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Abstract: Cancer is the second leading cause of death after cardiovascular diseases. Conventional
anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks
are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting
multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure
and the relatively low toxicity make plant-derived natural products a promising source for the
development of new and more effective anticancer therapies that have the capacity to target multiple
hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products
extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer
hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this
review provide a solid ground for researchers and physicians to design more effective combination
anticancer therapies using plant-derived natural products.

Keywords: plant-derived natural products; alternative cancer therapies; anticancer; apoptosis
induction; plants

1. Introduction

Cancer is a chronic disease and one of the main causes of death around the world. The
global cancer burden is extensively rising, and it is considered as the second cause of death
after cardiovascular disease. In 2020, 19.3 million new cancer cases were estimated, with
10.0 million cancer deaths worldwide and 250 million disability-adjusted life years because
of cancer [1,2]. Regardless of the new developments in cancer therapy and revolutionary
advances in genomics and molecular biology, multidrug resistance and drug side effects are
still the vital cause of cancer treatment failure [3]. Since plants are a rich source of natural
compounds that are characterized by their therapeutic effects, studying these compounds
is thought to be a promising line for research on cancer [4]. In this context, phytochemicals,
secondary metabolites extracted from plants, have diverse applications, including antidia-
betic, anti-inflammatory, cardiovascular protective, antioxidant, and anticancer effects [5].
In particular, these phytochemicals can be classified into different groups such as flavonoids,
alkaloids, phytosterols, terpenoids, sulfides, polyphenols, and others, which have been
considered an important reservoir for novel anticancer agents [6–9]. Hence, plant sec-
ondary metabolites are recognized with many properties such as tumor growth inhibition,
apoptosis induction, immune modulation, and angiogenesis suppression [4,10]. As well,
several epidemiological studies have reported the role of phytochemicals and their derived
analogues in modulating tumor cell-activating proteins, enzymes, and signaling pathways,
stimulating DNA repair mechanisms, and conquering free radicals production [4,11,12].
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They also interact with many intracellular pathways that regulate cell growth, such as the
STAT3, PI3K/Akt/NF-κB signaling pathway, mTOR, and the Bcl-2/Bax mitochondrial
pathway [9,13].

In this review, we have tried to choose the most effective and well-known phy-
tochemicals that display a distinctive anticancer activity. As well, we described these
phytochemicals thoroughly, starting with their chemical structure and ending with their
antitumor activity.

2. Cancer Hallmarks as Targets for Natural Products

Cancer hallmarks are biological capabilities that are acquired during neoplastic trans-
formation and help in organizing the complexity of cancer development. Many natural
products exert their anticancer effect through targeting one or multiple cancer hallmarks,
which are briefly discussed below.

2.1. Genomic Instability

Genomic instability is a property of many tumor cells that can be triggered by different
mechanisms such as telomerase destruction, centrosome amplification, epigenetic modifi-
cations, and DNA impairment [14]. In a normal cell cycle, the integrity of the genome is
controlled by specific checkpoints and any abnormality in function of these checkpoints can
lead to development of tumorigenesis [15,16]. These checkpoints are regulated by different
oncogenes and tumor suppressor genes; nevertheless, cancer cells can modify the functions
of these genes resulting in stimulation of uncontrolled cell growth [16].

2.2. Sustained Proliferative Signaling

Modulating the expression of growth-promoting signals is a prominent feature of
cancer cells in order to maintain their uncontrolled cell division and proliferation [17].
The essential targets to inhibit sustained proliferation in cancer include the following
signaling pathways: hypoxia-inducible factor-1 (HIF-1), NF-κBs, PI3K/AKT, insulin-like
growth factor receptor (IGF-1R), cyclin-dependent kinase (CDKs), and estrogen receptor
signaling [18].

2.3. Evasion of Anti-Growth Signaling

The evasion of antigrowth signals is another strategy implemented by cancer cells to
preserve proliferation. Blocking tumor suppressor genes that regulat the antigrowth signals,
as well as mutations in these genes, have been detected in cancer cells [16]. In addition, the
most identified mutated tumor suppressor genes is p53 followed by ataxia-telangiectasia
mutated (ATM), cyclin-dependent kinase inhibitor 2A (CDKN2A), phosphatase and tensin
homolog (PTEN), adenomatous polyposis coli (APC), breast cancer gene 1 and 2 (BRCA1
and BRCA2), retinoblastoma (RB), and Wilms tumor (WT1) [18].

2.4. Resistance to Apoptosis

Cancer cells can promote the overexpression of anti-apoptotic proteins eventually
suppressing the normal programmed cell death [17]. Moreover, cancer cells can limit or
bypass apoptosis via many pathways such as altering the function of p53 tumor suppressor
gene, increasing the expression of antiapoptotic regulators (Bcl-2 and Bcl-xL), promoting
survival signals (Igf1/2), reducing the levels of proapoptotic factors (Bax, Bim, Puma), and
suppressing the signals of the extrinsic ligand-induced death pathway [17].

2.5. Replicative Immortality

Cancer cells are recognized for their limitless replicative potential, which mediates
tumor progression and invasion. Telomerase is a specialized reverse transcriptase that
extends the ends of shortening chromosomes in dividing cells [16,19]; hence, activation of
this enzyme is the key to maintain continuous cell division in many types of cancer [17]. In
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addition, replicative immortality can be modulated by suppressing many targets including
telomerase, mTOR, CDK4/6, CDK 1,2,5,9, Akt, and PI3K [18].

2.6. Dysregulated Metabolism

Altering energy metabolism has been confirmed to be a cancer-associated trait, which
involves the stimulation of many oncogenes and mutated suppressor genes [17]. In order
to increase glucose uptake and lactate production, several glycolytic enzymes are activated,
including hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), and pyruvate kinase isoform M2 (PKM2) [16]. In addition, overexpression of
other metabolic regulators such as hypoxia-inducible factor 1 (HIF-1) and Myc oncogene
was observed in cancer cells [20,21].

2.7. Tumor-Promoting Inflammation

A specific association between chronic inflammation and cancer development has been
observed [22,23]. Furthermore, several factors have been identified for their crucial role in
stimulating cancer-related inflammation, including cytokines (interleukins, TNF-α, TGF-β,
and granulocyte macrophage colony-stimulating factor), chemokines, and transcription
factors (NF-kB, STAT3, HIF-1-α) [22].

2.8. Angiogenesis

During the malignancy stage, an “angiogenic switch” is triggered in tumor cells, which
involves stimulation of angiogenic factors that mediate vascularization (blood vessels for-
mation) [24]. These new growing blood vessels would supply the dividing cancer cells
with oxygen and nutrients, which are essential to sustain cell proliferation [24]. This angio-
genesis process is regulated by many transmembrane proteins and pathways, including
vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), Tie-angiopoietin
pathways, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and
hepatocyte growth factor (HGF) [24,25].

2.9. Tissue Invasion and Metastasis

Cancer metastasis is a multi-step process that starts with local invasion of cancer cells
into the surrounding tissues. The next step is intravasation into the nearby vessels, extrava-
sation to distant tissues and organs, and finally adaptation to a new microenvironment
during which micro-metastases will progress into a secondary tumor [17]. Tumor cell metas-
tasis is known to be initiated by the disruption of cell–cell adhesion, which is comprised of
tight junctions, adherens junctions, gap junctions, desmosomes, and hemidesmosomes [26].

2.10. Immune Evasion

Cancer cells apply different strategies to evade immune surveillance. These include
modulating immune checkpoint pathways and recruiting immunosuppressive cells (e.g.
regulatory T cells and myeloid-derived suppressor cells). Additional mechanisms involve
impairing some elements of the immune system (e.g. suppressing infiltrating CTLs and
NK cells by overexpression of TGF-β or other immunosuppressive factors) [17]. Figure 1
summarizes the cancer hallmarks with the main regulating markers.
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Figure 1. Cancer hallmarks with the main regulatory biomarkers. VEGF, vascular endothelial 
growth factor; VEGFR, vascular endothelial growth factor receptor; EGF, epidermal growth factor; 
hepatocyte growth factor; ATM, ataxia-telangiectasia mutated; PTEN, phosphatase and tensin hom-
olog; APC, adenomatous polyposis coli; BRCA1 and BRCA2, breast cancer gene 1 and 2; RB, reti-
noblastoma; WT1, Wilms tumor; CDKs, cyclin-dependent kinase; IGF-1R, insulin-like growth factor 
receptor; HIF-1, hypoxia-inducible factor-1; HK2, hexokinase 2; PKM2, pyruvate kinase isoform M2; 
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PD-L1, programmed death ligand 
1; MHC, major histocompatibility complex; CD8, cluster of differentiation 8. 

3. Anticancer Drug Discovery 

For decades, plants have been well known for their clinical usefulness as anticancer 
agents using diverse mechanisms of action [27,28]. Mostly, this is due to their abundant 
quantity of secondary metabolites, which possess significant pharmacological and biolog-
ical activities including antitumor activity [29]. About 50% of antitumor drugs originate 
from natural products. These drugs could be isolated from plants or semi-synthetic com-
pounds [30]. Such examples of antitumor drugs of clinical importance nowadays are tax-
anes (e.g. Taxol), vinblastine, vincristine, and the podophyllotoxin analogs that all origi-
nate from higher plants [31]. Firstly, in the 1950s, Robert Noble and Charles Beer of Can-
ada discovered vincristine and vinblastine vinca alkaloids, which were isolated from the 
leaves of Catharanthus roseus (Madagascar periwinkle) [32]. In addition, taxane-derived 
drugs are isolated from the Taxus genus. Paclitaxel, which is commercially identified as 
Taxol®, was firstly obtained in 1971 from Taxus brevifolia (Pacific yew). In the 1980s, an-
other taxane semi-synthetic drug was isolated from Taxus baccata (European yew) known 
as docetaxel (Taxotere®) [33]. Recently, podophyllotoxin analogs have been of great inter-
est in chemical modification, especially the semi-synthetic antitumor drugs teniposide 
and etoposide [34]. Podophyllotoxin was first obtained by Podwyssotzki in 1880 from the 
North American mayapple Podophyllum peltatum L. Moreover, this phytochemical has 
been collected from Podophyllum emodi (Indian podophyllum) [35]. Etoposide was 

Figure 1. Cancer hallmarks with the main regulatory biomarkers. VEGF, vascular endothelial growth
factor; VEGFR, vascular endothelial growth factor receptor; EGF, epidermal growth factor; hepato-
cyte growth factor; ATM, ataxia-telangiectasia mutated; PTEN, phosphatase and tensin homolog;
APC, adenomatous polyposis coli; BRCA1 and BRCA2, breast cancer gene 1 and 2; RB, retinoblas-
toma; WT1, Wilms tumor; CDKs, cyclin-dependent kinase; IGF-1R, insulin-like growth factor re-
ceptor; HIF-1, hypoxia-inducible factor-1; HK2, hexokinase 2; PKM2, pyruvate kinase isoform M2;
PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PD-L1, programmed death ligand 1;
MHC, major histocompatibility complex; CD8, cluster of differentiation 8.

3. Anticancer Drug Discovery

For decades, plants have been well known for their clinical usefulness as anticancer
agents using diverse mechanisms of action [27,28]. Mostly, this is due to their abundant
quantity of secondary metabolites, which possess significant pharmacological and biologi-
cal activities including antitumor activity [29]. About 50% of antitumor drugs originate
from natural products. These drugs could be isolated from plants or semi-synthetic com-
pounds [30]. Such examples of antitumor drugs of clinical importance nowadays are
taxanes (e.g. Taxol), vinblastine, vincristine, and the podophyllotoxin analogs that all origi-
nate from higher plants [31]. Firstly, in the 1950s, Robert Noble and Charles Beer of Canada
discovered vincristine and vinblastine vinca alkaloids, which were isolated from the leaves
of Catharanthus roseus (Madagascar periwinkle) [32]. In addition, taxane-derived drugs
are isolated from the Taxus genus. Paclitaxel, which is commercially identified as Taxol®,
was firstly obtained in 1971 from Taxus brevifolia (Pacific yew). In the 1980s, another taxane
semi-synthetic drug was isolated from Taxus baccata (European yew) known as docetaxel
(Taxotere®) [33]. Recently, podophyllotoxin analogs have been of great interest in chemical
modification, especially the semi-synthetic antitumor drugs teniposide and etoposide [34].
Podophyllotoxin was first obtained by Podwyssotzki in 1880 from the North American
mayapple Podophyllum peltatum L. Moreover, this phytochemical has been collected from
Podophyllum emodi (Indian podophyllum) [35]. Etoposide was synthesized for the first time
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in 1966 and was approved by the U.S. Food and Drug Administration (FDA) for cancer
therapy in 1983 [36].

