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Abstract: Vibrational spectroscopic techniques, i.e., attenuated total reflectance infrared (ATR-
IR), near infrared spectroscopy (NIRS) and Raman spectroscopy (RS), coupled with Partial Least
Squares Regression (PLSR), were evaluated as cost-effective label-free and reagent-free tools to
monitor water content in Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) Natural Deep Eutectic
Solvent (NADES). ATR-IR delivered the best outcome of Root Mean Squared Error (RMSE) of Cross-
Validation (CV) = 0.27% added water concentration, RMSE of Prediction (P) = 0.27% added water
concentration and mean % relative error = 2.59%. Two NIRS instruments (benchtop and handheld)
were also compared during the study, respectively yielding RMSECV = 0.35% added water con-
centration, RMSEP = 0.56% added water concentration and mean % relative error = 5.13% added
water concentration, and RMECV = 0.36% added water concentration, RMSEP = 0.68% added water
concentration and mean % relative error = 6.23%. RS analysis performed in quartz cuvettes enabled
accurate water quantification with RMECV = 0.43% added water concentration, RMSEP = 0.67%
added water concentration and mean % relative error = 6.75%. While the vibrational spectroscopic
techniques studied have shown high performance in relation to reliable determination of water
concentration, their accuracy is most likely related to their sensitivity to detect the LALP compounds
in the NADES. For instance, whereas ATR-IR spectra display strong features from water, Levulinic
Acid and L-Proline that contribute to the PLSR predictive models constructed, NIRS and RS spectra
are respectively dominated by either water or LALP compounds, representing partial molecular
information and moderate accuracy compared to ATR-IR. However, while ATR-IR instruments are
common in chemistry and physics laboratories, making the technique readily transferable to water
quantification in NADES, Raman spectroscopy offers promising potential for future development for
in situ, sample withdrawal-free analysis for high throughput and online monitoring.

Keywords: label-free water quantification; natural deep eutectic solvent; partial least squares regression;
attenuated total reflection infrared; Raman spectroscopy; near infrared spectroscopy
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1. Introduction

In recent years, industry and research facilities have striven to accelerate the transition
towards green processes and technologies. The field of industrial chemistry aims to reduce
the negative environmental impact of chemical residues by utilising bio-renewable and
biodegradable resources in a sustainable manner. In this context, Natural Deep Eutectic Sol-
vents (NADES) hold great promise as a replacement for toxic organic solvents [1–3]. NADES
have unique solvent properties, such as high extraction ability and high solubilisation
strength for a wide range of organic and inorganic compounds [2,4–6]. In addition to being
easily prepared, cost effective and easily tuneable for specific applications, they can outcom-
pete other solvents in terms of extraction rates and efficacy [6–8]. NADES are increasingly
studied for numerous reported applications including analytical chemistry [4], organic syn-
thesis [9], biotechnology [10,11], electrochemistry [12], nanotechnology [13–15], energy [16],
water remediation [17], cosmetics and pharmaceutics [18,19] and food industries [20–22].

NADES are viscous solvents [7], which is considered to be a major barrier in analytical
chemistry applications [1,7,23,24]. However, the constituent compounds of NADES are
often hygroscopic by nature and although, upon preparation, samples contain an initial
water content <1% w/w, the controlled addition of water can be employed to systemati-
cally decrease the viscosity and improve solvation and mass transfer operations, therefore
ensuring maximum efficiency during extraction [23–25]. According to the type of NADES,
water molar concentration ratio is critical for certain applications, such as enzyme reactions
and dissolution of compounds in cosmetics and pharmaceutical areas [1,7]. Moreover, the
polarity of the NADES increases with water content, strongly affecting their solubilisation
capacity depending on the nature of solutes [7]. However, increased water content can
weaken the interactions between the NADES and the target compounds, as well as the
interactions between the components of the NADES themselves, until complete disruption
occurs [24]. Therefore, the control of water content and the stability of NADES-formulated
products remains one major bottleneck to more extensive industrial use [1,6,7]. Quantifi-
cation of water content is therefore essential to ensure the reproducibility of experiments,
especially after a storage period, because NADES tend to accumulate water from the ambi-
ent air, after water was purposely added for a specific application for optimal use, or water
can also derive from a biomass (plants, algae) during extraction [1,6,7].

The techniques commonly used for water quantification are Karl Fisher (KF) titration
and the gravimetric method. KF titration is the gold standard method for quantification
of residual water with numerous examples in organic solvents [26], plant extracts [27] or
in food [28,29]. Despite the sensitivity of the method, the large volumes of reagent and
solvent consumed for titration (especially for high water content) and the time requirements
for analysis of large sample cohorts [30] motivate the development of alternatives. KF
titration is known to determine water selectively by a chemical reaction [31]. Although it
is considered the most accurate for determining water content, is to be noted that values
obtained may depend somewhat on experimental conditions of titration (solvent utilised,
temperature) [29]. The gravimetric method is the simplest, solvent-free, cost-effective
technique, which measures the weight loss of a sample due to water evaporation while
drying under heating. However, a lack of repeatability in results is observed due to thermal
decomposition of the sample or for volatile samples [30]. It has also been demonstrated
that, in materials with high viscosity, the formation of a rubbery matrix during drying
makes water diffusion and evaporation difficult, leading to underestimation of moisture
levels [29,32].

In the context of the principles of Green Analytical Chemistry (GAC) [33], environmentally-
friendly techniques that provide rapid and accurate water quantification in NADES are
needed. Vibrational spectroscopy, i.e., near-infrared spectroscopy (NIRS), mid-infrared
spectroscopy (MIRS) or Raman spectroscopy (RS), includes non-destructive, non-invasive,
label-free, reagent-free and cost-effective spectroscopic techniques that can be applied to
rapidly probe the chemical composition of samples with minimum or no sample prepa-
ration. Vibrational spectroscopy has been widely used for chemical characterisation and
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molecular imaging of pharmaceuticals [34,35], biological tissues [36,37] or even subcellular
analysis [38–40]. Moreover, it is used as a powerful quantitative analysis tool for complex
solutions such as human serum [41], chemotherapeutic solutions [42,43], pharmaceuticals
solid dosage forms [44–46] or cosmetic products [47].

Water quantification, or moisture analysis, using vibrational spectroscopy has been
reported in the literature for MIRS in lubricants [48,49] or milk [50]; for RS in trace water
quantification in glass [51,52] and recently for moisture content determination in flour or
pasta samples [53,54]; and for NIRS in food [55] as a PAT (process analytical technology)
tool for moisture content determination during freeze-drying processes [56,57], in lubri-
cants [49], organic solvents [58] or absolute water content of minerals [59], water content in
skin [60–62] and pharmaceutical pellets [63]. Recently, Elderderi et al. reported the first
demonstrations of attenuated total reflectance MIRS (ATR-IR) [64] and RS [65,66] for water
quantification using glycerol-based NADES as models, i.e., Betaine:Glycerol (1:8, mol/mol),
Choline Chloride:Glycerol (1:2, mol/mol) and Glucose:Glycerol (1:3, mol/mol), each with
systematically varying added water concentrations in the range of 0% w/w to 40% w/w.

The intrinsic water content of NADES is typically >1% w/w, and therefore may not
require the high sensitivity of the KF titration technique. Spectroscopic analyses offer
reagent-free, and therefore greener, techniques which are potentially field deployable in
the industrial environment. The present study aims to undertake a direct comparison
of the potential of ATR-IR spectroscopy, RS and NIRS for monitoring water content in
Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) NADES as a model case study. While
benchtop systems have been used for the three techniques, a handheld device for NIRS
has also been included to determine quantitative performance for the commercialised
compact instruments, which may be more easily field deployable. The performance of each
instrument coupled to Partial Least Squares Regression (PLSR) is quantified in terms of
linearity of the regression between the measured and predicted concentrations (R2), Root
Mean Square Error of Cross-Validation (RMSECV), Root Mean Square Error of Prediction
(RMSEP) and accuracy of the predicted concentration expressed by the % relative error
compared to the target (true) concentration.

