, 180 pL of 40 mM H,O, solution prepared in
PBS was added, followed by 20 puL of standard or acai extracts at a concentration range
of 14000 ug/mL. The mixture was incubated for 10 min, and the absorbance was read at
230 nm using a Varioskan™ LUX multimode microplate reader (ThermoFisher, Stafford,
UK). The following equation was used to calculate the percentage of H,O, scavenging:

H,0, scavenging activity (%) = (A0 — A1)/A0 x 100
where AQ is the absorbance of the control, and Al is the absorbance of the sample.

4.7. Hydroxyl Radical (*OH) Scavenging Activity

The acai extracts’” *OH scavenging activity was evaluated using the method described
by Bajpai et al. (2015) [91], with modifications. The principle of this experiment is based
on a Fenton’s reaction, which involves the Fe3+—ascorbate—ethylenediaminetetraacetic
acid-HO; system to produce hydroxyl radicals. In a total volume of 200 puL, the reaction
mixture contained 50 pL of 2-deoxy2-ribose sugar (12 mM), 20 uL of ferric chloride (FeCl3)
(1 mM), 20 uL of ethylenediaminetetraacetic acid (EDTA) (1 mM), 20 uL of L-ascorbic acid
(1 mM), 50 uL of HyO, (8 mM), 30 uL of PBS, and 10 pL of standard or acai extracts at a
concentration range of 1-4000 pg/mL. A volume of 40 uL of 2.8% trichloroacetic acid (TCA)
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and 2-thiobarbituric acid (TBA) (0.5% in 0.025 M sodium hydroxide solution) was added to
the reaction mixture after 45 min at 37 °C, and the mixture was incubated at 85 °C for 15 min
to generate a pink chromogen that resulted from the reaction of TBA with degraded sugar,
i.e., a ‘malondialdehyde-like” compound [92]. After cooling, 200 uL of the sample was
transferred to a 96-well microtiter plate, and the absorbance was measured at 532 nm using
a Varioskan™ LUX multimode microplate reader (ThermoFisher, Stafford, UK). Gallic acid
was used as a reference standard. The percentage of inhibition activity was determined
using the same formula as for the DPPH radical scavenging activity (Section 4.4).

4.8. Nitric Oxide Radical (*NO) Scavenging Activity

The procedures described by Unuofin et al. (2018) and Jimoh et al. (2019) [93,94] were
adapted for the determination of the capability of the acai extracts to scavenge *NO radicals.
*NO radicals can be produced by sodium nitroprusside (SNP) decomposing in an aqueous
solution at pH (7.2) [90]. The Griess reagent can be used to determine *NO quantities
under aerobic conditions as NO reacts with oxygen to produce nitrates [90]. Briefly, 2 mL of
10 mM SNP in PBS was combined with 0.5 mL of acai extracts or butylated hydroxyanisole
(BHA) at concentrations of 0.1-500 pg/mL. After 150 min of incubation at 25 °C, 0.5 mL
of the solution was combined with 0.5 mL of Griess reagent, which was prepared by
mixing 1 mL of 0.33% sulphanilamide reagent (in 20% glacial acetic acid) and 1 mL of
0.1% naphthalene diamine dichloride at room temperature for 5 min. Following a 30 min
incubation period at room temperature, 150 pL of the mixture was transferred to a 96-well
plate, and the absorbance was measured at 540 nm using a Varioskan™ LUX multimode
microplate reader (ThermoFisher, Stafford, UK). A negative control was prepared using
a water-based solution instead of the extract or standard BHA. Using the same formula
as the DPPH radical scavenging activity (Section 4.4), the percentage of the nitric oxide
scavenging activity was calculated.

4.9. Lipid Peroxidation (LPO) Inhibitory Activity

Reactive oxygen species (ROS) such as O?*~ anion, *OH, and the H,O, radical, trigger
LPO, which damages cell membranes and produces numerous secondary products that
are neurotoxic, resulting in neuronal death via necrosis or apoptosis [95]. Moreover, it has
been shown that LPO contributes to the development of many NDDs, including AD [95].
The ability of acai extracts to inhibit LPO was assessed using a method modified from that
described by Akomolafe et al. (2013) [96]. Briefly, 100 uL of 5 mg/mL bovine brain extract
type I, Folch fraction I (Sigma, B1502) was mixed with 30 pL of PBS, 40 uL of distilled water,
and 100 pL of acai extracts or standard at a concentration range of 0.1-1000 pg/mL, with
100 uL of 5 mM SNP as the prooxidant. After a 2 h incubation at 37 °C, 300 puL of 8.1%
sodium dodecyl sulphate (SDS), 500 pL of acetic acid, and 500 pL of 0.8% thiobarbituric
acid (TBA) were added. This mixture was incubated at 85 °C for 45 min to induce the
formation of the malondialdehyde (MDA) coloured product. A volume of 200 uL of the
samples was transferred to a 96-well microtiter plate after cooling, and the absorbance was
measured at 532 nm using a Varioskan™ LUX multimode microplate reader (ThermoFisher,
Stafford, UK). The percentage inhibition of the formation of MDA was calculated according
to the equation for the DPPH radical scavenging activity (Section 4.4).