4. Chemoprevention Mechanisms of Plant-Derived Products

Cancer chemoprevention is a comprehensive term that defines the contribution of
exterior agents to suppress cancer development. Many plants play a vital role in the chemo-
prevention process depending on various mechanisms [37]. Recently, researchers have paid
attention to natural products as chemopreventive agents due to their low toxicity, availabil-
ity, and affordable production cost [38]. In this review, we will cover the mechanisms of
chemoprevention of the already-included natural products. Starting with curcumin, it has
been found that it exerted a chemoprevention activity on ovarian cancer. This activity is
carried out by inhibiting the NF-κB signaling pathway [39]. Needless to say, the inhibition
of NF-κB is crucial in cancer treatment and prevention [40]. In addition, curcumin and its
analog and metabolite have an antimetastatic activity by decreasing Hsp70 and toll-like
receptor (TLR4). Moreover, it induces apoptosis via increasing caspase-9 and caspase-3 [41].
Resveratrol stimulates mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) [42]
and nuclear factor erythroid 2-related factor 2(Nrf2) [43]. Moreover, resveratrol suppresses
NLRP3 inflammasome and cyclooxygenase (COX) [44–46]. Moreover, quercetin is widely
known as an antioxidant and cell protective agent. It could scavenge reactive oxygen
species (ROS) and decrease the risk of cancer development and DNA damage as well [47].
Quercetin activates apoptosis through augmented translocation of Bax to the mitochondrial
membrane, rearrangement of Bcl-2 proteins, stimulation of caspases, and blockage of the
ERK and PI3K/Akt signals [47–50]. Furthermore, EGCG has been confirmed to possess a
chemopreventive activity via the suppression of carcinogenesis processes such as initiation,
progression, and promotion [51]. EGCG showed remarkable regulatory effects on several
signaling pathways such as NF-κB, JAK/STAT, AP-1, MAPK, and PI3K/AK [52–59]. Inter-
estingly, EGCG has the ability to control the activity of androgen receptors in prostate cancer
as well as the estrogen receptors in mammary cancers [60,61]. In A549 and H1299 lung
cancer cell lines, allicin has proven its antineoplastic activity by modification of PI3K/AKT
signaling. This modulation leads to the suppression of cellular invasion, proliferation,
and metastasis [62,63]. Bat-Chen et al. demonstrated that allicin mediates apoptosis via
induction of Nrf2, increased levels of hypodiploid DNA content, enhanced Bax levels, and
decreased B-cell non-Hodgkin lymphoma-2 levels (Bcl-2) in human colon cancer HCT-116
cells [64]. Thymoquinone inhibits cell proliferation via taking control over main cell cycle
checkpoints and encouraging cell cycle arrest at G1/G2, G0/G1, or G2/M phases [65].
TQ therapy remarkably reduces angiogenesis. Thus, through the extracellular receptor
kinases pathway and Akt, TQ modulates the signal of vascular endothelial growth factor
(VEGF) [66]. It acts as an antioxidant as well and augments the levels of the antioxidant
HO-1, Nrf2, and SOD proteins [67]. Emodin leads to apoptosis induction and epithelial
to mesenchymal transition (EMT) inhibition in colon cancer [68–70]. This phytochemical
inhibits endothelial cell proliferation via cell cycle arrest in the G2/M phase. Similarly, it
inhibits VEGFR2 and MMPs signaling pathways. Moreover, emodin has been defined as an
inhibitor of tyrosine kinase and phosphorylation of ERK 1/2 downregulator, contributing
to its antiangiogenic effect [71–73]. Genistein inhibits hepatocellular carcinoma in rats by
suppression of the PDGF/versican bidirectional axis, inhibiting both PKC and ERK1 as
downstream controllers [74]. In ovarian cancer, it leads to serum malondialdehyde down-
regulation, which is a marker for the expression of Bcl-2 and NFκB and oxidative stress
as well. On the other hand, it upregulates HO-1, Nrf2, and Bax expression in ovarian tis-
sues [75]. Genistein causes PTK signaling blocking by inhibition of protein-tyrosine kinase
(PTK) and thus suppresses the proliferation of tumor cells indirectly [76]. In esophageal
carcinoma, parthenolide (PTL) has been found to suppress the NF-кB/AP-1/VEGF sig-
naling pathway [77]. Moreover, PTL has been revealed to induce classic apoptosis, as
well as alterations in the Bcl-2 family and rising reactive oxygen species (ROS) production
intracellularly [78]. PTL exerts proapoptotic stimulation of p53, together with reduced
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glutathione reduction [79]. Luteolin led to pancreatic cancer inhibition in a BOP-induced
hamster model. This was achieved by downregulation of the STAT3 dihydropyrimidine
dehydrogenase (DPYD) pathway, which has a central importance in the development of
pancreatic cancer [80]. Additionally, luteolin activates apoptosis, suppresses prolifera-
tion, and modifies MAP kinase and Akt/mTOR pathways in HeLa human cervical cancer
cells [81].

5. Plant-Derived Natural Products with Potential Anticancer Effects
5.1. Curcumin

Curcumin, also called diferuloylmethane, is the main natural polyphenol found in
the rhizome of Curcuma longa (Family: Zingiberaceae) and in multiple other Curcuma
species [39]. It is a yellow natural product, commonly known as turmeric, commonly
used as a food spice and colorant [82]. The chemical structure of curcumin consists of
two aromatic O-methoxy phenolic groups, β-dicarbonyl moiety and a seven-carbon linker
containing two enone moieties. The IUPAC name for curcumin is (1E,6E)-1,7-bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione) [83,84].

Curcumin has been traditionally used in Asian countries as a medical herb due to its
multiple health benefits [85]. These include anti-inflammatory, antioxidant, antibacterial,
antiviral, anti-diabetic, wound-healing ability, and potential anticancer and chemopreven-
tive activity [85,86].

Curcumin has been shown to inhibit carcinogenesis in preclinical studies performed on
various cell lines, including prostate, pancreatic, ovarian, oral epithelial leukemia, hepatic,
breast, cervical, gastric, and colon cancer [87]. Several mechanisms have been suggested
to explain the promising results of curcumin in cancer treatment. One of the major mech-
anisms of curcumin anticancer effects is its antioxidant properties, since it can increase
serum concentration of antioxidants such as superoxide dismutase (SOD), glutathione
peroxidase (GPx), and lipid peroxides. Moreover, curcumin also acts as a good scavenger
for different forms of free radicals, such as reactive oxygen (ROS) and reactive nitrogen
species (RNS), and inhibits ROS-generating enzymes such as lipoxygenase/cyclooxygenase
and xanthine hydrogenase/oxidase [88–90]. In addition, curcumin can modulate several
signaling pathways associated with cancer growth, such as suppression of angiogenesis
and induction of apoptosis [91]. Moreover, Yang et al. reported that curcumin also induces
apoptosis through the activation of the JNK/ERK/AP1 pathways in human acute mono-
cytic leukemia THP-1 cells [92]. The anticancer effect of curcumin can also be exerted via
downregulation of pyruvate kinase M2 (PKM2), hence decreasing lactate production and
uptake of glucose in cancer cells [93].

Curcumin can also induce cell cycle arrest at the G2/M phase, probably by decreasing
the expression of CDC2 and CDC25, and increasing P21 expression [94]. This result was
observed in hematological cancers [95]. In addition, curcumin has affected the cellular
development in non-small cell lung cancer and stimulated G0/G1 phase arrest via MTA1
(metastasis-associated protein 1)-mediated deactivation of the Wnt/β-catenin pathway [96].
Additionally, several studies suggest that curcumin exerts its anticancer properties by
targeting different microRNA (miRNA) expressions, such as miR-181b, miR-203, miR-9,
miR-19, miR-21, miR203, miR-9, and miR-208 [97]. Needless to say, miRNA plays a crucial
role in various physiological conditions, including differentiation, growth, angiogenesis,
and apoptosis. Hence, dysregulation of these molecules can upregulate and downregulate
several cellular and molecular targets leading to the progression of cancer [98]. On the
other hand, the synergistic role of curcumin in combination with other chemotherapeutic
agents has been reported, an effect that leads to the enhanced effectiveness and decreased
toxic effects of these drugs [99]. In another study, Zhang et al. reported that pre-treatment
with curcumin followed by 5-fluorouracil increased the susceptibility of the colon cancer
cells [100]. Likewise, Guorgui et al. have shown that a combination of curcumin and
doxorubicin demonstrates a stronger additive effect by causing a 79% reduction in the pro-
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liferation of Hodgkin lymphoma (L-540) cells [101]. Similar synergistic activity of curcumin
with docetaxel [102], cisplatin [103,104], and doxorubicin [105] has been also reported.

Interestingly, curcumin has been shown to reverse the multidrug resistance of can-
cerous cells [106]. Xiao-qing et al. have shown that curcumin can reverse the multidrug
resistance of the human gastric carcinoma SGC7901/VCR cell line, thus increasing the
sensitivity to vincristine by decreasing both the function and expression of P-gp, resulting
in high intracellular drug concentration [107]. Recently, similar findings regarding the
potential of curcumin to reverse the multidrug resistance towards doxorubicin in colon
cancer treatment have been also reported [108].

On the other hand, curcumin displays no toxicity effect on normal cells [109]. A phase
I human trial with 25 patients taking up to 8000 mg of curcumin per day for three months
discovered no harm from curcumin [109]. Five further human trials utilizing 1125–2500 mg
of curcumin per day revealed it to be safe [109].

5.2. Resveratrol

Resveratrol is a polyphenolic compound produced by plants in response to environ-
mental stress and can be found in at least 72 plant species, such as mulberries, peanuts, cran-
berries, blueberries, and grapes [110]. Resveratrol is a natural stilbene containing two aro-
matic rings linked together by a methylene double bond to form 3,4′,5-trihydroxystilbene.
It exists in both cis- and trans- isoforms. The trans form is more stable and potent than the
cis form [111]. Studies have reported that resveratrol exhibits many wide ranges of activi-
ties, including antioxidant [112], anti-inflammatory [113], cardiovascular protective [114],
anti-aging [115], and anticancer properties [116].

Recently, several studies have focused on the anticancer properties of resveratrol,
which revealed a high ability to target multiple pathways involved in cancer initiation,
promotion, and progression [46,117]. First of all, the antioxidant effects of resveratrol
contribute significantly to the health benefits of this phytochemical, since it can act as a
scavenger of a number of free radicals. In addition, resveratrol increases the expression of
various antioxidant enzymes, such as SOD, catalase (CAT), glutathione reductase (GS-R),
(GPx), and glutathione S-transferase (GST). Thus, resveratrol, through these two antioxidant
effects, protects cells from oxidative damage [118]. Conversely, as chemotherapeutics,
resveratrol in combination with As2O3 can enhance apoptosis-inducing oxidative stress
via induction of ROS [119].

A second possible anticancer mechanism of resveratrol is related to kinases, which
play a critical role in cell growth and proliferation and are typically over-expressed in
many tumors. Resveratrol specifically targets many kinases, including EGF, extracellular-
signal-regulated kinases (ERK), and VEGF, thus decreasing their expression and resulting
in antigrowth signaling activity [120].

A third suggested mechanism for the anticancer activity of resveratrol is related to
its anti-inflammatory activity, since several types of cancer are, to some extent, promoted
by a certain degree of systemic, low-grade chronic inflammation [121]. Ren et al. have
reported that resveratrol suppresses the inflammatory biomarker tumor necrosis factor α
(TNF-α-)-induced signaling in a dose-dependent manner, both via nuclear factor kappa-B
(NFκB) activation and transcriptional activity of p65 [122]. Furthermore, in colon cancer,
resveratrol actually encouraged cell cycle arrest at the G1 phase. That was achieved by
lowering cyclin E1 and cyclin D1 and increasing p53 in a dose-dependent manner [123]. In
addition, resveratrol treatment resulted in increasing p27 and p21 gene expression levels,
as well as lowering cyclin B gene expression [124]. Moreover, substantial evidence has
demonstrated that resveratrol can induce apoptosis in a wide variety of cancer cells, al-
though the underlying mechanism differs greatly among different cancer cell types [46].
Li et al. suggested that resveratrol induces apoptosis through activating caspase-3 and
caspase-9, upregulating Bcl-2-associated X protein, and inducing expression of p53 [125].
On the other hand, in ovarian cancer cells, resveratrol has been shown to inhibit prolif-
eration and induce apoptosis via inhibiting glycolysis and targeting the AMPK/mTOR
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signaling pathway [126]. Moreover, resveratrol can inhibit metastasis by targeting different
pathways. In pancreatic cancer cells, resveratrol suppresses the metastatic potential in vitro
by modulating EMT-related factors via the PI3K/Akt/NF-κB signaling pathway [127].
Likewise, resveratrol has been shown to inhibit the invasiveness and metastasis of prostate
cancer cells by downregulating glioma-associated oncogene homolog 1, which is a tran-
scription factor in the Hedgehog signaling pathway [128]. Recent studies suggested that
the antitumor effects of resveratrol can also be mediated through enhancing antitumor
immunity and reversing the immunosuppressive tumor microenvironment, which is es-
tablished via stimulating cytokines/chemokines secretion and expression of several other
immune-related genes [129]. These mechanisms were supported by the findings of Lee et al.
which demonstrated that resveratrol increases the expression of activating receptors on
natural killer (NK) cells, an effect which could facilitate NK-cell-mediated killing of cancer
cells [130]. In closing, it remains to be said that, like many other phytochemicals, resver-
atrol shows a synergistic inhibitory effect on the proliferation of various cancer cells and
increases their chemosensitivity to many chemotherapeutic agents, such as temozolomide,
cisplatin, doxorubicin, 5-fluorouracil, gemcitabine, docetaxel, and paclitaxel [131].