2. Materials and Methods
2.1. Reagents

L-Proline (Acros Organics™, 99%, Geel, Belgium) and Levulinic Acid (Acros Organ-
ics™, 98%, Geel, Belgium) were purchased from Fisher scientific SAS (Illkirch, France).
Water was purified using a Milli-Q system (Millipore Corporation, Bedford, MA, USA).

2.2. Preparation of Levulinic Acid/L-Proline (LALP) NADES Samples

The NADES model selected for this study has been prepared from hydrogen bond
donor (HBD) Levulinic Acid (LA) and Hydrogen bond acceptor (HBA) L-Proline (LP)
(Figure 1). The resulting NADES Levulinic Acid/L-Proline (LALP) was prepared according
to the heating and stirring protocol described by Dia et al. [1]. Briefly, LA and LP were
mixed in a 2:1 molar ratio, and then heated at 70 ◦C under magnetic stirring for 1.5 h
until a homogenous colourless phase was formed. NADES intrinsically contain initial
water content which, in this case, has been determined to be 1.07+/−0.08% w/w from
3 Karl Fisher titrations performed on 3 different days. Therefore, the present study is
designed based on the standard addition protocol [66,67]. Therefore, results throughout
the manuscript are presented as % w/w added concentration of water in NADES samples.
For the purpose of the study, 9 samples with % w/w added water concentrations—C1
(0% w/w), C2 (≈0.99% w/w), C3 (≈2.4% w/w), C4 (≈4.76% w/w), C5 (≈6.98% w/w),
C6 (≈9.09% w/w), C7 (≈16.67% w/w), C8 (≈23.07% w/w) and C9 (≈28.57% w/w)—were
prepared by weighing. The exact mass of added water weighed for each sample has been
used for the calculations and statistical analysis. For the purpose of the study, 10 g of
NADES was prepared for each water concentration with an analytical balance with 0.1 mg
precision, resulting in errors in reference concentration as low as 0.002%. Considering the
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range of added water concentration, from 0% w/w to 28% w/w, it is assumed these errors
have no effect on the PLSR models (see Section 2.3). Five replicate sets of NADES (SET_01,
SET_02, SET_03, SET_04 and SET_05) each consisting of nine concentrations (C1–C9), a
total of 45 samples, were prepared independently and analysed for statistical purposes.
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2.3. Data Collection
2.3.1. Attenuated Total Reflectance (ATR-IR) Spectroscopy

ATR-IR spectra were acquired using a Frontier Fourier transform infrared (FTIR)
spectrometer (Perkin Elmer, Villebon-sur-Yvette, France) equipped with a Quest single
reflection diamond attenuated total reflectance (ATR) accessory (Specac, Orpington, UK).
The spectral range was set between 4000 and 400 cm−1 with spectral resolution of 4 cm−1.
A drop ≈100 µL was deposited directly onto the diamond surface and spectroscopic
measurements were performed immediately. Prior to sample measurement, a background
spectrum was recorded in the air (4 averaged scans) and the sample spectrum (4 averaged
scans) was automatically ratioed with it via software (Spectrum, Perkin Elmer), effectively
normalising it to a maximum reflectance of 1 (100%). The data were further processed
by software to express the spectrum in terms of sample absorbance. For each sample,
3 deposits have been measured and 3 spectra per drop have been collected. Ultimately,
9 spectra were recorded from each sample, capturing inter- and intra-variability during
measurements. Spectra from pure compounds have also been collected using similar
parameters. The entire operation to analyse 1 drop, including cleaning the ATR crystal,
collection of the background, and collecting the IR spectrum from the sample, takes less
than 30 s.

2.3.2. Benchtop Near Infrared Spectroscopy (NIR-B)

NIR-B spectra were acquired using a Multipurpose Fourier transform near infrared
spectrophotometer (MPA, Bruker Optics, Ettlingen, Germany) equipped with a TE-InGaAs
detector. Spectra were collected with the internal transmission module. The spectral range
was 12,800–4000 cm−1 (781–2500 nm) and the spectral resolution 8 cm−1. Prior to sample
measurement, a background spectrum was recorded in the air (32 scans) and the sample
spectrum (32 averaged scans) was automatically ratioed with it via software (Opus 6.5,
Optics Bruker), normalising the spectrum to a maximum of 1. The data were further
processed to express the spectrum in terms of absorbance. Samples were directly scanned
in 1 mL shell type glass vials. For each sample, the vial was placed in the instrument and
3 spectra collected, the vial was then removed and the next concentration was analysed.
Once the 9 samples were analysed, the entire operation was repeated twice to capture inter-
and intra-variability during measurements, notably due to repositioning of the vial. Spectra
from pure compounds were also collected using similar parameters.



Molecules 2022, 27, 4819 5 of 23

2.3.3. Handheld Near Infrared Spectroscopy (NIR-H)

NIR-H spectra were acquired using a handheld dispersive NIR transmission spec-
trometer (NIR-M-T1, Innospectra Corp., Hsinchu, Taiwan). The spectral range was 11,111
to 5882 cm−1 (900–1700 nm). The lamp was turned on for 1 h before starting the analysis
to reach a stable detector temperature, from whence the lamp remained lit up during the
analysis of the whole series. However, the device was shut down and cooled to room
temperature between each validation series. Prior to sample measurement, a background
spectrum was recorded in the air (32 scans) and the sample spectrum (32 averaged scans)
was automatically ratioed with it via software (ISC SDK GUI v3.7.2, Innospectra). The
data were further processed to express the spectrum in terms of absorbance. Samples
were directly scanned in 1 mL shell type glass vials. For each sample, the vial was placed
in the instrument and 3 spectra were collected, the vial was then removed and the next
concentration was analysed. Once the 9 samples were analysed, the entire operation was
repeated twice to capture inter- and intra-variability during measurements, notably due to
repositioning of the vial. Spectra from pure compounds were also collected using similar
parameters.

2.3.4. Benchtop Raman Microscope (Raman-B)

Raman-B spectra were collected using a Labram spectrometer (Horiba Jobin-Yvon,
Palaiseau, France) equipped with a 691 nm laser source delivering ~10 mW at the sample.
A macro-sampling holder, consisting of a cuvette holder attached to the turret of the
microscope (Horiba Jobin-Yvon, Palaiseau, France), was employed. The laser coming
out of the turret was reflected by a 45◦ mirror and directed through the quartz cuvette
containing 500 µL of the solution. This set-up provides maximum reproducibility between
measurements and the risk of any photothermic damage is minimised because the laser
is not tightly focused, although it requires larger volumes to perform the analysis. The
spectral range was set between 150 and 4000 cm−1, resulting in a spectral resolution of
~2.5 cm−1, achieved using 300 lines/mm grating. Five accumulations of 1 s were taken
for each spectrum. For each sample, the quartz cuvette was placed in the sample holder
and 3 spectra were collected, the cuvette was then removed, the operation repeated twice
and the next concentration analysed. Ultimately, 9 spectra were recorded from each sample,
capturing inter- and intra-variability during measurements, notably due to repositioning
of the quartz cuvette. Spectra from pure compounds were also collected using similar
parameters. The entire operation to analyse 1 cuvette takes less than 20 s.

2.4. Data Analysis

For consistency, the size of the data sets has been kept identical for all spectro-
scopic techniques, i.e., 5 sets of NADES × 9 concentrations × 9 spectra recorded for
each concentration = 405 spectra.

Data pre-processing and analysis were performed using MATLAB® (The Mathworks,
Natick, MA, USA). Pre-processing: In analytical applications of vibrational spectroscopy, it is
quite common to apply pre-processing techniques such as background/baseline correction,
normalisation and/or derivatisation [68]. For the data collected using ATR-IR, NIR-B
and NIR-H, it has been observed that the best outcome was achieved using raw spectral
data, which have been normalised to the blank reference and converted to absorbance.
This is consistent with a previous study by Elderderi et al. [64] for water quantification in
3 glycerol-based NADES using ATR-IR. Therefore, in the present study, analysis of data
from these techniques was performed without any pre-processing.

