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Abstract: Chelerythrine (CH) and ethoxychelerythrine (ECH) are chemical reference substances
for quality control of Chinese herbal medicines, and ECH is the dihydrogen derivative of CH. In
this study, their fluorescence and absorption spectra, as well as their structural changes in different
protic solvents were compared. It was observed that their emission fluorescence spectra in methanol
were almost the same (both emitted at 400 nm), which may be attributed to the nucleophilic and
exchange reactions of CH and ECH with methanol molecules with the common product of 6-methoxy-
5,6-dihydrochelerythrine (MCH). When diluted with water, MCH was converted into CH, which
mainly existed in the form of positively charged CH+ under acidic and near-neutral conditions
with the fluorescence emission at 550 nm. With the increase of pH value of the aqueous solution,
CH+ converted to 6-hydroxy-5,6-dihydrochelerythrine (CHOH) with the fluorescence emission at
410 nm. The fluorescence quantum yields of MCH and CHOH were 0.13 and 0.15, respectively,
and both the fluorescence intensities were much stronger than that of CH+. It is concluded that
CH and ECH can substitute each other in the same protic solvent, which was further verified by
high-performance liquid chromatography. This study will help in the investigation of structural
changes of benzophenanthridine alkaloids and will provide the possibility for the mutual substitution
of standard substances in relevant drug testing.

Keywords: chelerythrine; ethoxychelerythrine; fluorescence; absorbance; structural transformation

1. Introduction

Chelerythrine (CH, Scheme 1A) is one of the most important members of the quaternary
benzophenanthridine alkaloids (QBAs) family. It is derived from medicinal plants, such as
Fagara semiarticulata [1], Macleaya cordata (Willd.) R. Br. [2,3], Chelidonium majus L. [4–7] and
Zanthoxylum nitidum (Roxb.) DC. [8,9]. As an active ingredient of herbal medicine, CH has a
variety of pharmacological effects, such as anti- inflammation [4,9–11], anti-microbial [12],
anti-virus [13] and anti-tumor [14–17]. In order to understand the molecular mechanism of
pharmacological effects, the interactions between CH and some DNA and protein molecules
have been studied by the methods of absorbance and fluorescence spectroscopy, viscometry,
calorimetry, cyclic voltammetry and molecular calculation [18–23]. These studies demon-
strated that environmental factors, especially pH value, have a significant effect on the
interaction between CH and DNA or protein [21–23].

Ethoxychelerythrine (6-ethoxy-5,6-dihydrochelerythrine, ECH, Scheme 1b), obtained
from the medicinal plants mentioned above [1,2,6,8,9], is one of the dihydrogen derivatives
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of CH. Since the ethanol recrystallization method is used in the purification process, ECH
is regarded as an artifact produced by the reaction between CH and ethanol [2,8]. However,
according to the experiments of Lu et al. [24], ECH may exist in natural plants. Currently,
both CH and ECH are chemical reference substances for the identification and quality
evaluation of Chinese herbal medicines. In Chinese Pharmacopoeia [25], ECH is used as a
reference substance to identify Z. nitidum (Roxb.) DC., and the content of CH in C. majus L.
crude drugs is stipulated to be no less than 0.02%.

The structural transformation of CH, ECH and other QBAs in common solvents and
their biotransformation in human hepatocytes have been studied by NMR spectroscopy [26]
and mass spectroscopy [27], respectively. Miskolczy et al. revealed the thermodynamics of
the self-binding of three QBAs including CH and the effect of this process on the absorp-
tion and fluorescence behavior [28]. The native fluorescence of CH has been applied in
the analysis of medicinal plants by high-performance thin-layer chromatography [5] and
microchip electrophoresis [7]. It is reported that the anionic surfactant sodium dodecyl
sulfate can change the fluorescence features, resulting in the structural transformation
of CH [29]. However, there are rarely reported comparative studies of fluorescence, ab-
sorbance and chromatography of CH and ECH, and it remains unclear whether the spectral
and chromatographic characteristics of CH and ECH in common protic solvents are the
same or different.
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Scheme 1. Chemical structure of CH (a) and ECH (b). 
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Compared with ECH, the molecular structure of CH has a higher degree of conjugation
because of the double bond C=N+ between N5 and C6. Considering the different structures,
their absorbance and fluorescence spectra, CH should have longer wavelength. However,
under the same experimental conditions in this study, the fluorescence and absorbance
spectra of CH and ECH were found to be identical. This intriguing phenomenon may
indicate that these two substances could be transformed into the same structure in the same
protic solvent. If so, it will be possible to substitute the standard substances in drug testing.
In practice, drug testing is usually carried out in protic solvents (water, methanol, etc.),
and the standard substances are usually expensive and sometimes difficult to obtain. If
there is a substitute, drug testing will become more economical and easier. Moreover, the
chemical changes of biomolecules and the relationship between their molecular structures
and spectral characteristics have always been important and interesting topics [30–33].