Lastly, despite the high cytotoxicity of resveratrol toward tumor cells, it appears to be
well tolerated with no significant harm recorded against normal cells [132]. These findings
are significant in the context of human efficacy investigations, and they lend support to the
use of resveratrol as a pharmacological agent in human medicine [132].

5.3. Quercetin

Quercetin is a natural lipophilic product and one of the most plentiful flavonoids.
Flavonoids are known for their low molecular weight and phenolic structure that mainly
exists in the seeds, bark, leaves, and flowers of plants [133]. Flavonoids are categorized into
six classes and quercetin falls under the subclass of flavonols.

Quercetin’s name comes from the Latin quercetum, meaning oak forest, after the oak
genus Quercus, and its IUPAC name is 3,3′,4′,5,7-pentahydroxyflavanone (or) 3,3′,4′,5,7-
pentahydroxy-2-phenylchromen-4-one, with the molecular formula C15H10O7. Quercetin
has three rings with five hydroxyl groups attached at positions 3, 5, 7, 3′, and 4′ that play
a major role in its biological activity and formation of derivatives. The main groups of
derivatives are glycosides, ethers, and less frequently sulfate and prenyl substituents [134].
Quercetin naturally is an aglycone, missing a glycosyl group, so glycosidic derivatives
are achieved by replacing the hydroxyl group (mainly at position 3 and less frequently at
position 7) with a sugar-like glucose, rhamnose, or rutinose, resulting in increased water
solubility, absorption, and in vivo effects compared to quercetin aglycone [135–137]. On the
other hand, ether derivatives are achieved by forming an ether bond between any hydroxyl
group and an alcohol, mainly methanol [138]. Quercetin is found in many foods such as
capers, apples, berries, brassica vegetables, grapes, pepper, asparagus, onions, broccoli,
shallots, cherries, tea, and tomatoes. Quercetin is also well observed in medicinal plants,
such as Ginkgo biloba, Hypericum perforatum, and Sambucus Canadensis [139–141].

Regarding its pharmacological effects, quercetin has been shown to exhibit antiviral,
antibacterial, anti-inflammatory as well as anticarcinogenic effects [142–144]. The anticar-
cinogenic effects are mediated through several mechanisms, such as targeting free radicals,
inducing apoptosis, regulating cell cycle, and targeting important key molecules in cancer
development, in addition to a unique impact on certain types of cancer.

Quercetin’s antioxidant effects protect cells from the actions of ROS and RNS, which
contribute to cancer development. In addition, quercetin contributes to the reduction of ROS-
induced injury by increasing the expression of endogenous antioxidant enzymes [145,146].

A second mechanism that may play a role in the anticancer effects of quercetin is
the induction of apoptosis by mitochondrial pathways, which involves stimulation of
caspase-3 and caspase-9 followed by the release of cytochrome c (Cyt c) and cleavage of
poly-ADP-ribose polymerase (PARP) [147–149]. Moreover, quercetin also stimulates the
proapoptotic genes and inhibits the antiapoptotic genes prompting cell death through
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the intrinsic and extrinsic pathways of apoptosis [150]. Additionally, quercetin inhibits
PI3K/AKT/mTOR and STAT3 pathways specifically in primary effusion lymphoma (PEL)
cells, leading to downregulation in the expression of the pro-survival cellular proteins
such as c-FLIP, cyclin D1, and c-Myc. Quercetin also reduces the release of IL-6 and
IL-10 cytokines, leading to PEL cell death [151]. In parallel, Wang et al. reported that
quercetin induces transcription factor EB-mediated lysosome activation and increases
ferritin degradation, thus leading to ferroptosis and Bid-involved apoptosis, especially
in p53-independent cancer cells [152]. Furthermore, quercetin may have a role in breast
cancer therapy. Anti-proliferative effects of quercetin have been demonstrated in the MCF-7
cell line by various mechanisms, including reducing the phosphorylation of P38MAPK,
a hallmark of cell proliferation, and influencing the G1 phase and causing apoptosis by
suppressing cyclin D1, P21, and Twist expression [153,154]. In thyroid cancer, quercetin
plays a role in upregulating Pro-NAG-1/GDF15 in differentiated thyroid cancer cells
leading to apoptosis induction and cell cycle arrest [155].

Moreover, quercetin results in cell cycle arrest by its effect on numerous target proteins
such as p21, p53, p27, cyclin D, cyclin B, and cyclin-dependent kinases. By preference,
quercetin induces cell cycle arrest at the G2/M phase by inauguration of p21 and p73
and cyclin B inhibition, together at the translation and transcription levels [47]. Moreover,
quercetin has been shown to inhibit an important key molecule, VEGF, which plays a sig-
nificant role in the survival of endothelial cells and can cause tumor angiogenesis [156,157].
Similarly, Sharmila et al. revealed that quercetin supplementation also normalizes the fol-
lowing factors: insulin-like growth factor receptor 1 (IGFIR), AKT, androgen receptor (AR),
and cell proliferation proteins, which are known to be increased in cancer. In osteosarcoma,
Shenglong Li et al. indicated that quercetin assists in reducing the invasion, adhesion,
proliferation, and migration rates of human metastatic osteosarcoma cells by inhibiting
parathyroid hormone receptor 1 (PTHR1) activity [158]. In addition, quercetin can alter the
depolarization of mitochondria and calcium cytoplasmic concentration [159], has a role
in increasing the phosphorylation of c-Jun N-terminal kinase, ERK1/2, P38, and P90RSK
proteins, and inhibits the phosphorylation of S6, AKT, and P70S6K proteins [159].

In regard to thyroid cancer, the anticancer activity of quercetin was demonstrated
through downregulation of Hsp90 levels and reducing chymotrypsin-like proteasome ac-
tivity [160,161]. As for ovarian cancer, several in vitro studies demonstrated that quercetin
inhibits cancer angiogenesis [162] and causes suppression of cell survival, proliferation,
migration, and adhesion of the ovarian cancer cell line PA-1 [163]. However, in colon
cancer, quercetin inhibits the cell viability of colon 26 (CT26) and colon 38 (MC38) cell lines,
while assisting the expression of epithelial–mesenchymal transition (EMT) markers, such
as E-, N-cadherin, β-catenin, and snail. In addition, quercetin also inhibits the migration
and invasion abilities of the CT26 cell line through modulating the expression of matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) [164].

Regarding quercetin safety, clinical investigations have demonstrated that quercetin
has no toxicity or negative effects [165]. Quercetin has been found in clinical tests to have
anti-inflammation and antitumor properties, as well as to alleviate anemia and decrease
blood pressure [165].

5.4. EGCG (Epigallocatechin Gallate)

EGCG, also known as epigallocatechin gallate, is a natural flavonoid under the subclass
of falvan-3-ols (catechins). It is considered a polyphenolic product with a complex structure,
and it contains a flavanol core (flavan-3-ols) structure esterified with gallic acid [166]. EGCG
can be found in cocoa-based products, nuts, and some fruits, but green tea (Camellia sinen-
sis Theaceae) is still considered as the main source of this product [167]. EGCG is considered
as the most abundant and therapeutic active catechin in this plant with a percent of nearly
65% among the other three other catechins (epicatechin (EC), epigallocatechin (EGC), and
epicatechin gallate (ECG). Due to its phenolic structure, it is very efficient in radical scav-
enging, and it exhibits its antioxidant effect through several mechanisms, such as hydrogen
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atom transfer, electron transfer, and the chelation of catalytic metals [168]. Surprisingly,
its antioxidant effect is even greater than vitamin E and vitamin C [169,170]. Moreover, it
has a role in cancer, diabetes, obesity, cardiovascular, neurodegenerative, and metabolic
diseases [102,171,172]; furthermore, it has antiviral, antibacterial, and anti-inflammatory
properties [173].

As an anticancer product, EGCG exhibits its action through multiple mechanisms,
such as affecting redox reactions and inducing apoptosis and cell arrest, impairing cer-
tain proteins and factors that have a role in cancer development, inhibiting angiogenesis,
acting as a metal chelating agent, stabilizing p53 for its antitumor activity, and affecting
cell proliferation.

EGCG inhibits redox-sensitive transcription factors, such as nuclear factor-κB (NF-
κB) [174] and leads to a reduction of NF-κB DNA binding activity, decreasing in the
expressions of pro-inflammatory mediators such as interleukin-1β (IL1β), IL-6, IL-8, and
tumor necrosis factor-α (TNF-α), as well as downstream enzymes such as poly [ADPribose]
polymerase (PARP), COX-2, and iNOS, which eventually leads to decreased infiltration of
inflammatory cells [175–177].

In addition to this, EGCG induces the apoptosis and cell arrest of cancer cells through
several mechanisms. For example, the activation of the apoptosis-related proteins caspase-3,
caspase-9, and PARP-1, particularly in MCF-7 breast cancer cells [178], by induction of the
apoptotic molecular signals such as Bax, caspases, and cytochrome c (cyt. c), especially
in HuCC-T1 cholangiocarcinoma cells [179]; reduction of protein expression of adenosine
triphosphate binding cassette subfamily G member 2 (ABCG2) and Bcl-2, also increas-
ing Bax and caspase-3 expression, especially in human esophageal squamous carcinoma
cells [180]; and suppression of epidermal growth factor receptor (EGFR)/Ras/Raf/mitogen-
activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) signaling path-
way, especially in thyroid cancer [181], by the inhibition of the activation of the PI3K/Akt
serine/threonine kinase 1 signaling pathway in H1299 lung cancer cells [182]. In gastric
cancer, Zhu et al. showed that EGCG had improved pathological lesions of the precan-
cerous lesions of gastric cancer (PLGC) and enhanced the effect of apoptosis promotion
in PLGC rats, and the apoptotic pathway activated by EGCG may be correlated to the
inhibition of the PI3K/Akt/mTOR pathway [183]. In head and neck cancer, Amin et al.
had shown that a mixture of EGCG and resveratrol induces synergistic apoptosis that is
supported by caspase-3 and Poly ADP-ribose polymerase(PARP) cleavages and inhibition
of tumor growth; the mixture also inhibited AKT-mTOR signaling with overexpression of
constitutively active AKT protected cells from apoptosis [184].

An EGCG and epicatechin combination had shown a higher population of cells in S
and G2/M phases when compared to the control, which resulted in inducing cell cycle
arrest in HepG2 cells [185]. Moreover, in MCF-7 breast cancer cells, EGCG stimulates cell
cycle arrest at the G2/M phase [178]. Furthermore, EGCG directly impairs the activity
of urokinase, which is a protein that is overexpressed in cancer and has a crucial role in
metastasis development; therefore, impairing its activity results in extracellular matrix
degradation, consequently leading to an inhibition of cancer invasion [186]. EGCG is also
effective in the inhibition of MMP-2 and MMP-9, which are responsible for degrading
the basement membrane and assisting cell invasion and are commonly overexpressed
in cancer [187]. EGCG also enhances the ratio of SKOV-3 cells in the G1-phase with an
associated decline in the ratio of cells in the S phase and G2-phase of the cell cycle [188].
Additionally, EGCG can inhibit matrix metalloproteinases such as MMP-2 and MMP-9,
which are usually elevated in cancer and considered as instruments for degrading the
basement membrane and facilitating cell invasion [189]. Furthermore, EGCG inhibits signal
transducer and activator of transcription 3 (STAT3), which is an oncogene that supports cell
survival, proliferation, motility, and progression of the cancer cells [190]. In addition, EGCG
plays an important role in the inhibition of activating protein-1 (AP-1) transcription factor,
which is associated with the pathogenesis of cancer [191]. As well, it inhibits the VEGF by
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modulating the activity of hypoxia-inducible factor 1α (HIF-1α) and NF-kB factor [192]; so,
as a result, it inhibits the cancer angiogenesis.

Besides this, EGCG also has a metal chelating feature, and given that certain receptor
kinases rely on divalent cations for their action, EGCG can inhibit this reaction by chelating
to these cations [193].

Additionally, Zhao et al. reported a direct interaction between EGCG and the tumor
suppressor p53 with the disordered N-terminal domain (NTD). The EGCG-p53 interaction
disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination
of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for antitumor
activity [194].