Consistent with previous studies by Elderderi et al. [65,66], raw Raman spectra did not
deliver the optimal outcome for Raman-B; therefore, for the purpose of this study aiming
at illustrating the best achievable quantitative performance, a pre-processing protocol has
been applied.

To minimise variability due to any baseline of the spectra, a Rubberband (RB) correc-
tion has been applied. RB is an algorithm which estimates a piecewise polynomial baseline.
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Firstly, a set of support points is determined such that the region below these points form a
convex hull and, secondly, polynomial curves are estimated between each support point,
which is then subtracted from the spectra [69,70]. In the current study, the polynomial order
was set to 1 to avoid overcorrection of spectra, considering the quality of recorded spec-
tra [71]. To compensate for any disparity in intensity levels, a vector normalisation (VN),
i.e., calculation of the ratio of spectra to their respective Euclidian norms, has been applied
to rescale spectra [72].

Partial Least Squares Regression (PLSR): PLSR is a supervised multivariate method
widely used to extract quantitative information from spectral data sets [73]. In this study,
the technique is applied to the data to construct a linear model between variations in
spectral features and the systematically varied water concentrations.

The statistical relevancy of the quantitative analysis performed was evaluated through
cross-validation procedures with a three-way splitting of the data into calibration, vali-
dation and test sets [74]. For the purpose of the study, 5 sets of data were prepared and
analysed (SET_01, SET_02, SET_03, SET_04 and SET_05). Spectral data collected from
SET_02 and SET_04 (n = 18 samples) were used as training sets for the calibration and
validation steps of the quantitative models. Subsequently, 2/3 of the samples (n = 12) of the
training set were randomly selected as the calibration set, and the remaining 1/3 of samples
(n=6) were used as validation set. A 100-fold iteration was implemented to evaluate the
stability of the analysis with multiple random combinations of calibration/validation sets.
Notably, the validation set is used to select the optimal number of latent variables (LVs).
SET_01, SET_03 and SET_05 (n = 27 samples) were used as the independent test samples
to be determined in the predictive model (i.e., unknown to PLSR model). Although the
concentration in the test samples is known, these values are not used to construct the PLSR
model, but only at a later stage to assess the performance of the model. The output of
this model provides information to evaluate PLSR using the linearity of the regression
between the measured and predicted concentrations (R2), Root Mean Square Error of Cross-
Validation (RMSECV) calculated from the validation datasets (i.e., SET_02 and SET_04) and
Root Mean Square Error of Prediction (RMSEP) calculated from the test set (i.e., SET_01,
SET_03 and SET_05). The accuracy of the prediction concentration expressed by the %
relative error compared to the target (true) concentration and regression vectors, which
represents the variables (wavenumbers), was used to construct the predictive model. In
this study, predicted concentrations, RMSECV and RMSEP are expressed as % w/w added
water concentration.

3. Results and Discussions
3.1. Construction of Predictive Models and Spectral Characterisation
3.1.1. ATR-IR Spectroscopy

The vibrational spectrum of water recorded using the FTIR spectrometer equipped
with an ATR accessory exhibits two strong features, a broad band in the spectral range
3700 to 3000 cm−1 with a maximum value of ~3350 cm−1, assigned to symmetrical and
asymmetrical stretching of the H2O molecules, and a sharp band with lower intensity
at ~1640 cm−1, assigned to scissoring/bending [75,76] (Figures 2 and 3A(b),B(b)). These
observations are consistent with previously reported data by Elderderi et al. that were
collected with the same system [64]. The contribution of water features can be clearly
seen in the high wavenumber region of the ATR-IR spectra collected from LALP NADES
samples with increasing added % w/w water concentration (Figure 2).
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Figure 2. Mean raw ATR-IR spectra collected from LALP. Concentrations for added water (% w/w)
are respectively ~ 0% (red), 0.99% (green), 2.4% (blue), 4.7% (yellow), 6.9% (black), 9.1% (magenta),
16.7% (cyan), 23% (purple) and 28% (grey).

In the fingerprint region, L-Proline and Levulinic Acid display numerous sharp peaks
overlapping with the contribution of water, such that the feature at ~1640 cm−1 is not dis-
cernible between the strong L-Proline and Levulinic Acid features at ~1600 and ~1750 cm−1,
respectively (Figure 3B(c,d)). In the ATR mode, the evanescent wave of the IR source probes
a fixed sample depth; therefore, the systematic variation of the water content of the NADES
samples results in a systematic increase in the water contributions at ~3350 cm−1, and a con-
comitant, anticorrelated decrease in NADES features, most notably across the fingerprint
region.

Figure S1A shows the PLSR plot obtained from the validation sets (SET_02 and
SET_04) using four latent variables (LV), with the optimal number selected based on
the lowest RMSECV obtained with the validation sets (Figure S1B). The RMSECV of
0.27 +/− 0.17% w/w added water concentration and the R2 value of 0.9990 +/− 0.0016
indicate good fitting of the data over the concentration range analysed (Figure S1A). This
is confirmed visually by the tight distribution of predicted concentrations around the
regression line, also suggesting high reproducibility of measurements performed and hence
a low intra- and inter-set variability.

The first regression coefficient (Figure 3A(a),B(a)) highlights the positive contribution
of water in the high wavenumber region, evidenced by the strong band with a maxi-
mum value of 3402 cm−1 (Figure 3A(a)) and in the fingerprint region by the band at
1643 cm−1 (Figure 3B(a)). The negative bands in the fingerprint region are assigned to
the LALP compounds that have intensities which are anticorrelated with water con-
tent. The features at ~1713 (C-O stretching vibration), 1393 (H-C-H scissoring vibra-
tion), 1360 (C-H bending vibration), 1235 cm−1 (C-H twisting + OH twisting), 1204 (C-C-H
bending vibration [77]), 1157 (C-O-H in plane bending), 985 (C-O-H bending vibration),
800 (whole molecule bend), 769 (C-H twisting), 614 (wagging O-H), 570 (Torsion (C-C-C-
C) whole molecule) and 489 cm−1 (torsion in whole molecule) can be assigned to Lev-
ulinic Acid (Figure 3B(d)) [78]. The broad band with 2 maxima at 1558 and 1542 cm−1

(NH in plane bending) and the weak feature at 1325 cm−1 correspond to L-proline con-
tributions (Figure 3B(c)). Other L-Proline features at 1609 (C=O stretching vibration),
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1289 (CH in plane bending vibration) and 1375 cm−1 (OH in plane bending) do not clearly
appear in the regression coefficient due to overlaps with strong Levulinic Acid features
(Figure 3B(d)) [79].
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Clearly, while the water bands play a key role in both the high wavenumber and fin-
gerprint regions for the construction of the quantitative model, variation of features specific
to NADES constituents (i.e., Levulinic Acid and L-Proline) also contributes significantly to
the PLSR analysis, most prominently in the fingerprint region.
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3.1.2. Benchtop NIR Spectroscopy (NIR-B)

Due to saturation of the signal, no experimental spectrum from water could be
recorded to compare with the regression coefficient from PLSR (Figure 5). Neverthe-
less, based on the literature, the water spectrum exhibits three main features in NIRS, a
strong band around 5200 cm−1, assigned to a combination of OH stretching and bending
overtones, another at 7000 cm−1, assigned to the first overtone of OH stretching, and
another at 8500 cm−1, assigned to the combination of OH bending and first overtone OH
stretching [55,76] (Figures 4 and 7b). Although NIR spectra collected with a benchtop
system (NIR-B) cover the spectral range 12,500–4000 cm−1, the first band at 5200 cm−1

could not be used, as the high-water concentrations in samples resulted in saturation of
the signal. PLSR analysis was therefore only applied to the region 9000–5400 cm−1, due to
interferences from saturation of the signal below 5400 cm−1 and the absence of spectral
features above 9000 cm−1 (data not shown). However, the strong water band at 7000 cm−1

displays significant variations according to % w/w added water concentrations in LALP
NADES (Figure 4), while the 9000–8000 cm−1 region is less affected by water content in
samples. Similar to the case of the ATR-IR spectra, the NADES features in the region
6000–5600 cm−1 have an anticorrelated relationship to those of the water, although it is less
obvious because they sit on the edge of the strong and varying water feature at 5200 cm−1.
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Figure 4. Mean raw NIR-B spectra collected from LALP. Concentrations for added water (% w/w)
are respectively ~ 0% (red), 0.99% (green), 2.4% (blue), 4.7% (yellow), 6.9% (black), 9.1% (magenta),
16.7% (cyan), 23% (purple) and 28% (grey).