4.10. Ferric-Reducing Antioxidant Power (FRAP) Assay

The ability to reduce ferric ions (Fe3*) to ferrous ions (Fe?*) was used to estimate the
reducing capacity of acai extracts. The acai extract concentrations were assessed over a
concentration range of 0.001-8000 pg/mL. Each assay data point contained 4 pL of each acai
extract, 400 pL of phosphate buffer (Gibco™ PBS, pH 7.4, ThermoFisher, Stafford, UK), and
250 uL of 1% potassium ferricyanide. After the incubation of the mixture at 50 °C for 20 min,
250 pL of 10% trichloroacetic acid was added. The samples were centrifuged at 3000 rpm
for 10 min. Then, 100 uL of the supernatant was transferred to a 96-well microtiter plate
and mixed with 100 pL of double-distilled water and 20 pL of freshly prepared (0.1%) ferric
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chloride (FeCl3) solution. Then, the formation of Perl’s Prussian blue was read at 700 nm,
according to Nwidu et al. (2018) [82] using a Varioskan™ LUX multimode microplate
reader (ThermoFisher, Stafford, UK). The positive control was L-ascorbic acid.

4.11. Total Phenolic Content Determination

Based on the Folin—Ciocalteu reagent (FCR) method, the total phenolic content was
determined spectrophotometrically at 760 nm according to Nwidu et al. (2018) [82].
In this assay, electrons were transferred from phenolic compounds to phosphomolyb-
dic/phosphotungstic acid complexes (Folin-Ciocalteu reagent) under alkaline conditions,
resulting in a detectable colour change [97]. A concentration range of 15.63-3000 pg/mL
was used to evaluate the acai extracts. Each assay data point within a 96-well plate con-
tained 20 puL of acai extract, 90 pL of water, and 30 uL of FCR; then, the mixture was shaken
vigorously in a plate reader for 8 min. Then, 60 pL 7.5% sodium carbonate solution was
added, and the plate was incubated at 40 °C on a shaking incubator for 30 min. The plate
was read in a spectrophotometer at 760 nm using a Varioskan™ LUX multimode microplate
reader (ThermoFisher, Stafford, UK). The positive control was gallic acid, using a concen-
tration range of 15.63-1000 png/mL to generate a standard curve for the quantification of
the total phenolic content of the acai extracts. The total phenolic content was determined as
mg gallic acid equivalents/gram of plant extract (mg GAE/g).

4.12. Total Flavonoid Content Determination

This colourimetric method is based on the principle that aluminium chloride (AICl3)
forms acid-stable complexes with flavone and flavonol keto groups and their hydroxyl
groups [98]. Furthermore, AICl3 produces acidic compounds with orthodihydroxyl groups
in flavonoid A- or B-rings [98]. The total flavonoid contents of the plant extracts were
assessed via the colourimetric procedure described in Nwidu et al. (2018) [82]. The positive
control was quercetin. Within a 96-well plate, 20 uL of acai extracts or quercetin as standard,
over a concentration range of 15.63-3000 pg/mL, was mixed with 100 puL of 10% aluminium
chloride solution and 100 pL 1 M potassium acetate. After a 30 min incubation at room
temperature, the plate was read using a Varioskan™ LUX multimode microplate reader
(ThermoFisher, Stafford, UK) at 415 nm. Total flavonoid content was expressed as milligram
quercetin equivalents/gram of extract (mg QUER E/g).

4.13. Statistical Analysis

Results were expressed as means =+ standard error of the mean (SEM) in each treatment
and control group. Non-linear regression analysis was used to calculate the concentration
of acai extracts producing 50% inhibition (ICsp). The statistical analysis comparing different
groups was performed using one-way ANOVA tests with Tukey’s multiple comparisons
post-test via PRISM v7 (GraphPad Software Inc., San Diego, CA, USA. www.graphpad.com,
accessed on 26 June 2022). A p-value of below 0.05 was defined as the level of statistical
significance for all analyses.

5. Conclusions

To summarise, the acai berry contains a range of phytochemicals that likely contribute
to its anti-cholinesterase and antioxidant activities. This study suggests that the acai
aqueous extract could be further fractionated, and its compounds identified for their
potential use as a medication alternative for AD therapy, due to the potent ChEI activity
and powerful antioxidant capabilities. However, the limitation of this study is that the
work was performed in vitro; future in vivo analyses are required, particularly those that
mimic NDDs such as AD.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 /molecules27154891/s1, Table S1: Chemical compounds de-
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tected in acai berry extracts with possible cholinesterase inhibitor activity and recognized antioxidant
activity [99-172].
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