Related to breast cancer, Tanaka et al. revealed that EGCG had reduced rRNA tran-
scription and cell proliferation through the activation of KDM2A in MCF-7 cells, and
EGCG helps in KDM2A activation by the activation of both 5’ AMP-activated protein
kinase (AMPK) and ROS production. Essentially, the inhibition of rRNA transcription and
cell proliferation by EGCG was particularly detected in MCF-7 cells; however, it was not
detected in non-tumorigenic MCF10A cells [195].

5.5. Allicin

Allicin, or diallyl thiosulfinate, is a sulfur-containing volatile oil, and it can be pro-
duced by tissue damage of the non-proteinogenic amino acid S-allyl cysteine sulfoxide
(alliin), which is catalyzed by the alliinase enzyme [196]. It is extracted from garlic
(Allium sativum L.) and other Allium species such as onions (Allium cepa L.) and shallots
(Allium ascalonicum L.). Allicin cannot be found while garlic is intact; thus, it is activated by
chopping or cutting the garlic cloves [197]. Allicin’s presence is easily noticed because of
its distinctive odor [198]. As well, allicin may act as an irritant that increases pain-sensing
neurons, and self-medication has resulted in a rash of cases of self-harm [199]. Thus, while
tiny levels are appreciated in culinary contexts, excessive allicin consumption is definitely
hazardous [199].

Allicin exhibits potential as an anticancer, antifungal, and antibacterial product [197],
and it also shows activity in cardiovascular diseases (CVD), as it induces vasodilation,
inhibits platelet aggregation, prevents hyperlipidemia, and suppresses cardiac hypertro-
phy [200].

As an anticancer product, allicin induces its effects due to many mechanisms, such as
inducing apoptosis and suppressing the migration and invasion of cancerous cells, having
synergistic effects with cancer treatments.

According to its anticancer potential, allicin initiates autophagy-dependent cell killing
by suppressing the Akt/mTOR signaling pathway [201]. Moreover, it induces apoptosis
through the induction of the caspase-3 pathway [202], and Hussain et al. had indicated that
apoptosis induction resulted in cycle cell arrest in the G2 /M phase [203]. Maitisha et al.
had shown that allicin induces apoptosis and regulates biomarker expression in breast
cancer in vitro due to modulation of the p53 signaling pathway [204]. Moreover, it was
found that allicin is capable of inhibiting the expression of VCAM-1 in MCF-7 cells [205].
In addition, allicin can also inhibit telomerase activity and induce the apoptosis of gastric
cancer SGC-7901 cells [206]. In glioma, Li et al. had shown that allicin had successfully
inhibited proliferation and stimulated apoptosis in U251 glioma cells in vitro and also
enhanced the activation of both intrinsic and extrinsic apoptosis signaling pathways in
U251 cells [84]. Moreover, Cha had proved that allicin inhibits the cell viability of U87MG
cells and stimulates cell death through apoptosis, which is mediated through the Bcl-
2/Bax mitochondrial pathway, MAPK/ERK signaling pathway, and antioxidant enzyme
systems [207]. In ovarian cancer, allicin can activate the JNK pathway, which leads to
mitochondrial Bax translocation and mitochondrial release of cytochrome, thus inducing
SKOV3 cell apoptosis in glioblastoma cancer cells.

In breast cancer cell lines, allicin induces cell cycle arrest through targeting the p53
pathway [204]. More and more, allicin suppresses the cell growth of human glioblastoma



Molecules 2022, 27, 4818 12 of 41

via inducing G2/M and S phase cell cycle arrest [208]. In cervical cancer, allicin suppresses
the migration and invasion in cervical cancer cells mainly by inhibiting NRF2 [209]. In
lung carcinoma, it was noticed that it prevents the invasion of lung adenocarcinoma cells
by altering TIMP/MMP balance and by lowering the activity of the PI3K/AKT signaling
pathway [62].

In gastric cancer, a combination of allicin with 5-Florouricil could decrease multidrug
resistance in these cells by lowering the expression of WNT5A, Dickkopf-1(DKK1), mul-
tidrug resistance protein 1 (MDR1), P-glycoprotein 1 (P-GP), and CD44 gene levels [210].
Regarding osteosarcoma, Jiang indicated that a combination of artesunate and allicin was
proved to have a synergistic effect on osteosarcoma cell proliferation and apoptosis [211]. In
melanoma, Jobani had revealed that combination therapy together with allicin and ATRA
(all-trans-retinoic acid) significantly decreased the IC50 (half-maximal inhibitory concen-
tration) value obtained for ATRA alone in CD44+ melanoma cells [212]. In hepatocellular
carcinoma, it was noticed that a combination of electromagnetic field and allicin can induce
apoptosis in vitro and inhibition of proliferation in the HepG2 cell line [213].

5.6. Thymoquinone

Thymoquinone (TQ) is a non-toxic major bioactive ingredient obtained from the es-
sential oil of black seed Nigella sativa L. It is a monoterpene with the chemical structure
(2-Isopropyl-5-methyl-1, 4-benzoquinone), which has been extensively utilized in tradi-
tional medicine in the Middle East and Southeast Asian countries owing to its numerous
biological actions [214,215]. Thymoquinone is nontoxic and has a wide range of applica-
tions in the treatment of many human disorders, including diabetes and cancer [216]. The
pharmacological activities of TQ include antioxidant, anti-inflammatory, immunomod-
ulatory, hepatoprotective, antihistaminic, antimicrobial, antidiabetic, anti-epileptic, and
chemo-sensitizing, as well as very promising antitumor activity [217–219].

TQ anticancer studies have revealed several mechanisms of action, such as regulation
of reactive species interfering with DNA structure, modulating various potential targets
and their signaling pathways as well as inducing immune system responses in vitro and
in vivo. The distinctive anticancer properties of TQ are mainly due to the induction of apop-
totic mechanisms, such as activation of caspases, downregulation of precancerous genes,
inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
antitumor cell proliferation, hypoxia, anti-metastasis, and reduction of side effects when
using traditional chemotherapeutic drugs [220,221]. Altering of cell cycle progression is an
important step in the inhibition of cancer development and progression. TQ induces G1
phase cell cycle arrest in human breast cancer, colon cancer, and osteosarcoma cells through
inhibiting the activation of cyclin E or cyclin D and upregulating p27 and p21, a cyclin-
dependent kinase (Cdk) inhibitor [222]. TQ conjugated with fatty acid has potential activity
on cell proliferation, apoptosis, and signaling pathways [217]. Conjugation is performed
to increase TQ’s capacity to penetrate cell membranes. Several conjugated forms were
studied in HCT116 and HCT116 p53−/− colon cancer and HepG2 hepatoma cells in vitro.
Treatment with TQ-4-α-linolenoylhydrazone or TQ-4-palmitoylhydrazone was effective in
p53-competent HCT116 cells, mediated by an upregulation of p21cip1/waf1 and a down-
regulation of cyclin E, and associated with an S/G2 arrest of the cell cycle. HCT116 p53−/−
and HepG2 cells showed only a minor response to TQ-4-α-linolenoylhydrazone [223]. TQ
induces G0/G1 cell cycle arrest, increases the expression of p16, decreases the expression
of cyclin D1 protein in DMBA-initiated TPA-promoted skin tumors in mice, inactivates
CHEK1, and contributes to apoptosis in colorectal cancer cells [224,225], as well as inducing
G1 phase cell cycle arrest in human breast cancer, colon cancer, and osteosarcoma cells
through inhibiting the activation of cyclin E or cyclin D and upregulating p27 and p21, a
cyclin-dependent kinase (Cdk) inhibitor [222]. Moreover, TQ causes cell arrest at different
stages according to the concentration used (25 and 50 µM) in vivo in human mammary
breast cancer epithelial cell lines, MCF-7 [226]. In esophageal cancer, TQ encourages G2/M
phase cell cycle arrest by increasing the levels of p21 and p53 while remarkably decreasing
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cyclin A, cyclin B1, and cyclin E expression [227], as well as inducing DNA damage, apop-
tosis, increased iROS, and cytotoxicity in C6 glioma cells [228]. TQ reduces the elevated
levels of serum TNF-α, IL-6, and iNOS enzyme production and enhances histopathological
results in Wistar rats with methotrexate-induced injury to the hepatorenal system [229].
Additionally, TQ has a role in reducing the NO levels by downregulation of the expression
of iNos, reducing Cox-2 expression and consequently generating PGE2 and reducing PDA
cell synthesis of Cox-2 and MCP1 [230,231].

TQ has an effective role in the reduction of endothelial cell migration, tube formation,
and suppression of tumor angiogenesis. TQ noticeably reduces the phosphorylation of
EGFR at tyrosine-1173 residues and JAK2 in vitro in HCT 116 human colon cancer cells
and downregulates the Jak2/STAT3 signaling pathway in human melanoma cells and
HL60 leukemia cells [232–234]. TQ causes G2/M cell cycle arrest and stirred apoptosis,
and it significantly lowers the nuclear expression of NF-κB. Moreover, TQ has a role in the
elevation of PPAR-γ activity and downregulation of the gene’s expression for Bcl-2, Bcl-xL,
and survivin. Furthermore, it has an antiproliferative effect, especially when combining it
with doxorubicin and 5-fluorouracil, which results in increased cytotoxicity in the breast
cancer xenograft mouse model [235]. Moreover, TQ has a role in the downregulation of
the expression of STAT3-regulated gene products in gastric cancer in both in vivo and
in vitro models [236]. Reports showed that TQ plays an essential role in the induction of
apoptosis by decreasing the expression of antiapoptotic proteins, as well; it also significantly
increased the expression of pro-apoptotic protein [237]. This process is mediated by the
activation of caspases 8, 9, and 7 in a dose-dependent manner and increases the activity of
PPAR-γ [238–240].

TQ prevents DNA damage caused by free radicals by scavenging the free radical
activity [241–243]. TQ shows a significant effect in the decrease of expressions of CYP3A2
and CYP2C 11 enzymes [244]. TQ treatment showed activity in the reduction of CYp1A2,
CYP 3A4, and CYp3A4 enzyme activity and the increase of the phase II enzyme GST. TQ
has proven its role in tumor prevention through activation of antioxidant enzymes and its
antioxidant activity [245]. TQ treatment illustrates that is has a valuable role in the increase
of the PTEN mRNA. Moreover, it has a pivotal role in the inhibition of breast cancer cell
proliferation and induction of apoptosis via activation of the P53 pathway in the MCF-7
cell line, the finding having revealed that a time-dependent increase of PTEN occurs in
cells treated with TQ as compared with untreated cells [246]. TQ induces degradation of
the tubulin subunit in the cells; it also inhibits the telomerase enzyme activity. Furthermore,
it causes the suppression of androgen receptor expression and E2F-1, which is essential for
the proliferation and viability of androgen-sensitive and androgen-independent prostate
cancer cells [217].

Revolutionary findings have revealed TQ’s ability to regulate microRNA (miRNA)
expression. MiRNAs are small noncoding RNAs that modulate gene expression and cel-
lular signaling pathways through variation in the features of mRNA, thus moderating
TQ’s anticancer effect through P53, PCNA, cyclin D1, Bcl-2, NF-κB, TWIST (Twist1,2),
ZEB, eEF-2 K, PI3K/Akt, and Src/Fak signaling pathways [247]. Along with TQ’s impair-
ment of autophagic flux and inhibition of the EMT and cell invasion via activation of the
miR-877-5p/PD-L1 (programmed death ligand 1) axis in bladder carcinoma cells and the
expression of Beclin-1 and LC3 in triple-negative breast cancer (TNBC) cells, it suppresses
the pathways related to cell migration/invasion and angiogenesis, including Integrin-β1,
VEGF, MMP-2, and MMP-9 [248,249]. Thymoquinone upregulates miR-125a-5p, attenuates
STAT3 activation, and potentiates doxorubicin antitumor activity in murine solid Ehrlich
carcinoma [250].

5.7. Emodin

Emodin is a Chinese herb-derived anthraquinone isolated from the roots and rhi-
zomes of several plants such as Rheum palmatum, Polygonum cuspidatum, Polygonum mul-
tiflorum, Aloe vera, and Cassia obtusifolia, as well as different fungal species, including
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Aspergillus ochraceus, and Aspergillus wentii. Its chemical structure is (1,3,8-trihydroxy-6-
methylanthraquinone) [251–253]. Emodin displays a variety of pharmacological activities,
such as antiviral, antibacterial, anti-allergic, anti-osteoporotic, anti-diabetic, immunosup-
pressive, neuroprotective, hepatoprotective, anti-cardiovascular disease, antitumor, and
anti-inflammatory activities [253–255].