The RMSECV of 0.35 +/− 0.08% w/w added water and the R2 value of 0.9982 +/− 0.0029
obtained from the PLSR analysis highlight the strong correlation between spectral variations
in NIR-B spectra and % w/w added water concentration (Figure S2A). Here, three LVs
were selected based on the RMSECV plot constructed from the validation sets, shown in
Figure S2B. The regression coefficient (Figure 5a) highlights the positive contribution of
water with the broad band with a maximum value of 6960 cm−1. The negative features
at 5800, 5896, 5956 and 5764 cm−1 (first overtone C-H stretching) [80,81] correspond to
mixed contributions of L-Proline (Figure 5b) and Levulinic Acid (Figure 5c) constituents
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of LALP NADES. Similar to ATR-IR, the quantification of water in NADES is based on
spectral contributions from both the water and NADES constituent components, although,
in NIR-B, the relative contribution of the water is significantly higher.
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3.1.3. Handheld NIR Spectroscopy (NIR-H)

For consistency with the results presented in Figure 5, the spectra collected via NIR-
H have been cut to 9000 cm−1, enabling observation of the intense water contribution,
with a maximum value of 6960 cm−1, without interference from non-informative spectral
windows. Unfortunately, the spectra start at 6000 cm−1, which does not allow obser-
vation of the contribution from the LALP NADES compounds in the 6000–5500 cm−1

window (Figure 6).
The RMSECV value of 0.36 +/− 0.10% w/w added water and R2 equal to 0.9988 +/− 0.0010

(Figure S3A) using six latent variables (Figure S3B) are, however, close to the values ob-
tained via NIR-B, suggesting the smaller spectral window does not have great importance
in the construction of the predictive model.

The regression coefficient for NIR-H shown in Figure 7a has strong similarities with
the regression coefficient obtained with the NIR-B device, with an intense broad feature
corresponding to water between 7270 and 5990 cm−1. Only water is observed in the
regression model with no features assigned to NADES constituents L-Proline (Figure 7c)
and Levulinic Acid (Figure 7d).
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Figure 7. First regression coefficient of PLSR of NIR-H (dotted line indicates the zero baseline) (a),
water spectrum (b), L-Proline (c) and Levulinic Acid (d). Spectra have been offset for clarity.

3.1.4. Benchtop Raman Microscope (Raman-B)

As for ATR-IR, the Raman-B spectrum of H2O exhibits a single weak feature at
~1640 cm−1 (scissoring bending) and broad OH symmetric and asymmetric stretching



Molecules 2022, 27, 4819 12 of 23

modes with two maxima at ~3200 cm−1 and ~3400 cm−1 [82,83] (Figures 8 and 9A(b),B(b)).
The bands observed are in agreement with previous investigations conducted on glycerol-
based NADES using a Raman microscope [65] and later using a Raman handheld sys-
tem [66]. In Figure 8, it is seen that, in the high wavenumber region, variations correspond-
ing to water features can be observed, while in the fingerprint region the strong features
from the LALP NADES constituents at ~1480 and ~1700 cm−1 obscure the weaker H2O
scissoring bending. In general, the relative contributions of water vs. the NADES con-
stituents to the Raman-B spectrum are notably lower, and while the effect of the systematic
variation of water in the high wavenumber region is apparent, the anticorrelated effect on
the NADES constituent contributions is not as apparent.
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Figure 8. Mean RBVN Raman-B spectra collected from LALP. Concentrations for added wa-
ter (% w/w) are respectively ~ 0% (red), 0.99% (green), 2.4% (blue), 4.7% (yellow), 6.9% (black),
9.1% (magenta), 16.7% (cyan), 23% (purple) and 28% (grey).

PLSR performed on raw data resulted in RMSECV = 0.80% w/w added water (R2 = 0.9900);
therefore, to improve the quantitative performance of Raman-B, the data were further
pre-processed by application of RB and VN. The RMSECV plot (Figure S4B) indicates
the PLSR analysis can be performed using five latent variables, delivering RMSECV of
0.43 +/− 0.11% w/w added water and R2 of 0.9977+/− 0.0033 (Figure S4A). From this
point forward, only the results from RBVN spectra are presented and discussed.

Figure 9A(a) presents the regression coefficient for the PLSR analysis. An intense
and broad positive feature is observed in the spectral range 3060–3700 cm−1, specifically
assigned to the contribution of water in pre-processed data (Figure S5A). Positive and
negative features are observed between 2855 and 3040 cm−1.

It is observed in the spectra that a peak shift occurs from 2929 cm−1 to 2931 cm−1

with increasing % added water concentrations (Figure S5B). Therefore, the intense first
derivative-like line shape, observed with a negative feature at 2921 cm−1 and a positive
feature at 2939 cm−1, can be attributed to C-H symmetric stretching vibration of Levulinic
Acid (Figure 9A(d)) [84].



Molecules 2022, 27, 4819 13 of 23

Molecules 2022, 27, 4819 13 of 23 
 

 

In the fingerprint region between 1650 and 1790 cm−1, the contribution from Levulinic 
Acid is evidenced by a double derivative-like line shape that is due to broadening of C=O 
stretching at 1714 cm−1 [84], when water content increases in LALP NADES (Figure S5C). 
It results in the 1707 (positive), 1667 (negative) and 1749 cm−1 (negative) peaks (Figure 
9B(a)). Notably, the maximum shifts from 1720 to 1715 cm−1. The positive shoulder be-
tween 1650 and 1680 cm−1 results from the weak contribution of L-Proline (Figure 9B(c)). 
In the 1380–1500 cm−1 region, the positive feature at 1411 cm−1 (CH twisting vibration) cor-
responds to Levulinic Acid [84] and the negative feature at 1450 cm−1 (CH2 in plane bend-
ing vibration) corresponds to L-Proline [79]. Finally, in the 740–801 cm−1 region, there is 
also a first derivative-like line shape feature that is due to the C-C stretching vibration of 
Levulinic Acid at 772 cm−1 [84] that shifts to 778 cm−1 with increasing % added water con-
centration (Figure S5D). 

 
Figure 9. First regression coefficient from PLSR (a), water spectrum (b), L-Proline (c) and Levulinic 
Acid (d) in the 2500–4000 cm−1 spectral range (A) and the 300–1800 cm−1 spectral range (B). Dotted 
line indicates the zero baseline. Spectra are offset for clarity. 

Figure 9. First regression coefficient from PLSR (a), water spectrum (b), L-Proline (c) and Levulinic
Acid (d) in the 2500–4000 cm−1 spectral range (A) and the 300–1800 cm−1 spectral range (B). Dotted
line indicates the zero baseline. Spectra are offset for clarity.

In the fingerprint region between 1650 and 1790 cm−1, the contribution from Levulinic
Acid is evidenced by a double derivative-like line shape that is due to broadening of C=O
stretching at 1714 cm−1 [84], when water content increases in LALP NADES (Figure S5C). It
results in the 1707 (positive), 1667 (negative) and 1749 cm−1 (negative) peaks (Figure 9B(a)).
Notably, the maximum shifts from 1720 to 1715 cm−1. The positive shoulder between
1650 and 1680 cm−1 results from the weak contribution of L-Proline (Figure 9B(c)). In
the 1380–1500 cm−1 region, the positive feature at 1411 cm−1 (CH twisting vibration)
corresponds to Levulinic Acid [84] and the negative feature at 1450 cm−1 (CH2 in plane
bending vibration) corresponds to L-Proline [79]. Finally, in the 740–801 cm−1 region, there
is also a first derivative-like line shape feature that is due to the C-C stretching vibration
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of Levulinic Acid at 772 cm−1 [84] that shifts to 778 cm−1 with increasing % added water
concentration (Figure S5D).

Other weaker features are observed in the fingerprint region at 833 cm−1 (CH2 rocking
vibration), at 1166 cm−1 (assigned to L-Proline) [79] and at 617 cm−1 (C-C stretching
vibration, assigned to Levulinic Acid) [84]. Further features in the fingerprint region cannot
be assigned and could also be the result of subtle modifications in the spectra caused
by varying water concentrations in NADES. It has been reported in the literature that
molecular interactions can be affected by water concentrations in NADES, associated with a
weakening of the hydrogen bonding between HBD-HBA, H2O-HBD and H2O-HBA, which
can be observed by Raman spectroscopy [85–87]. However, the OH scissoring bending
band from water at ~1633 cm−1 is weak compared to the other bands and, due to the
overlap with the L-Proline band at 1624 cm−1, its contribution to the PLSR model is not
significant. Ultimately, the PLSR model constructed from the Raman-B data encompasses
both the contribution of water, limited to the high wavenumber region, and also numerous
bands originating from the NADES compounds.

3.1.5. Overview of PLSR Cross-Validation Results

Table 1 summarises the outcomes for the cross-validation using SET_02 and SET_04
(n = 18 samples). For the purpose of this study, a random split of the data has been
preferred to challenge the data analysis and observe the variability in RMSECV and R2

when different random combinations of samples are selected as training and validation
sets. The selection of optimal latent variables (LVs) is based on the lowest RMSECV value
calculated from the 100-fold iteration of cross-validation values, and the values given in
Table 1 are mean +/− standard deviation (SD) calculated from those iterations. R2 values
are all above 0.99, the highest being obtained for ATR-IR with 0.9990 +/− 0.0016 and the
lowest for Raman-B with 0.9977 +/− 0.0033. It is observed that SD remains low for all
techniques, independent of random combinations of samples selected for training and
validation sets, highlighting the reproducibility of analysis performed. The coefficient of
determination achieved in regression models for the four techniques demonstrates there
is a correlation between variations in spectral features and water concentrations in LALP
NADES (Figures S1A–S4A).

Table 1. PLSR outcome for the cross-validation (SET_2 and SET_04).

Technique Pre-Processing
Cross-Validation

LV R2 +/− SD
RMSECV+/− SD
(% w/w Added)

ATR_IR Raw data 4 0.9990 +/−
0.0016 0.27 +/− 0.17

NIR-B Raw data 3 0.9982 +/−
0.0029 0.35 +/− 0.08

NIR-H Raw data 6 0.9988 +/−
0.0010 0.36 +/− 0.10

Raman -B RBVN 5 0.9977 +/−
0.0033 0.43 +/− 0.11

Compared to R2, RMSECV values display more pronounced differences, the lowest
equal to 0.27 +/− 0.17% w/w added water concentration for ATR-IR and the highest being
~2 times higher, at 0.43 +/− 0.11% w/w added water concentration, for Raman-B. The
two NIR systems, as might be expected, have similar performance of 0.35 +/− 0.08% w/w
added water concentration (NIR-B) and 0.36 +/− 0.10% w/w added water concentration
(NIR-H), respectively. Figures S1A, S2A, S3A and S4A show that, for each technique, a
linear regression can be achieved by cross-validated PLSR. However, RMSECV and R2

already demonstrate that those techniques perform differently when constructing predictive
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models. While IR and NIRS are highly sensitive to water in the samples, it is observed
that the Raman-B technique performs slightly less well, most probably due to the weaker
relative contribution of water to the spectra collected.

Plots presenting RMSECV as a function of the number of latent variables display
different behaviours (Figures S1B–S4B). For ATR-IR, the RMSECV plot starts at 0.81%
w/w added water and decreases to reach the lowest value of 0.27% w/w added water
at four LVs, then starts to increase gradually until the model stabilises at eight LVs with
RMSECV approximately equal to 0.30% w/w added water (Figure S2B). For NIR techniques,
three LVs were selected for NIR-B, but the optimal number appeared to be six LVs for
the handheld device (NIR-H). However, for both, RMSECV values decreased in the first
few LVs then increased up to 20 LVs (Figures S2B and S3B). Moreover, it is observed
that standard deviation gradually increases with number of LVs, indicating that noise is
included in models, leading to a loss of accuracy and reproducibility. For Raman-B, the
optimal number of LVs was found to be five. Looking at the RMSECV plots, it starts at
1.11% w/w added water, drops gradually to reach its lowest value 0.43% w/w added water
at five LVs, increases slightly with six LVs to 0.44% w/w added water, and then finally
returns to a stable plot with ~0.44% w/w added water (Figure S4B).

3.2. Comparison of Prediction for % w/w Added Water Concentration in Test Sets

Figure S6 presents PLSR plots obtained from samples used as unknowns to be deter-
mined from the test set (i.e., SET_01, SET _03 and SET_05) and Table 2 summarises R2 and
RMSEP values. In Figure S6, it can be seen that a few data points could be considered as
outliers. However, in this study, analysing the data as a whole while not removing any
samples has been preferred in an attempt to optimise the fitting achieved. R2 values for
the test sets exhibit a similar pattern for all instruments, and they are all above 0.99. The
highest is achieved with ATR-IR (0.9993 +/− 0.0004% w/w added water) (Figure S6A) and
the lowest with Raman-B (0.9955 +/− 0.0016% w/w added water) (Figure S6D), which is
consistent with RMSECV values observed previously. RMSEP values display significant
variations between techniques, with ATR-IR performing the best (0.27 +/− 0.08% w/w
added water) (Figure S6A), NIR-B (Figure S6B) exhibiting a value ~2 times higher (0.56%
w/w added water +/− 0.03), NIR-H (Figure S6C) ~2.4 times higher (0.68 +/− 0.08% w/w
added water) and Raman-B (Figure S6D) ~2.4 times higher (0.67 +/− 0.11% w/w added
water). Compared to RMSECV, the difference in RMSEP values between the two NIR
systems is more pronounced, the value for NIR-H being ~22% higher than that for NIR-B.

Table 2. PLSR results for the test sets (SET_01, SET_03 and SET_05). Results are reported as mean
+/− standard deviation.

Technique Pre-Processing
Test Set

R2 +/− SD
RMSEP +/− SD
(% w/w Added)

ATR-IR Raw data 0.9993 +/− 0.0004 0.27 +/− 0.08

NIR-B Raw data 0.9969 +/− 0.0004 0.56 +/− 0.03

NIR-H Raw data 0.9984 +/− 0.0002 0.68 +/− 0.08

Raman-B RBVN 0.9955 +/− 0.0015 0.67 +/− 0.11

For the purpose of this study, samples used as unknowns to be determined are
consistent, i.e., SET_01, SET_03 and SET_05, while samples in the calibration/validation
sets are randomly picked from SET_02 and SET_04 using a 100-fold iteration loop.

To more precisely assess performance in relation to the predictions achieved, per-
cent relative errors between the prepared added % w/w water concentration and the
predicted % w/w water concentration was calculated, and the results are presented in Table 3.
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Table 3. Summary of PLSR accuracy obtained with all techniques.