According to Hsu and Chung’s review (2012), the molecular mechanisms of emodin
comprise cell cycle arrest, apoptosis, and the promotion of the expression of hypoxia-
inducible factor 1α, GST, P,N-acetyltransferase, and glutathione phase I and II detoxi-
fication enzymes while inhibiting angiogenesis, invasion, migration, chemical-induced
carcinogen–DNA adduct formation, HER2/neu, CKII kinase, and p34cdc2 kinase in hu-
man cancer cells [256]. Emodin inhibits non-small lung cancer cells via modulation of
the cell cycle by decreasing cells in the G2/M and S phases and increasing cells in the
G1/G0 phase [257]. Moreover, emodin suppresses hepatocellular carcinoma by inducing
G2/M and S phase arrest [258]. In glioma U251 cells, emodin resulted in the induction
of cell cycle arrest. Zhou et al. found that the ratio of U251 cells was decreased in the
G0/G1 phase compared to the control, and the ratio of cells in the G2/M and S phases was
increased when treated with emodin [259]. It has been reported to inhibit tumor-associated
angiogenesis through the inhibition of ERK phosphorylation and to suppress VEGFA tran-
scription and thus tumor angiogenesis in triple-negative breast cancer (TNBC), in addition
to its antiproliferative and antimetastatic effects [260,261]. Emodin also inhibits Aurora ki-
nase A (AURKA), which plays an essential role in proliferation and is involved in cisplatin
resistance in various cancer cells [262]. It downregulates the expression of survivin and
β-catenin, inducing DNA damage and inhibiting the expression of DNA repair [256]. It also
inhibits the activity of casein kinase II (CKII) by competing at ATP-binding sites [256,263].
Emodin induces necroptosis through ROS-mediated activation of the JNK signaling path-
way as well as inhibits glycolysis by downregulation of GLUT1 through ROS-mediated
inactivation of the PI3K/AKT signaling pathway [264]. According to some findings, it
upregulates hypoxia inducible factor HIF-1 and intracellular SOD and boosts the efficacy
of cytotoxic drugs [265,266]. Emodin may sensitize tumor cells to radiation therapy and
chemotherapy and inhibit the pathways that lead to treatment resistance. It was found
to reverse gemcitabine resistance in vitro in pancreatic cancer cell lines by decreasing the
expression of MDR-1 (P-gp), NF-κB, and Bcl-2, increasing the expression levels of Bax,
cytochrome-C, and caspase-9 and -3, and promoting cell apoptosis unstimulated and in
gemcitabine-induced-resistance pancreatic cancer cell lines [267]. Furthermore, in vitro
and in vivo findings have concluded that emodin downregulates both XIAP and NF-κB
and enhances apoptosis in mice bearing human pancreatic cancer cells [268]. Chemosen-
sitization was also observed in gallbladder cancer, where an independent combination
treatment of emodin with cisplatin, carboplatin, or oxaliplatin augmented chemosensitivity
in vitro in SGC996 gallbladder cancer cells and in vivo in gallbladder-tumor-bearing mice.
Wang et al., 2010, credited these findings to the reduced glutathione level, downregulation
of multidrug resistance-related protein 1 (MRP1), and to the increased apoptosis caused by
such combinations [269]. Additionally, enhanced chemosensitivity was observed in vitro
in DU-145 cancer cell lines (multidrug resistant prostate carcinoma cell line) and in vivo
in tumor-bearing mice when treated with a combination of emodin and cisplatin. The
mechanism was shown to involve ROS-mediated suppression of multidrug resistance and
hypoxia inducible factor-1 in over-activated HIF-1 cells [270].

5.8. Genistein

Genistein [4,5,7-trihydroxyisoflavone or 5,7-dihydroxy-3-(4-hydroxyphenyl) chromen-
4-one] is an isoflavonoid with a 15-carbon skeleton and is classified as a phytoestrogen.
It is found in food (especially legumes) in the glycosylated or free form. It is structurally
similar to 17β-estradiol, which is the reason for its ability to bind to and modulate the
activity of estrogen receptors [271]. It was isolated for the first time in the year 1899 from
Genista tinctoria; hence, it was named after the genus of this plant. However, it is the
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main secondary metabolite of the Trifolium species and in Glycine max (soybean). In fact,
soybean, soy-based foods, and soy-based drinks are the best sources of genistein. Lupin
(Lupinus perennis) is also a legume that holds similar nutritional value to that of soybean in
terms of genistein content. Other important legumes are broad beans and chickpeas, which
are known to contain significant amounts of genistein, although less than soybean and
lupine. Genistein pharmacologically acts as an anticancer, estrogenic, and anti-osteoporotic
agent [271,272].

Genistein exerts its anticancer effects by inducing apoptosis, decreasing proliferation,
and inhibiting angiogenesis, as well as metastasis, which was illustrated by decreased
tumor growth and development in the hepatocellular cancer models of nude mice [273]
and Wistar rats [274], as well as in the gastric cancer model of Wistar rats [275]. Genistein’s
role in prostate cancer was extensively studied in vivo in different animal models, such as
the Lobund-Wistar rat (which is a unique rat model that spontaneously develops metastatic
prostate cancer in 30% of its population), and in SCID mice transplanted with human
prostate carcinoma cells (LNCaP, PC3, and DU-145). Some in vivo studies included normal
rats to test for genistein’s toxic effect on the prostate and its effect on the expression of the
androgen and estrogen receptor [276–278].

Genistein is involved in regulation of key biological processes including those in
different types of cancer via epigenetic modulation in a direct or indirect manner through
estrogen-receptor-dependent pathways, where it was reported to target estrogen receptor
(ER), human epidermal growth factor receptor-2 (HER2), and breast cancer gene-1 (BRCA-
1) in multiple BC cell lines [279,280]. Genistein was found to inhibit histone deacetylase
(HDAC) enzymes, which are responsible of regulating histone acetylation of DNA [272], in
MCF-7 and MDA-MB-468, and in immortalized but noncancer fibrocystic MCF10A breast
cells at very low, dietary-relevant concentrations [281]. A particular HDAC enzyme is
HDAC-6, which is known to acetylate and activate heat shock protein (Hsp90). Basak
et al. 2008, reported that the increased ubiquitination of androgen receptors was due to
the inhibition of Hsp90 chaperones in genistein-treated LNCaP prostate cancer cells. These
results strongly support the hypothesis that genistein may be an effective chemopreventive
agent for prostate cancer [282].

It inhibits cyclooxygenase-2 (COX-2) directly and indirectly by suppressing COX-2
stimulating factors such as activated protein-1 (AP-1) and Nf-κB. COX-2 overexpression
has been described in pancreatic, colon, breast, and lung cancer, and its inhibition has
been correlated with decreased development of cancerous tumors in the esophagus and
in the colon [272]. Genistein inhibits CDK by upregulating p21, and it suppresses cyclin
D1, which ultimately induces G2/M cell cycle arrest and decreases tumor cell progres-
sions [272,277,283–285]. Moreover, in pancreatic cancer cells, it activates G0/G1 phase cell
cycle arrest [286]. Genistein was reported to downregulate the expression levels of matrix
metalloproteinase-2 (MMP-2) in glioblastoma, melanoma, and breast cancer, as well as
regulate caspase-3 and p38MAPK pathways in prostate cancer cell lines. Matrix metallo-
proteinase (MMP) is the starting step in metastasis and angiogenesis cascade [272,287,288].
In addition, AP-1 is an angiogenic cytokine, which is inhibited by genistein; consequently,
such an inhibitory effect will impede several targets, including cyclin D1, MMP, VEGF,
Bcl-2, uPA, and Bcl-XL [272]. Genistein induces Cd74 downregulation, which regulates
the NF-κB/Bcl-xL/TAp63 signaling pathway by contributing to its therapeutic effect on
triple-negative breast cancer (TNBC) tumors. Additionally, genistein can modify expression
levels of key epigenetic-associated genes such as DNA methyltransferases (Dnmt3b), ten-
eleven translocation (Tet3) methylcytosine dioxygenases and histone deacetyltransferase
(Hdac2), and their enzymatic activities, as well as genomic DNA methylation and histone
methylation (H3K9) levels [289].

Moreover, genistein can influence metastasis and induce apoptosis by inhibiting Akt,
as well as NF-κB cascades, in PC3 cell lines and MDA-MB-231 breast cancer cell lines, as
well as inhibiting the IL-6/STAT3 pathway in MDA-MB-453 breast cancer cell lines, thus
inhibiting cell proliferation [272,290,291]. Furthermore, genistein decreases phosphorylated-
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Akt in HT-29 colon cancer cells [292], in LNCaP prostate cancer cells [293], and in HeLa
and CaSki cervical cancer cell lines [294], as well as in other cancer cell cultures [272].

This concluded that genistein modulates its anticancer activity via several signaling
pathways both at transcription and translation levels through regulation of several key
cellular pathways [295]. Moreover, Lui et al. 2021, successfully demonstrated that genistein
can specifically bind to DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and
block the DNA-PKcs/Akt2/Rac1 pathway, thereby effectively inhibiting radiation-induced
invasion and migration of glioblastoma multiforme (GBM) cells in vitro and in vivo [296].
In addition, this phytochemical synergistically reverses the resistance mechanism of stan-
dard chemotherapeutic drugs, increasing their efficacy against BC [297].

5.9. Parthenolide

Parthenolide (PTL) is a natural product that belongs to the class of germacrane
sesquiterpene lactones, and it is the most outstanding representative of its subclass of
germacranolides [298]. The PTL is produced as a secondary metabolite by plants of the
Asteraceae/Compositae (daisies) and Magnoliaceae family (magnolias) [299]. It is extracted
from leaves of the medicinal plant feverfew (Tanacetum parthenium) [299,300]. Basically, PTL
contains an α-methylene-γ-lactone ring and epoxide group, which contribute to its ability
to interact with nucleophilic sites of biological molecules [298–300]. It displays redox-
modulating, epigenetic, anti-inflammatory, and anti-bacterial biological activities [301];
thus, its use in the treatment of migraines and arthritis has been confirmed [299,302]. More-
over, it has shown potent anticancer activity against various types of cancer, including
colorectal, pancreatic, lung, skin, melanoma, bladder, and breast cancer [303,304]. Partheno-
lide is not only a powerful anticancer drug, but it also has no appreciable toxicity to normal
cells at the cytotoxic effective concentration [305].

One of the several mechanisms underlying the PTL’s antitumor activity is its ability
to stimulate apoptosis through inhibition of the nuclear factor kappa B (NF-κB) path-
way [306]. This pathway plays a major role in the expression of pro-inflammatory genes,
including cytokines, chemokines, and adhesion molecules [307]. Essentially, the NF-κB
pathway activates and induces cell survival in primary effusion lymphoma (PEL). PEL
is a rare aggressive disorder that is frequently caused by human herpesvirus 8 (HHV-8)
infection [308,309]. PTL can induce apoptosis by the initiation of DNA hypomethylation,
histone acetylation, enhancement of oxidative stress via endoplasmic reticulum or thiol
depletion, and activation of p53. In addition, PTL has shown its ability to significantly
inhibit cell growth and induce G0/G1 cell cycle arrest [310] via several mechanisms such
as transcriptional regulation, signal transduction modulation, and induction of oxida-
tive stress [78]. In prostate cancer cells, PTL induces cell cycle arrest via the inhibition
of miR-375 [311]. Additionally, PTL can inhibit ubiquitin-specific peptidase 7, which is
a deubiquitinating enzyme, by direct interaction [9]. Needless to say, ubiquitination is
crucial in various cellular biological activities; therefore, dysregulation of this process can
lead to cancer development [312]. A study confirmed that PTL inhibits USP47, which
regulates colorectal cancer stem cells (CCSCs). Therefore, PTL could effectively suppress
CCSCs’ renewal and stemness maintenance, providing a potential therapy for colorectal
cancer [313].

Another study showed that PTL significantly inhibited cell proliferation and migration
in two lung cancer cell lines (A549 and H1299). In terms of the involved mechanism, PTL
has the capability of blocking the phosphorylation of insulin-like growth factor 1 receptor,
Akt, and forkhead box O3α [303]. Further, it was shown that PTL has powerful cytotoxicity
towards human non-small cell lung cancer cells via targeting the B-Raf and inhibiting the
MAPK/Erk signaling pathway [314]. Hence, PTL can be considered a novel therapeutic
strategy for renal cell carcinoma. A study conducted by Li et al. revealed the ability
of PTL to inhibit the oncogenic characteristics of 786-O and ACHN cells, decrease the
viability of cancer cells, and suppress the formation of mammospheres [315]. PTL induces
autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway through the activation
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of phosphatase and tensin homolog expression [316]. Additionally, it can covalently modify
the cysteine 427 of focal adhesion kinase 1 (FAK1), resulting in damaging FAK1-dependent
signaling pathways [317]. Another inducing autophagy mechanism of PTL was confirmed
in pancreatic cancer via the formation of autophagosomes and conversion of LC3A to LC3B
form [318].

In addition, PTL treatment converses the epithelial to mesenchymal transition (EMT)
process by significantly decreasing the mesenchymal marker vimentin and inducing the ep-
ithelial marker E-cadherin protein expression in both MCF-7 and MDA-MB-231 cells [319].
The reversal of EMT was concomitant with the reduction of the TGFβ protein, gene expres-
sion [320], and the EMT-inducing transcription factor TWIST1 gene expression. Therefore,
it prevents cancer progression and metastasis [319,320]. Additionally, PTL decreased the
viability of C918 and SP6.5 cells, which are human uveal melanoma cells [321].