Technique
% Relative Error

Mean % RE % RE min–max Values
<1 <2.5 <5 <7.5 <10 >10

Number of
Samples

ATR-IR 7 8 7 - 1 1 2.59 0.02–14.84

NIR-B 1 7 8 4 1 3 5.13 0.50–20.85

NIR-H 2 4 7 5 1 5 6.23 0.88–17.21

Raman-B 4 5 2 4 3 6 6.75 0.07–20.87

For ATR-IR, the % relative errors range from 0.02% to 14.84%, with mean % relative
error equal to 2.58%. The % w/w added water concentrations were determined with less
than 5% relative error for 22 out of 24 samples analysed. The % relative error values above
5% are: 14.84% for C2 (0.99% w/w added water) and 9.17% for C3 (2.44% w/w added water)
from the test set SET_01. Previously published studies [64,65] reporting water quantifica-
tion with ATR-IR spectroscopy for three NADES systems (betaine/glycerol: BG, choline
chloride/glycerol: CCG and glucose/glycerol: GG) with systematically varying % water
concentration (0–40%) delivered RMSEP values of 0.74% w/w added water, 1.53% w/w
added water and 1.16% w/w added water for BG, CCG and GG, respectively [64]. The
mean percentage relative error was 4.03% w/w for CCG, 4.08% w/w for GG and 1.95% w/w
for BG [64]. PLSR results for LALP NADES delivered a lower RMSEP value and lower
mean relative errors compared to the CCG and GG NADES previously studied. Glycerol
exhibits strong features in the high wavenumber region of ATR-IR spectra that overlap
with the water band and partially hide spectral variations [64]. For LALP NADES, neither
L-Proline nor Levulinic Acid have contribution in the high wavenumber region; there-
fore, modifications in this part of the spectrum are more specifically correlated to water
concentration, resulting in the better PLSR analysis outcome achieved in the present study.

Results obtained from NIR-B (Table 3) present % relative errors ranging from 0.50% to
20.85%, with a mean equal to 5.13%. The % added water concentrations were determined
with less than 5 % relative error for 16 out of 24 samples. The highest values are 20.85%
for C2-SET_03 (0.99% w/w added water), 13.88% for C5-SET_05 (6.97% w/w added water)
and 13.71% for C6-SET_05 (9.09% w/w added water). In comparison, the NIR-H displays
% relative errors over a shorter range (0.88% to 17.21%), although the mean of 6.23% is
slightly higher. The difference is explained by the lower number of samples determined
with less than 5% relative error (13 out of 24) and the higher number of samples determined
with % relative error above 10% (n = 5). The highest % RE values above 10% are 16.99% for
C2_ SET 01 (0.99% w/w added water), 10.71% for C5_SET 01 (6.98% w/w added water),
12.77% for C2_SET 03 (0.99% w/w added water), 17.21% for C2_SET 05 (0.99% w/w added
water) and 16.93% for C5_ SET 05 (6.98% w/w added water).

The Raman-B (Table 3) predictive model provides % relative errors ranging from 0.07%
to 20.87%, with a mean equal to 6.75%. The water concentrations were determined with
less than 5% relative error for 11 out of 24 samples. Six samples were determined with %
RE below 10%. The highest % RE values above 10% are 16.34% for C2_SET 01 (0.99% w/w
added water), 10.44% for C3_SET 01 (2.44% w/w added water), 19.38% for C2_SET 03
(0.99% w/w added water), 20.87% for C3_SET 03 (2.44% w/w added water), 13.27% for
C4_SET 03 (4.76% w/w added water) and 12.14% for C2_SET 05 (0.99% w/w added water).
These values are comparable to both NIR systems, with the mean error and the number of
samples above 10% comparable to the NIR-H system while maximum error, 20.87%, is close
to the NIR-B (20.85%). A previous study reporting water quantification for three NADES
systems (BG, CCG and GG) with macro-Raman spectroscopy [65] delivered RMSEP values
of 0.34% w/w added water, 0.47% w/w added water and 0.74% w/w added water for BG,
CCG and GG, respectively. The mean percentage relative error was 1.45% w/w for CCG,
1.18% w/w for GG and 1.19% w/w for BG [65]. Unlike IR, the PLSR results for LALP
NADES with Raman delivered a higher RMSEP value and higher mean relative errors
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compared to the CCG, BG and GG NADES previously studied. In glycerol-based NADES
models, PLSR was based on the contribution of water features at high wavenumbers
and fingerprint regions, as well as NADES features that inversely correlated to the PLSR
prediction model [65]. However, with LALP NADES, the PLSR is based on water features
only in the high wavenumber region, while in the fingerprint region the spectral changes
observed are limited to band shifts that are related to molecular interaction between water
and LALP constituents; therefore, the sensitivity of PLSR analysis is affected.

3.3. General Discussion

NIRS, MIRS and RS are well established as rapid, label-free and molecular specific
techniques for quantitative analysis [88]. In the context of determining water concentration
in LALP NADES, the direct analysis of samples without pre-analytical steps and the absence
of requirements for any solvents or consumables are indisputable advantages compared
to Karl Fisher titration (considered the gold standard). While all techniques studied can
deliver an accurate quantification of water in NADES, selecting the most suitable technique
depends on a number of criteria. The intrinsic water content of such NADES is >1% w/w,
and the high sensitivity of the gold standard KF titration technique is therefore not required.
Spectroscopic analysis offers the benefits of reagent-free and therefore greener techniques,
which are potentially field deployable, in the industrial environment.

For example, ATR-IR spectroscopy delivered the best accuracy for the quantifica-
tion of % w/w added water in LALP NADES. The PLSR coefficients in Figure 3A(a),B(a)
highlight the spectral features of both water and LALP NADES constituents over the full
4000–400 cm−1 range, which contributes strongly and plays a key role in constructing
a reliable predictive model. The procedure for data acquisition only requires a drop of
sample to be deposited onto the ATR crystal to generate highly reproducible spectra. The
ATR crystal is relatively small, ~1.8 mm in diameter, enabling collection of high-quality
spectra with minimal sampling requirements. Although the technique is user friendly and
is simple to operate, samples have to be withdrawn for analysis and, for conventional
instruments, analysed one by one. Hence, the procedure for cleaning the ATR crystal,
recording a new background and depositing the next drop can rapidly become fastidious
for routine use, especially for large cohorts of samples. Recent innovative development of
automated ATR sampling as plate readers (AutoATR, Pikes technologies) holds promise
for future high throughput analysis that could greatly increase the workflow for spectral
acquisition from multiple samples with ATR-IR, overcoming one of the main drawbacks
of the technique. ATR-IR probes are not yet commonly used for in situ analysis directly
in containers, although a few studies have reported encouraging results for monitoring
chemical processes [89,90]. Interestingly, most chemistry or physics laboratories already
have ATR set-ups available, and the transfer of the technique to water quantification in
NADES is therefore accessible to many researchers in the field. In the current study, a
research grade ATR-IR spectrometer that costs roughly EUR 40,000–50,000 has been used,
but more affordable systems for routine analysis can be purchased below EUR 20,000.

Acquisition of NIR spectra with the NIR-B and the NIR-H devices was performed
in transmission mode in 1 mL glass vials due to the transparent nature of LALP NADES;
therefore, withdrawal of samples is also necessary. Using glass vials allows samples to be
prepared and sealed until analysis, and there is no cleaning of a crystal or other part of the
system between samples; hence, the workflow is improved compared to that of ATR-IR. To
reduce consumption of consumables, vials can be washed and reused easily. In this study,
a benchtop NIR system (NIR-B) that costs more than EUR 100,000 has been compared
to a low-cost handheld device (NIR-H) that can be acquired for ~EUR 2000. Despite
technical differences, such as spectral range and spectral resolution, it has been found
that both systems performed similarly in terms of R2 (0.9969 and 0.9984, respectively) and
RMSEP (0.56 and 0.68% w/w added water, respectively), highlighting that cost-effective
alternatives can be developed for monitoring water in NADES. The NIR spectrum for
LALP NADES shows strong water features at 6960 cm−1 and spectral features for NADES
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constituents appear between 6000 and 5400 cm−1 (Figure 4). As shown in the regression
coefficient from both NIR devices, the water feature is enough to build accurate models
(Figures S2A and S3A), suggesting that the performance of most commercial NIR systems
will be comparable because they all include the water band in the spectral ranges analysed.

Raman spectra show relatively weak features of water compared to infrared techniques
(Figure 9). However, the PLSR coefficient from Raman-B (i.e., analysis performed in
quartz cuvettes) delivered a RMSECV value of 0.43% w/w (R2 = 0.9977) and a RMSEP
value of 0.67% w/w (R2 = 0.9955), comparable to NIR results (Tables 1 and 2). ATR-
IR and NIR data which have been normalised to the reference (air) spectrum deliver
the best outcome, and it was observed that Raman spectra had to be subjected to pre-
processing before applying PLSR analysis to yield comparable results. For the data collected
with Raman-B, a baseline correction coupled to normalisation (RBVN) delivered the best
results. This is also consistent with previous studies published on BG, CCG and GG
NADES [65,66]. However, it is important to stress that, in recent years, there have been
many improvements in acquisition software, including pre-processing and data analysis
through user friendly interfaces. Currently, it is easier to apply multiple data corrections
in just a few clicks, making the technique more accessible to non-experts. Therefore,
requirements for data pre-processing do not differentiate infrared and Raman spectroscopy,
and solely the performance in terms of precision and accuracy should be considered.

Although Raman-B results demonstrate the feasibility of performing quantifications
of water in NADES using Raman spectroscopy, research grade Raman microscopes can be
as expensive as EUR 100,000–300,000, depending on the options selected. However, more
affordable commercial handheld Raman systems can be purchased at prices about 10-fold
lower. Most of these devices, which are dedicated to field analyses, have fixed gratings to
ensure reproducibility of measurement; therefore, the spectral range covered cannot be
adjusted, as is commonly possible with benchtop Raman microscopes. It is critical to collect
spectra covering the high wavenumber region for applications to water quantification
in NADES (Figure 9). In a previously published study that investigated the quantitative
performance of the portable Raman Enspectr R532® (EnSpectr, UK) for the determination
of water content in three selected NADES (BG, CCG and GG) [66], analysis performed
using the full spectral range delivered mean percentage relative error equal to 2.69%
for CCG, 8.11% for GG and 6.61% for BG [66]. Importantly, Raman spectroscopy offers
promising perspectives for non-invasive in situ analysis, i.e., withdrawal free. Almost all
Raman microscope and handheld systems work in confocal mode, enabling the signal to be
collected from samples through containers, especially the transparent glassware commonly
found in chemistry laboratories [91]. In such set-ups, the technique measures backscattered
light and the laser source therefore does not have to go through the sample, enabling the
measurement of larger volumes (i.e., bigger glassware, vials or other containers). The main
advantages for in situ analysis are ensuring the integrity of the samples while avoiding
contamination and greatly improving the workflow while offering a 100% consumable free
alternative.

4. Conclusions

This study independently demonstrated the potential of ATR-IR, NIR and Raman spec-
troscopy coupled to PLSR analysis for the quantification of water content in LALP NADES,
such that their relative performances could be compared. ATR-IR delivered the best out-
come, with RMSECV = 0.27 +/− 0.17% w/w added water, RMSEP = 0.27 +/− 0.08% w/w
added water and mean % relative error = 2.59%. The regression coefficient from the PLSR
analysis highlights the combined contribution from NADES compounds (L-Proline and
Levulinic Acid) and water, which strengthens the reliability of the predictive models con-
structed. Although the technique requires withdrawal and deposition of the sample on an
ATR crystal, it is a realistic approach to introducing more environmentally friendly reagent-
free water quantification in NADES. Although NIR-B (RMSECV = 0.35 +/− 0.08% w/w
added water, RMSEP = 0.56 +/− 0.03% w/w added water and mean % relative error = 5.13%),
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NIR-H (RMSECV = 0.36 +/− 0.10% w/w added water, RMSEP = 0.68 +/− 0.08% w/w added
water and % mean relative error 6.23%) and Raman-B (RMSECV = 0.43 +/− 0.11% w/w added
water, RMSEP = 0.67 +/− 0.11% w/w added water and mean % relative error = 6.75%)
exhibited lower accuracy compared to ATR-IR, the results, however, clearly highlighted the
suitability of these techniques for water quantification in LALP NADES. These methods
offer perspectives for potential in situ analysis directly in containers (without withdrawal
of samples) using NIR and Raman immersion probes or non-invasively through containers
with confocal Raman spectroscopy. While Karl Fisher titration remains the gold standard
for moisture content analysis in samples, greener alternatives are available to support the
shift towards environmentally friendly approaches. The results reported are encouraging
for the future development of tools that can optimise and monitor NADES-based processes
while also being transferable to industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154819/s1, Figure S1: A: PLS regression model
obtained from cross validation using ATR-IR Raw spectra in the range 4000–400 cm−1. B: RMSECV
according to number of latent variables obtained from ATR-IR Raw data of training sets. Figure S2:
A: PLS regression model obtained from cross validation using NIR-B raw spectra in the range
9000–5400 cm−1. B: RMSECV according to number of latent variables obtained from NIR-B Raw data
of training sets. Figure S3: A: PLS regression model obtained from cross validation using NIR-H.
Raw B: RMSECV according to number of latent variables obtained from NIR-H Raw data of training
sets. Figure S4: A: PLS regression model obtained from cross validation using Raman-B. B: RMSECV
according to number of latent variables obtained from Raman-B RBVN data of training sets. Figure S5:
Zooming of mean spectra collected from LALP benchtop Raman RBVN preprocessed spectra in range
A: 3100–3700 cm−1, B: 2880–3040 cm−1, C: 1650–1760 cm−1 and D: 740–800 cm−1. Concentrations
for added water (% w/w) are respectively ~ 0%(red), 0.99% (green), 2.4% (blue), 4.7% (yellow), 6.9%
(black), 9.1% (magenta), 16.7% (cyan), 23% (red) and 28% (green). Figure S6: PLS regression models
obtained from test sets for ATR-IR (A), NIR-B (B), NIR-H (C), Raman-B (D).
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Method in the Presence of Additive Interference Effects. Mon. Chem.-Chem. Mon. 2018, 149, 1567–1572. [CrossRef]

68. Byrne, H.J.; Knief, P.; Keating, M.E.; Bonnier, F. Spectral Pre and Post Processing for Infrared and Raman Spectroscopy of
Biological Tissues and Cells. Chem. Soc. Rev. 2016, 45, 1865–1878. [CrossRef]

69. Wartewig, S. IR and Raman Spectroscopy: Fundamental Processing; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-3-527-60643-6.
70. Parachalil, D.R.; Brankin, B.; McIntyre, J.; Byrne, H.J. Raman Spectroscopic Analysis of High Molecular Weight Proteins in

Solution—Considerations for Sample Analysis and Data Pre-Processing. Analyst 2018, 143, 5987–5998. [CrossRef]
71. Heraud, P.; Wood, B.R.; Beardall, J.; McNaughton, D. Effects of Pre-Processing of Raman Spectra on in Vivo Classification of

Nutrient Status of Microalgal Cells. J. Chemom. 2006, 20, 193–197. [CrossRef]
72. Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch,

P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [CrossRef]
73. Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of Multidimensional Data Processing Approaches for Raman and Infrared

Spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [CrossRef]
74. Makki, A.A.; Elderderi, S.; Massot, V.; Respaud, R.; Byrne, H.J.; Tauber, C.; Bertrand, D.; Mohammed, E.; Chourpa, I.; Bonnier, F.