Moreover, PTL is a strong inhibitor of Janus kinases (JAKs) [304]. PTL covalently
alters the Cys243, Cys178, Cys335, and Cys480 of JAK2, leading to inhibition of their
kinase activity and blocking the signal transducer and activator of transcription 3 (STAT3)
signaling pathway [322].

In cervical cancer, PTL showed a potent anticancer activity through inhibiting HeLa
cell viability in a dose-dependent manner and inducing the generation of ROS that result
in loss of mitochondrial membrane potential [323].

5.10. Luteolin

Luteolin is a flavone compound that belongs to the flavonoids group [324]. Generally,
it can be found in flowers (Reseda luteola and Chrysanthemums), herbs (parsley, peppermint,
oregano, and thyme), vegetables (celery seeds, onion leaves, cabbages, sweet bell peppers,
carrots, and broccoli), and spices (cardamom and anise) [324,325]. Chemically, it is a 3,4,5,7-
tetrahydroxyflavone that has a C6-C3-C6 structure with two benzene rings and one oxygen-
containing ring with a C2-C3 carbon double bond [326]. It has been proposed that luteolin
has multiple cardio-protective [327], as well as anti-microbial [328], anti-inflammatory,
anti-oxidant [329,330], and anticancer effects [331]. Moreover, luteolin displays anticancer
activity against colon, liver, lung, skin, and breast cancer [332,333]. On the other hand,
luteolin showed a wide range of safety toward normal cells. For example, when luteolin
was delivered at a dose of 100 mg/day in human clinical studies, there was no dose-limiting
harm (17).

Luteolin exhibits its anticancer properties through different mechanisms, including
blocking the activity of epigenetic targets such as DNA methyltransferases, some classical
histone deacetylases, and SIRT1 [331]. It also induces autophagy and cell apoptosis and
inhibits invasion, network formation, and migration [334]. For example, this compound
has the ability to inhibit U-251 cell migration and tumorigenesis [335]. Correspondingly, it
causes apoptosis in tamoxifen-resistant breast cancer via activation of apoptosis-related
proteins (cleaved poly (ADP-ribose) polymerase, cleaved-Caspase-7, 8, 9) [336]. Moreover,
luteolin upregulates microRNA-6809-5p and inhibits hepatocellular carcinoma’s (HCC)
cell growth [337]. Overexpression of miR-6809-5p suppresses the expression of flotillin
1 [338] and inactivates signaling pathways, including Erk1/2, p38, JNK, and NF-κB/p65 in
HCC cells.

Consequently, it suppresses cancer development [337]. Likewise, luteolin has a dual
action in downregulating/upregulating autophagy in cancer therapy [41]. For instance,
in vitro study has shown that luteolin has an antitumor effect in the HCC cell line SMMC-
7721 by inducing autophagy [339]. Similarly, in mice with liver cancer, luteolin has im-
proved the host’s system via various mechanisms such as modifying the levels of α-
fetoprotein and marker enzymes, as well as reducing the levels of glutathione and the
inflammatory cytokines interleukin-2 and interferon-γ [340].

Moreover, luteolin increases the expression of miR-124-3p and activates the death
receptor and mitogen-activated protein kinase (MAPK) signaling pathways in glioma [341].
Further, luteolin raises the level of intracellular ROS [325]. This can be achieved by acti-
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vation of the lethal endoplasmic reticulum stress response, mitochondrial dysfunction in
glioblastoma cells, as well as activation of ER stress-associated protein expressions [342]. In
metastatic human colon cancer, luteolin reduces the viability and proliferation of SW620
cells and increases the expression of antioxidant enzymes. In addition, the expression
of antiapoptotic protein Bcl-2 decreases, whereas the expression of proapoptotic proteins
Bax and caspase-3 increases [343]. Additionally, this phytochemical inhibits the growth of
HCT116 colon cancer cells via p53-dependent regulation of cell cycle arrest [344]. Addi-
tionally, in MDA-MB-231 breast cancer cells, luteolin has shown its ability to induce cell
cycle arrest in the S phase in a dose-dependent manner [345]. Moreover, a study revealed
that a combination of luteolin and baicalein (a 5,6,7-trihydroxyflavone) inhibits the growth
of colon cancer cells of the drug-sensitive LoVo cell line and its drug-resistant LoVo/Dx
subline as well [333].

Interestingly, luteolin and quercetin synergistically enhance the anticancer effect of
5-fluorouracil (5-FU) in HT 29 cells and result in minimizing the toxic effects of 5-FU in the
treatment of colorectal cancer [44]. Luteolin can remarkably induce DNA double-strand
breaks (DSBs) in DT40 cells and induce sensitivity and defects in DSB repair in Ku70
cells. Furthermore, it improves the formation of Top2cc in Ku70 cells [346]. Luteolin and
its derivative apigenin significantly inhibit lung cancer cell growth and downregulate
the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3 [347].
Luteolin has demonstrated its ability to suppress the expression of TAM receptor tyrosine
kinases and the activation of Axl, which in turn leads to the inhibition of cell proliferation
in both parental and non-small cell lung cancer cells [348]. Recent studies have shown
that luteolin regulates cyclin D1, cyclin E, p21, and Bcl2, resulting in the prevention of
cancer development in gastric cancer. In addition, luteolin controls metastasis by regulating
MMPs expression and the EMT process [349].

Interestingly, Namkung et al. reported that luteolin potently inhibits Anoctamin 1
(ANO1) chloride channel activity and decreases its protein stability in prostate cancer [350].
It is acknowledged that overexpression of ANO1 is involved in the tumorigenesis of
epithelial cancers [351]. Furthermore, luteolin significantly reduces ribosomal protein S19
expression by blocking the Akt/mTOR/c-Myc signaling pathway in cancer cells [352].
Table 1 summarizes the mentioned natural products with their main natural sources and
anticancer mechanisms of action. Figure 2 demonstrates the effects of natural products on
cancer hallmarks.

Table 1. Plant-derived compounds with their main natural sources and anticancer mechanisms of
action.

Compounds Natural Sources Mechanisms of Anticancer Activity References

Curcumin
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Found in the rhizome of
Curcuma longa and in others
Curcuma multiple species

↓ ROS
↑ Death receptor 5

↑ caspase-3 and caspase-8
↓ Bcl-2, NF-kB, EGFR

↑ JNK/ERK/AP1 pathway
↓ PKM2, Lactate production, glucose uptake
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miR-9, and miR-208

↑ activity of chemotherapy (docetaxel, cisplatin,
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[87–90,92,93,97,102–105,107]
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↓ AKT, IL-6/STAT3 pathway 

↓ DNA-PKcs/Akt2/Rac1 pathway 
↑ chemo-sensitivity 

[272,282,290,2
91,296,297] 

S
S

O

O

O

O

O OH

OH

OH

CH3

O

O
HO

OH
HO
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(Allium sativum L.) and other
Allium species such as onion
(Allium cepa L.) and shallot

(Allium ascalonicum L.)

↓ Akt/mTOR signaling pathway
↑ caspase-3, p53
↓ VCAM-1
↓ NRF2
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↓ cyclin E, cyclin D

↑ p27 and p21, miR-125a-5p
↑ p21cip1/waf1

↑ G1 phase cell cycle arrest
↓ TNF-α, IL-6, iNOS, COX-2

↓ EGFR, JAK2,
↓ Jak2/STAT3 signaling pathway
↓ Bcl-2, Bcl-xL, survivin
↑ chemotherapy sensitivity

↓ STAT3
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↑ PTEN mRNA, p53
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Table 1. Cont.

Compounds Natural Sources Mechanisms of Anticancer Activity References
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medicinal plant feverfew
(Tanacetum parthenium)

↓ NF-Kb
↑ G0/G1 cell cycle arrest

↓ USP47
↓ insulin-like growth factor 1 receptor, AKT, forkhead

box O3α
↓MAPK/Erk signaling pathway
↓ oncogenic characteristics

↓ PI3K/AKT/mTOR signal pathway
↓ FAK1-dependent signaling pathways

↑ E-cadherin protein
↓ TGFβ protein, TWIST1 gene

↓ STAT3

[303,306,310,313–317,319,320,322]
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peppermint, oregano, and thyme),
vegetables (celery seeds, onion

leaves, cabbages, sweet bell
peppers, carrots, and broccoli), and

spices (cardamom and anise)

↓ DNA methyltransferases, some classical histone
deacetylases, SIRT1
↑ caspase-7, 8, 9

↓ glutathione, IL-2, IFN-γ
↑miR-124-3p, death receptor, MAPK

↑ caspase-3, Bax
↓ Bcl-2

↑ chemo-sensitivity (5-FU)
↑ DNA double-strand breaks

↓ STAT3
↓ TAM receptor tyrosine kinases

↑ Axl
↓ cyclin E, cyclin D

↓ Anoctamin 1 (ANO1) chloride channel activity
↓ Akt/mTOR/c-Myc signaling pathway

[331,336,340,341,343,346–
350,352,353]
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6. Clinical Studies
6.1. Curcumin

Meriva (curcumin phytosomes) was investigated in controlled semi-quantitative clin-
ical research to determine its potential to relieve the side effects of cancer radiotherapy
and chemotherapy. This formulation was also studied for six weeks as an adjuvant to
chemotherapy in a group of solid tumor patients (at 1500 mg/day in three separate doses).
Patients’ quality of life was greatly improved, and systemic inflammation was significantly
reduced [354].

Curcumin’s safety and anticancer effectiveness in human colon cancer patients were
proven in clinical research conducted by Shehzad and colleagues [355]. Curcumin was
proven to accumulate at the colorectum and acquire the effective therapeutic concentration
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in a phase I clinical trial in which curcuma extract was provided orally to patients with
colorectal cancer at dosages of up to 2.2 g daily (equal to 180 mg of curcumin) for several
months [356].

There were improvements in all categories of the International Prostate Symptom
Score in a pilot study to test the efficacy of Meriva in benign prostatic hyperplasia (BPH)
(given 1000 mg/day in two divided doses) [357].

Docetaxel plus curcumin administered to individuals with advanced breast cancer
with dose escalation demonstrated some improvements in biological and clinical responses
in the majority of patients in a phase I trial [358]. Another study looked into the efficacy of
combining curcumin and quercetin to regress adenomas in patients with familial adenoma-
tous polyposis (FAP), an autosomal dominant condition characterized by colon and rectum
cancer. For six months, FAP patients with prior colectomy were administered 480 mg
curcumin and 20 mg quercetin orally three times daily. The quantity and size of these
malignant polyps were dramatically reduced [359].

In a phase II experiment, twenty-five patients with advanced pancreatic cancer were
given 8 g of curcumin capsules daily, with restaging every eight weeks [360]. There was
no toxicity seen when the medication levels peaked at 22 to 41 ng/mL. This study found
that, despite its low absorption, oral curcumin had biological action and was safe in some
pancreatic cancer patients. Furthermore, the expressions of NF-κB, COX-2, phosphory-
lated signal transducer, and activator of transcription 3 (which were higher in patients
compared to healthy volunteers) were found to be lowered in most patients’ peripheral
blood mononuclear cells [360].

A randomized double-blind placebo-controlled parallel-group clinical study was
conducted in a group of 150 women with advanced breast cancer to examine the efficacy
and safety of an intravenous infusion of curcumin in conjunction with paclitaxel. Three
months were spent monitoring the patients. This study concluded that using curcumin in
conjunction with paclitaxel was preferable to using paclitaxel alone [361].

According to the research, derivatizing curcumin may be a viable option for increas-
ing target selectivity and producing anticancer therapeutic candidates with greater po-
tency [362]. Twenty patients with cancer anorexia–cachexia syndrome who were properly
nourished via a feeding tube were included and randomly assigned in a 1:1 ratio to receive
oral curcumin (at a dose of 4000 mg daily) (n = 10) or placebo (n = 10) for 8 weeks [363]. Cur-
cumin has a statistically significant advantage on improving muscle mass when compared
to the placebo. The addition of curcumin resulted in a considerable increase in muscle mass
compared to the usual nutritional assistance. Furthermore, it may improve and postpone
the decline of other body composition metrics, such as handgrip strength and absolute
lymphocyte count [363].

6.2. Resveratrol

Resveratrol has been studied in clinical trials for its potential therapeutic efficacy
in a variety of disorders such as cancer, obesity, neurological disorders, cardiovascular
disorders, and infections. This review focuses on the role of resveratrol as an anticancer
agent [364].

The safety of resveratrol has been tested in healthy persons, and it has been shown to be
safe up to doses of 5 g/d [365]. The most prevalent tumors that have been shown to respond
positively to resveratrol include colon cancer, breast cancer, and multiple myeloma [365].

The effects of resveratrol on the expression of several cancer-related genes, such as
CCND-2, p16, RASSF-1α, and cancer-promoting prostaglandin E2 (PGE2), were inves-
tigated in a randomized placebo-controlled clinical research in women with a high risk
of breast cancer [366]. For 12 weeks, the participants were given two capsules per day
containing either placebo, 5 mg of trans-resveratrol, or 50 mg of trans-resveratrol. PGE2
levels were discovered to be reduced [366].

A phase I trial was carried out to evaluate the effect of low-dose resveratrol (80 mg/d)
and resveratrol-containing freeze-dried grape powder (GP) (80 g/day, equivalent to 450 g
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fresh grapes) on colon cancer. After 14 days of treatment, there was an increase in the
expression of Myc and cyclin D1 in colon cancer tissue. When compared to resveratrol, the
GP had more dramatic effects [367]. Furthermore, in normal colonic mucosa, GP strongly
lowered CD133 with a modest effect on LGR5 (downregulation of CD133 and LGR5 is
associated with growth inhibition of colon cancer cells) [368].

Micronized resveratrol (SRT501) was employed in another investigation to improve
resveratrol absorption across the gastrointestinal system. SRT501 was given to individuals
with colorectal cancer and hepatic metastases at a dose of 5 g per day for two weeks. SRT501
was well tolerated and increased mean plasma resveratrol levels (3.6-fold) after a single
dosage compared to non-micronized resveratrol [369].

Colorectal cancer is routinely treated with 5-fuorouracil, an efficient chemotherapy
medication [370]. The use of resveratrol can improve 5-fluorouracil-induced cytotoxicity
while also mitigating the undesirable side effects. The purpose of this study was to look at
the possible therapeutic effects of resveratrol in conjunction with 5-FU against colorectal
cancer [370]. Eleven participants participated in the three-year trial. Oral resveratrol
administration has been found to help prevent colon cancer in people [306]. In addition,
the FDA has approved a clinical trial for gastrointestinal tumors (NCT01476592) [371].
The effect of resveratrol on notch-1 signaling, the effect on patient therapy, and patient
toleration of resveratrol administration were all examined throughout this trial. It was
discovered that resveratrol injection enhanced cleaved caspase-3 levels in malignant tissue,
implying that apoptosis in cancer cells was boosted [371].

6.3. Quercetin

A phase I clinical investigation to assess quercetin’s safety profile found that it can
be safely delivered as an intravenous bolus injection. Quercetin has also been proven to
inhibit lymphocyte tyrosine kinase [372].

There is only one completed clinical trial using quercetin in cancer prevention and
treatment (chemotherapy-induced oral mucositis), but no findings have been published
(https://clinicaltrials.gov/14J (accessed on 14 July 2022)).

6.4. EGCG (Epigallocatechin Gallate)

The only epidemiologic study (a nested case–control study within the Shanghai Cohort
Study) that investigated the relation of specific tea catechins to esophageal cancer risk used
validated urinary biomarkers for tea polyphenol uptake and metabolism. This study’s
findings indicated a lower risk for both esophageal and gastric cancer with the existence of
EGC in urine, with a greater inverse association in nonsmokers, non-alcohol drinkers, or
those with lower serum levels of carotenes [373].

Similarly, a cohort study on 481,563 volunteers aged from 51–71 years also revealed
a statistically significant inverse connection between hot tea drinking and risk of pharyn-
geal cancer after up to eight years of follow-up [374]. Moreover, a randomized placebo-
controlled phase II clinical trial assessed the efficacy of green tea extract (both oral admin-
istration and topical treatment) on oral mucosa leukoplakia (precancerous lesion of oral
cancer) in 59-patients, recording smaller oral lesions in 37.9% of patients who received
green tea treatment [375].

Furthermore, a more recent pooled analysis of six cohort studies similarly revealed a
statistically significant, inverse link between green tea drinking and stomach cancer risk in
women (particularly among female nonsmokers) but not in males [376].

The relationship between green tea consumption and colorectal cancer risk was as-
sessed in a prospective study (a cohort of 69,710 Chinese women aged 40 to 70 years, the
majority of whom were lifelong nonsmokers or non-alcohol drinkers), with two to three
years of a follow-up. The study’s results indicated that drinking tea on a regular basis
considerably lowered the incidence of colorectal cancer [377].

In another prospective trial, tea catechins have been shown to protect against the
development of colon cancer. This study investigated the relationship between urine

https://clinicaltrials.gov/14J
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levels of EGC, 4-O-methyl-epigallocatechin (4-MeEGC), and EC and its metabolites, in one
hand, and the risk of developing colorectal cancer in the other. Results have shown that
individuals with higher urine catechin levels had a decreased risk of developing colon
cancer [373].

Moreover, in a pilot clinical research including ten female patients (age 38–55 years)
with locally advanced noninflammatory breast cancer and undergoing radiation, patients
were treated with oral EGCG capsules (400 mg) three times daily for two to eight weeks.
Results of this study have shown that EGCG increased the efficacy of radiotherapy in breast
cancer patients, which may be a promising possibility for using EGCG as a therapeutic
adjuvant in the treatment of metastatic breast cancer [378].

On the other hand, a meta-analysis of seven epidemiological studies (two cohort, one
nested case–control, and four case–control) to assess the influence of green tea consumption
on breast cancer risk found an inverse correlation only in case–control data [379].

Regarding the effect of green tea on prostate cancer, in one study, which included
42 patients with androgen-independent prostate cancer, only one patient showed a 50%
decrease in prostate-specific antigen (PSA) level, which lasted for two months [380]. In
the other study, which looked at the efficacy and toxicity of standardized green tea extract
on prostate cancer, delayed disease progression was displayed in 40% of patients who
completed the treatment [381].

In regard to liver cancer, the findings of a randomized placebo-controlled phase II
clinical research indicated that green tea polyphenols protect against two established liver
cancer risk factors, aflatoxin and hepatitis B [382]. Moreover, a population-based case–
control research observed a statistically significant inverse correlation between green tea
drinking and the risk of pancreatic cancer [383].

In patients with papillomavirus-infected cervical lesions, EGCG delivered as a capsule
(200 mg p.o. for 12 weeks) was found to be effective [384]. In some malignancies, EGCG
promotes cell death via the intrinsic route and inhibits the EGFR, STAT3, and ERK path-
ways [384]. EGCG modifies and inhibits ERK1/2, NF-B, and Akt-mediated signaling in
tumor cells, affecting the Bcl-2 family protein ratio and activating caspases [384].

Finally, a meta-analysis of 22 research studies established that drinking green tea
considerably reduced the incidence of lung cancer. Nevertheless, this reduced risk was
limited to nonsmokers, and the association was slightly higher in prospective cohort studies
than in retrospective case–control studies [385].

6.5. Allicin

A double-blind randomized controlled trial involving individuals with colorectal ade-
nomas found that taking a high dose of aged garlic extract was related with a significantly
lower risk of developing new colorectal adenomas [386].

Garlic is aged for up to 20 months in aged garlic extract (AGE), a procedure that
changes the odorous, harsh, and irritating components of garlic into stable and nontoxic
sulfur compounds [387].

Colorectal cancer incidence and growth have been shown to be reduced by aged garlic
extract [388]. In patients with advanced digestive system cancer, administering aged garlic
boosted natural killer (NK) cell activity but did not improve quality of life (QoL) [389].
Furthermore, high dosages of allitridum and microdoses of selenium have been found to
prevent stomach cancer, particularly in men [390].

A meta-analysis of 19 case–control and two cohort studies found a reduction in the
incidence of stomach cancer with an increase of 20 g/day of total Allium vegetables such
as garlic, onion, leeks, Chinese chives, scallions, and garlic stalks [391].

Other meta-analysis comprising 14 case–control studies on the effect of Allium veg-
etables on stomach cancer and five case–control studies on the effect of garlic on stomach
cancer indicated that Allium vegetables may have a cancer-preventive effect on stomach
cancer [392].
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A study comprising 343 patients with esophageal squamous cell carcinoma and
755 cancer-free controls concluded that ingesting raw garlic/onion at least once per week
significantly protects against esophageal squamous cell carcinoma [393].

Individuals in the highest of three intake groups of total Allium vegetables had a 53%
lower incidence of prostate cancer compared to those in the lowest intake category in a
population-based case–control study [394].

6.6. Thymoquinone

Despite a great number of in vitro and in vivo studies demonstrating thymoquinone’s
potential as an anticancer drug, there is no therapeutic application. There are no thymo-
quinone clinical trials listed on (https://clinicaltrials.gov/ (accessed on 14 July 2022)).

6.7. Emodin

Only one study on the effect of emodin on breast cancer was found on the https:
//clinicaltrials.gov/ (accessed on 15 July 2022) website when searching for clinical studies
on the anticancer activity of emodin (ClinicalTrials.gov Identifier: NCT01287468).

6.8. Genistein

Breast cancer incidence was found to be lower in peri-menopausal women who ate more
soy food [395]. Another meta-analysis of 9000 breast cancer patients found that increasing
the genistein dose reduced breast cancer risk [396]. In vitro, however, low dosages of
genistein prevent breast cancer cell proliferation, whereas high amounts enhance it [397].

The level of the prostate cancer biomarker prostate-specific antigen (PSA) in blood was
reduced in a randomized placebo-controlled double-blind phase II clinical trial in which
prostate cancer patients received genistein before radical prostatectomy compared to the
control [398].

Genistein, in combination with gemcitabine and erlotinib, can help kill more tumor
cells by making tumor cells more susceptible to the medications, according to a phase II
trial (ClinicalTrials.gov Identifier: NCT00376948) on patients with locally advanced or
metastatic pancreatic cancer.

A randomized phase II experiment on patients with early-stage prostate cancer (Clini-
calTrials.gov Identifier: NCT01325311) found that cholecalciferol (200,000 IU) and genistein
(as G-2535, which gives 600 mg of genistein) may reduce cancer cell development and be
an effective treatment for prostate cancer.

It was discovered in a phase I/II pilot clinical trial (ClinicalTrials.gov Identifier:
NCT01985763) to evaluate the efficacy of genistein in the treatment of metastatic col-
orectal cancer alone or in combination with 5-fluorouracil and platinum compounds that
genistein can suppress Wnt signaling, a pathway induced in the majority of colorectal can-
cers, and can enhance growth inhibition when combined with 5-fluorouracil and platinum
compounds. The most important clinical studies were mentioned in Table 2.

Table 2. The examples of clinical studies of natural products.

Natural Product Experimental Design Dosage Comments Reference

Curcumin

160 patients with solid tumor were given
Meriva as an adjuvant to chemotherapy.

1500 mg/day of Meriva in three
separate doses for six weeks.

Patients’ quality of life was improved, and
systemic inflammation was

significantly reduced.
[354]

Patients with colorectal cancer were orally
provided curcuma extract.

Up to 2.2 g daily (equal to 180 mg
of curcumin) for several months.

Curcumin was proven to accumulate at the
colorectum and acquire the effective

therapeutic concentration.
[356]

33 patients with benign prostatic
hyperplasia were given Meriva.

1000 mg/day in two divided
doses) for 2 years.

Improvements in all categories of the
International Prostate Symptom Score. [357]

Patients with familial adenomatous
polyposis were given a combination of

curcumin and quercetin.

480 mg curcumin and 20 mg
quercetin orally three times daily

for six months.

The quantity and size of malignant polyps
were dramatically reduced. [359]

25 patients with advanced pancreatic cancer
were given curcumin capsules.

8 g of curcumin capsules daily,
with restaging every eight weeks.

Oral curcumin had biological action and
was safe in some pancreatic cancer patients. [360]

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Table 2. Cont.

Natural Product Experimental Design Dosage Comments Reference

Resveratrol

39 women with a high risk of breast cancer.

For 12 weeks, the participants
were given two capsules per day

containing either placebo,
5 mg of trans-resveratrol, or
50 mg of trans- resveratrol.

PGE2 levels were discovered to be reduced. [365]

Patients with colon cancer were given
low-dose resveratrol and

resveratrol-containing freeze-dried
grape powder.

Low-dose resveratrol (80 mg/d)
and resveratrol-containing
freeze-dried grape powder

(80 g/day for 14 days of
treatment).

There was an increase in the expression of
Myc and cyclin D1 in colon cancer tissue. [367]

Micronized resveratrol (SRT501) was given
to individuals with colorectal cancer and

hepatic metastases.

Micronized resveratrol (SRT501)
was given at a dose of 5 g/day for

two weeks.

SRT501 was well tolerated and increased
mean plasma resveratrol levels (3.6-fold)

after a single dosage compared to
non-micronized resveratrol.

[369]

EGCG

481,563 volunteers aged 51–71 years were
given hot tea.

1 cup/day or more of hot tea
drinking for up to eight years of

follow-up.

This study revealed a statistically
significant inverse connection between hot
tea drinking and risk of pharyngeal cancer.

[374]

59 patients with oral mucosa leukoplakia
were given green tea extract.

3 g mixed tea oral administration
and topical treatment for

six months.