In Situ Analytical Quality Control of Chemotherapeutic Solutions in Infusion Bags by Raman Spectroscopy. Talanta 2021, 228,
122137. [CrossRef]

75. Célino, A.; Gonçalves, O.; Jacquemin, F.; Fréour, S. Qualitative and Quantitative Assessment of Water Sorption in Natural Fibres
Using ATR-FTIR Spectroscopy. Carbohydr. Polym. 2014, 101, 163–170. [CrossRef]

76. Libnau, F.O.; Kvalheim, O.M.; Christy, A.A.; Toft, J. Spectra of Water in the Near- and Mid-Infrared Region. Vib. Spectrosc. 1994, 7,
243–254. [CrossRef]

77. Zhao, W.; Li, Y.; Song, C.; Liu, S.; Li, X.; Long, J. Intensified Levulinic Acid/Ester Production from Cassava by One-Pot Cascade
Prehydrolysis and Delignification. Appl. Energy 2017, 204, 1094–1100. [CrossRef]

78. Dwivedi, A.; Pandey, A.; Bajpai, A. Comparative Study of Structural, Vibrational, Electronic Properties of Pentanoic Acid (Valeric
Acid) and Its Derivative 4-Oxopentanoic Acid (Levulinic Acid) by Density Functional Theory. J. Sci. Res. Adv. 2014, 1, 18–24.

79. Mary, Y.S.; Ushakumari, L.; Harikumar, B.; Varghese, H.T.; Panicker, C.Y. FT-IR, FT-Raman and SERS Spectra of L-Proline. J. Iran.
Chem. Soc. 2009, 6, 138–144. [CrossRef]

80. Schwanninger, M.; Rodrigues, J.C.; Fackler, K. A Review of Band Assignments in near Infrared Spectra of Wood and Wood
Components. J. Infrared Spectrosc. 2011, 19, 287–308. [CrossRef]

81. Westad, F.; Schmidt, A.; Kermit, M. Incorporating Chemical Band-Assignment in near Infrared Spectroscopy Regression Models.
J. Infrared Spectrosc. 2008, 16, 265–273. [CrossRef]

82. Numata, Y.; Iida, Y.; Tanaka, H. Quantitative Analysis of Alcohol–Water Binary Solutions Using Raman Spectroscopy. J. Quant.
Spectrosc. Radiat. Transf. 2011, 112, 1043–1049. [CrossRef]

83. Carey, D.M.; Korenowski, G.M. Measurement of the Raman Spectrum of Liquid Water. J. Chem. Phys. 1998, 108, 2669–2675.
[CrossRef]

http://doi.org/10.1016/j.jpba.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24699368
http://doi.org/10.1016/j.talanta.2020.121865
http://doi.org/10.1029/2005JE002534
http://doi.org/10.1007/BF02977676
http://www.ncbi.nlm.nih.gov/pubmed/15918520
http://doi.org/10.1366/0003702042641218
http://doi.org/10.1111/j.0909-752X.2006.00142.x
http://doi.org/10.1016/j.aca.2008.12.031
http://www.ncbi.nlm.nih.gov/pubmed/19427475
http://doi.org/10.1016/j.molliq.2020.113361
http://doi.org/10.1007/s00216-021-03432-2
http://www.ncbi.nlm.nih.gov/pubmed/34061244
http://doi.org/10.3390/molecules26185488
http://www.ncbi.nlm.nih.gov/pubmed/34576961
http://doi.org/10.1007/s00706-018-2203-1
http://doi.org/10.1039/C5CS00440C
http://doi.org/10.1039/C8AN01701H
http://doi.org/10.1002/cem.990
http://doi.org/10.1038/nprot.2016.036
http://doi.org/10.1140/epjti/s40485-015-0018-6
http://doi.org/10.1016/j.talanta.2021.122137
http://doi.org/10.1016/j.carbpol.2013.09.023
http://doi.org/10.1016/0924-2031(94)85014-3
http://doi.org/10.1016/j.apenergy.2017.03.116
http://doi.org/10.1007/BF03246512
http://doi.org/10.1255/jnirs.955
http://doi.org/10.1255/jnirs.786
http://doi.org/10.1016/j.jqsrt.2011.01.005
http://doi.org/10.1063/1.475659


Molecules 2022, 27, 4819 23 of 23

84. Kim, T.; Assary, R.S.; Curtiss, L.A.; Marshall, C.L.; Stair, P.C. Vibrational Properties of Levulinic Acid and Furan Derivatives:
Raman Spectroscopy and Theoretical Calculations. J. Raman Spectrosc. 2011, 42, 2069–2076. [CrossRef]

85. Panda, S.; Kundu, K.; Kiefer, J.; Umapathy, S.; Gardas, R.L. Molecular-Level Insights into the Microstructure of a Hydrated and
Nanoconfined Deep Eutectic Solvent. J. Phys. Chem. B 2019, 123, 3359–3371. [CrossRef]

86. Ahmadi, R.; Hemmateenejad, B.; Safavi, A.; Shojaeifard, Z.; Shahsavar, A.; Mohajeri, A.; Dokoohaki, M.H.; Zolghadr, A.R. Deep
Eutectic–Water Binary Solvent Associations Investigated by Vibrational Spectroscopy and Chemometrics. Phys. Chem. Chem.
Phys. 2018, 20, 18463–18473. [CrossRef] [PubMed]

87. Di Pietro, M.E.; Tortora, M.; Bottari, C.; Colombo Dugoni, G.; Pivato, R.V.; Rossi, B.; Paolantoni, M.; Mele, A. In Competition
for Water: Hydrated Choline Chloride:Urea vs Choline Acetate:Urea Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2021, 9,
12262–12273. [CrossRef]

88. He, Y.; Tang, L.; Wu, X.; Hou, X.; Lee, Y. Spectroscopy: The Best Way Toward Green Analytical Chemistry? Appl. Spectrosc. Rev.
2007, 42, 119–138. [CrossRef]

89. Salehpour, S.; Dubé, M.A. Reaction Monitoring of Glycerol Step-Growth Polymerization Using ATR-FTIR Spectroscopy. Macromol.
React. Eng. 2012, 6, 85–92. [CrossRef]

90. Alimagham, F.; Winterburn, J.; Dolman, B.; Domingues, P.M.; Everest, F.; Platkov, M.; Basov, S.; Izakson, G.; Katzir, A.;
Elliott, S.R.; et al. Real-Time Bioprocess Monitoring Using a Mid-Infrared Fibre-Optic Sensor. Biochem. Eng. J. 2021, 167, 107889.
[CrossRef]

91. Bloomfield, M.; Andrews, D.; Loeffen, P.; Tombling, C.; York, T.; Matousek, P. Non-Invasive Identification of Incoming Raw
Pharmaceutical Materials Using Spatially Offset Raman Spectroscopy. J. Pharm. Biomed. Anal. 2013, 76, 65–69. [CrossRef]
[PubMed]

http://doi.org/10.1002/jrs.2951
http://doi.org/10.1021/acs.jpcb.9b01603
http://doi.org/10.1039/C8CP00409A
http://www.ncbi.nlm.nih.gov/pubmed/29947372
http://doi.org/10.1021/acssuschemeng.1c03811
http://doi.org/10.1080/05704920601184259
http://doi.org/10.1002/mren.201100071
http://doi.org/10.1016/j.bej.2020.107889
http://doi.org/10.1016/j.jpba.2012.11.046
http://www.ncbi.nlm.nih.gov/pubmed/23298907

	Introduction 
	Materials and Methods 
	Reagents 
	Preparation of Levulinic Acid/L-Proline (LALP) NADES Samples 
	Data Collection 
	Attenuated Total Reflectance (ATR-IR) Spectroscopy 
	Benchtop Near Infrared Spectroscopy (NIR-B) 
	Handheld Near Infrared Spectroscopy (NIR-H) 
	Benchtop Raman Microscope (Raman-B) 

	Data Analysis 

	Results and Discussions 
	Construction of Predictive Models and Spectral Characterisation 
	ATR-IR Spectroscopy 
	Benchtop NIR Spectroscopy (NIR-B) 
	Handheld NIR Spectroscopy (NIR-H) 
	Benchtop Raman Microscope (Raman-B) 
	Overview of PLSR Cross-Validation Results 

	Comparison of Prediction for % w/w Added Water Concentration in Test Sets 
	General Discussion 

	Conclusions 
	References