37.9% of patients who received green tea
treatment had smaller oral lesions. [375]

Assessment the relationship between green
tea consumption and colorectal cancer risk on

69,710 Chinese women aged 40 to 70 years.

2–3 cups/day of green tea for up
to 3 years of follow-up.

The study indicated that drinking tea on a
regular basis considerably lowered the

incidence of colorectal cancer.
[377]

10 female patients (38–55 years old) with
locally advanced noninflammatory breast
cancer undergoing radiation were given

EGCG capsules.

EGCG capsules (400 mg) were
orally provided three times daily

for two to eight weeks.

EGCG was discovered to increase the
efficacy of radiotherapy in breast cancer
patients, raising the possibility of EGCG

being used as a therapeutic adjuvant in the
treatment of metastatic breast cancer.

[378]

42 patients with androgen-independent
prostate cancer were given green tea.

6 g/day of green tea were
provided orally in 6 divided doses

for 2 months.

One of the patients demonstrated a
50% decrease in prostate-specific

antigen (PSA) level.
[380]

Patients with prostate cancer were
prescribed green tea extract capsules.

Green tea extract capsules were
given at a dose level of 250 mg

twice daily for 2 months.

40% of patients who finished the treatment
showed delayed disease progression. [381]

451 patients with pancreatic cancer were
given green tea.

200 g/month of green tea were
provided for 3 years.

The study lowered the risk of
pancreatic cancer. [383]

Allicin

51 patients with colorectal adenomas were
given aged garlic extract.

2.4 mL/d of aged garlic extract for
12 months.

Aged garlic extract was related with a
significantly lower risk of developing new

colorectal adenomas.
[388]

2526 persons with family history of stomach
cancer were given allitridum and selenium.

200 mg synthetic allitridum every
day and 100 microg selenium
every other day for 2 years.

High dosages of allitridum and microdoses
of selenium have been found to prevent

stomach cancer, particularly in men.
[390]

343 patients with esophageal squamous cell
carcinoma and 755 cancer-free controls

ingested raw garlic/onions.

Raw garlic/onions were given at
least once per week for 10 years.

Raw onions/garlic were significantly
protective against esophageal squamous

cell carcinoma.
[393]

Genistein

9000 breast cancer patients were given
soy food.

19.1 mg/day of soy food was
given for up to 10 years.

Study found that increasing the genistein
dose reduced breast cancer risk. [396]

23 prostate cancer patients received
genistein before radical prostatectomy.

30 mg synthetic genistein was
given daily for up to 6 weeks.

The level of the prostate cancer biomarker
prostate-specific antigen in blood

was reduced.
[398]

6.9. Parthenolide

On the https://clinicaltrials.gov/ (accessed on 15 July 2022) website, there are no
clinical studies that have been undertaken to assess parthenolide’s anticancer efficacy.

6.10. Luteolin

Only one clinical trial evaluating the efficacy of luteolin (nano-luteolin) on tongue
cancer was found on clinicaltrials.gov, and it has passed its completion date with an
unknown status.

7. Conclusions

Natural products extracted from plants are a rich source for anticancer agents. Multiple
cancer hallmarks are targeted by plant-derived natural products through altering diverse
signaling pathways. Some natural products such as curcumin and resveratrol exhibit
the ability to target cancer through multiple mechanisms. Apoptosis induction is the
most common pathway activated by plant-derived natural products. Targeting drug
resistance and metastasis inhibition were also reported as anticancer mechanisms of these

https://clinicaltrials.gov/
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compounds. The use of plant-derived natural products as an adjuvant therapy with
conventional treatments is a productive strategy that deserves further investigations to
improve cancer treatment protocols.

Author Contributions: Conceptualization, W.H.T.; methodology, W.H.T., S.D. and A.I.M.; software,
A.I.M.; validation, W.H.T.; formal analysis, R.A.H., D.A., S.F.A. and L.H.O.; investigation, S.K. and
L.T.A.K.; resources, W.H.T. and L.T.A.K.; writing—original draft preparation, S.D., A.I.M., R.A.H.,
D.A., S.F.A., S.K. and L.H.O.; writing—review and editing, W.H.T. and A.I.M.; supervision, W.H.T.;
project administration, L.T.A.K.; funding acquisition, W.H.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Applied Science Private University, Amman, Jordan, grant
number [Grant No. DRGS-2020-2021-4].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; Xu, R. Cancer

incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010
to 2019: A systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022, 8, 420–444. [PubMed]

2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Zou, H.; Li, Y.; Liu, X.; Wu, Z.; Li, J.; Ma, Z. Roles of plant-derived bioactive compounds and related microRNAs in cancer therapy.
Phytother. Res. 2021, 35, 1176–1186. [CrossRef]

4. Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green
anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [CrossRef]

5. Leitzmann, C. Characteristics and health benefits of phytochemicals. Complementary Med. Res. 2016, 23, 69–74. [CrossRef]
[PubMed]

6. Avato, P.; Migoni, D.; Argentieri, M.; Fanizzi, F.P.; Tava, A. Activity of saponins from Medicago species against HeLa and MCF-7
cell lines and their capacity to potentiate cisplatin effect. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer
Agents) 2017, 17, 1508–1518. [CrossRef]

7. Joshi, P.; Vishwakarma, R.A.; Bharate, S.B. Natural alkaloids as P-gp inhibitors for multidrug resistance reversal in cancer. Eur. J.
Med. Chem. 2017, 138, 273–292. [CrossRef] [PubMed]

8. Talib, W.H. Anticancer and antimicrobial potential of plant-derived natural products. In Phytochemicals—Bioactivities and Impact
on Health; Rasooli, I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 141–158.

9. Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-Derived Natural Products in Cancer Research: Extraction,
Mechanism of Action, and Drug Formulation. Molecules 2020, 25, 5319. [CrossRef] [PubMed]

10. Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer
bioactivity. PLoS ONE 2017, 12, e0187925. [CrossRef] [PubMed]

11. Thakore, P.; Mani, R.K.; Kavitha, S.J. A brief review of plants having anti-cancer property. Int. J. Pharm. Res. Dev. 2012, 3, 129–136.
12. Tariq, A.; Sadia, S.; Pan, K.; Ullah, I.; Mussarat, S.; Sun, F.; Abiodun, O.O.; Batbaatar, A.; Li, Z.; Song, D. A systematic review on

ethnomedicines of anti-cancer plants. Phytother. Res. 2017, 31, 202–264. [CrossRef] [PubMed]
13. Rana, P.; Shrama, A.; Mandal, C.C. Molecular insights into phytochemicals-driven break function in tumor microenvironment.

J. Food Biochem. 2021, 45, e13824. [CrossRef] [PubMed]
14. Ferguson, L.R.; Chen, H.; Collins, A.R.; Connell, M.; Damia, G.; Dasgupta, S.; Malhotra, M.; Meeker, A.K.; Amedei, A.; Amin, A.;

et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through
diet and nutrition. Semin. Cancer Biol. 2015, 35, S5–S24. [CrossRef] [PubMed]

15. Rusin, M.; Zajkowicz, A.; Butkiewicz, D. Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with
the instability of telomeric DNA and upregulation of BRCA1. Mech. Ageing Dev. 2009, 130, 528–537. [CrossRef]

16. Talib, W.H. Melatonin and cancer hallmarks. Molecules 2018, 23, 518. [CrossRef]
17. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
18. Yaswen, P.; MacKenzie, K.L.; Keith, W.N.; Hentosh, P.; Rodier, F.; Zhu, J.; Firestone, G.L.; Matheu, A.; Carnero, A.; Bilsland,

A.; et al. Therapeutic targeting of replicative immortality. Semin. Cancer Biol. 2015, 35, S104–S128. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/34967848
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1002/ptr.6883
http://doi.org/10.1016/j.apjtb.2017.10.016
http://doi.org/10.1159/000444063
http://www.ncbi.nlm.nih.gov/pubmed/27160996
http://doi.org/10.2174/1871520617666170727152805
http://doi.org/10.1016/j.ejmech.2017.06.047
http://www.ncbi.nlm.nih.gov/pubmed/28675836
http://doi.org/10.3390/molecules25225319
http://www.ncbi.nlm.nih.gov/pubmed/33202681
http://doi.org/10.1371/journal.pone.0187925
http://www.ncbi.nlm.nih.gov/pubmed/29121120
http://doi.org/10.1002/ptr.5751
http://www.ncbi.nlm.nih.gov/pubmed/28093828
http://doi.org/10.1111/jfbc.13824
http://www.ncbi.nlm.nih.gov/pubmed/34219240
http://doi.org/10.1016/j.semcancer.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25869442
http://doi.org/10.1016/j.mad.2009.06.005
http://doi.org/10.3390/molecules23030518
http://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.1016/j.semcancer.2015.03.007


Molecules 2022, 27, 4818 27 of 41

19. Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.-P.; Morin, G.B.; Harley, C.B.; Shay, J.W.; Lichtsteiner, S.; Wright, W.E.
Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279, 349–352. [CrossRef]

20. Bensinger, S.J.; Christofk, H.R. New aspects of the Warburg effect in cancer cell biology. Semin. Cell Dev. Biol. 2012, 23, 352–361.
[CrossRef] [PubMed]

21. Dang, C.V.; Kim, J.-w.; Gao, P.; Yustein, J. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 2008, 8, 51–56.
[CrossRef]

22. Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.-S. The Interplay among miRNAs, Major Cytokines, and Cancer-Related
Inflammation. Mol. Ther. Nucleic Acids 2020, 20, 606–620. [CrossRef] [PubMed]

23. Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation—Have anti-inflammatory therapies come of age? Nat. Rev.
Clin. Oncol. 2021, 18, 261–279. [CrossRef]

24. Chakraborty, S.; Njah, K.; Hong, W. Agrin Mediates Angiogenesis in the Tumor Microenvironment. Trends Cancer 2020, 6, 81–85.
[CrossRef] [PubMed]

25. Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 2003, 3, 401–410. [CrossRef]
26. Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer invasion and metastasis: Molecular and cellular perspective. In

Madame Curie Bioscience Database [Internet]; Landes Bioscience: Georgetown, TX, USA, 2013.
27. Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer:

Overview of molecular mechanisms. Molecules 2017, 22, 250. [CrossRef] [PubMed]
28. N Nwodo, J.; Ibezim, A.; Simoben, C.V.; Ntie-Kang, F. Exploring cancer therapeutics with natural products from African medicinal

plants, part II: Alkaloids, terpenoids and flavonoids. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents)
2016, 16, 108–127. [CrossRef] [PubMed]

29. Khan, H.; Saeedi, M.; Nabavi, S.M.; Mubarak, M.S.; Bishayee, A. Glycosides from medicinal plants as potential anticancer agents:
Emerging trends towards future drugs. Curr. Med. Chem. 2019, 26, 2389–2406.

30. Moraes, D.F.C.; Mesquita, L.S.S.d.; Amaral, F.M.M.d.; Sousa Ribeiro, M.N.d.; Malik, S. Anticancer drugs from plants. In
Biotechnology and Production of Anti-Cancer Compounds; Springer: Berlin/Heidelberg, Germany, 2017; pp. 121–142.

31. Habtemariam, S.; Lentini, G. Plant-derived anticancer agents: Lessons from the pharmacology of geniposide and its aglycone,
genipin. Biomedicines 2018, 6, 39. [CrossRef] [PubMed]

32. Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids,
isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands,
2020; pp. 505–567.

33. da Costa, R.; Passos, G.F.; Quintao, N.L.; Fernandes, E.S.; Maia, J.R.L.; Campos, M.M.; Calixto, J.B. Taxane-induced neurotoxicity:
Pathophysiology and therapeutic perspectives. Br. J. Pharmacol. 2020, 177, 3127–3146. [CrossRef]

34. Zhang, X.; Rakesh, K.; Shantharam, C.; Manukumar, H.; Asiri, A.; Marwani, H.; Qin, H.-L. Podophyllotoxin derivatives as an
excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorganic Med. Chem. 2018, 26, 340–355.
[CrossRef]

35. Ramos, A.C.; Peláez, R.; López, J.L.; Caballero, E.; Medarde, M.; San Feliciano, A. Heterolignanolides. Furo-and thieno-analogues
of podophyllotoxin and thuriferic acid. Tetrahedron 2001, 57, 3963–3977. [CrossRef]

36. Montecucco, A.; Zanetta, F.; Biamonti, G. Molecular mechanisms of etoposide. EXCLI J. 2015, 14, 95. [PubMed]
37. George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455.

[CrossRef]
38. Bishayee, A.; Sethi, G. Bioactive natural products in cancer prevention and therapy: Progress and promise. In Seminars in Cancer

Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–3.
39. Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003, 23,

363–398. [PubMed]
40. Kaltschmidt, B.; Greiner, J.F.W.; Kadhim, H.M.; Kaltschmidt, C. Subunit-Specific Role of NF-κB in Cancer. Biomedicines 2018, 6, 44.

[CrossRef] [PubMed]
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