The purpose of this work is to illustrate the structural transformation of CH and
ECH in methanol and water by combining their spectral changes in these solvents. The
fluorescence and absorbance of CH and ECH in methanol and water with various pH values
were characterized experimentally, and the fluorescence quantum yield of their products in
methanol and alkaline solutions were measured. The result of high-performance liquid
chromatography (HPLC) verified that CH and ECH can generate the same product in the
same protic solvent.
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2. Materials and Methods
2.1. Materials

Chemical reference substances of CH (serial no. 111718-201402, molecular formula:
C21H18ClNO4, molecular weight: 383.82) and ECH (serial no. 110847-200601, molecu-
lar formula: C23H23NO5, molecular weight: 393.43) were purchased from the National
Institutes for Food and Drug Control (Beijing, China) and dissolved in methanol (chro-
matographic grade, Tedia, OH, USA) to prepare the stock solutions. The Britton–Robinson
buffer solution was a mixture of phosphoric acid, boric acid, and acetic acid (each 0.02 M)
and adjusted to the appropriate pH by adding 0.1 M NaOH solution, and all the buffer
chemicals were analytically pure. Acetonitrile (chromatographic grade, Duksan, Ansan-si,
Korea) and triethylamine (analytically pure, Tianjin Guangfu, Tianjin, China) were used
without further treatment. The water used throughout the study was double deionized,
which was verified to be non-fluorescent.

2.2. Apparatus

Fluorescence measurements were carried out on a fluorescence spectrophotometer
(F-7000, Hitachi, Tokyo, Japan) equipped with a xenon lamp and 1 cm quartz cell. The
excitation and emission slits (band pass) of 5 nm/5 nm were used, and a 350 nm filter
was placed in the emission path to remove secondary spectra. Absorbance spectra were
recorded by a spectrophotometer (UV-2501PC, Shimadzu, Tokyo, Japan) with 1 cm quartz
cell. The pH values of solutions were measured by a pH meter (868 pH/ISE, Orion, MA,
USA). The HPLC tests were conducted on a liquid chromatograph (1260 Infinity II, Agilent,
CA, USA) equipped with Agilent 1260 ultraviolet detector.

2.3. General Procedure for Spectral Measurement

An appropriate amount of CH or ECH and buffer solutions were added into a series of
10 mL volumetric flasks, diluted to the mark with methanol or water and mixed thoroughly.
The fluorescence or absorbance spectra and pH value of the solutions were measured at
room temperature.

2.4. Measurement of Fluorescence Quantum Yield

Quantum yield was estimated by a referential method [34,35] with L-tryptophan
(quantum yield 0.14) as the reference. L-tryptophan and CH or ECH solutions were
prepared at appropriate concentrations to ensure their absorbance (A) was no larger than
0.05 in the measurement. After obtaining the absorbance and fluorescence spectra, the
quantum yield was calculated according to Equation (1).

Yu = Ys·
Fu·As

Fs·Au
(1)

where Yu and Ys, Fu and Fs, and Au and As were the fluorescence quantum yield, integral
fluorescence intensity and absorbance of the unknown and reference solutions at their
excitation wavelengths, respectively.

2.5. HPLC Test

In HPLC tests, an Agilent C18 chromatographic column (5 µm, 4.6 mm × 150 mm)
was used. The solution of acetonitrile-water (v/v 26:74) containing 1% trimethylamine was
used as the mobile phase, and its pH value was adjusted to around 3.0 by phosphoric acid.
The flow rate of the mobile phase was 1.0 mL/min, the column temperature was 25 ◦C,
and the detection wavelength was 269 nm.
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3. Results and Discussion
3.1. Three-Dimensional (3D) Fluorescence Spectra of CH and ECH in Methanol Solutions

Figure 1 shows the 3D fluorescence spectra of CH and ECH in methanol solutions. In
these spectra, CH and ECH have the same maximum excitation/emission wavelengths
(λex/λem) of 279 nm/400 nm, which indicates that both CH and ECH have the same
fluorophore in methanol solutions. Considering the differences in the molecular structures
between these two compounds, it is inferred that the existing forms of CH and/or ECH in
methanol should have changed.
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Figure 1. 3D fluorescence spectra of CH (a) and ECH (b) in methanol solutions. cCH = 0.133 µg·mL−1,
cECH = 0.181 µg·mL−1, contour interval: 500.

Considering that the polar C=N+ bond of QBAs molecules is characterized by its
sensitivity to nucleophilic attack [36], it is easy to form adducts at the C6 atoms when CH
is dissolved in protic solvents such as methanol or ethanol (which can ionize protons to
produce negatively charged nucleophilic ions). In methanol solution, CH molecules (CH+)
can react with methanol to form 6-methoxy-5,6-dihydrochelerythrine (MCH), as shown in
Scheme 2. According to an earlier report by Huang et al. [37], MCH can be obtained from
Z. nitidum (Roxb.) DC. by a methanol recrystallization method. Our research proves the
existence of MCH, and its formation mechanism may be shown in Scheme 2.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 13 
 

 

3. Results and Discussion 
3.1. Three-Dimensional (3D) Fluorescence Spectra of CH and ECH in Methanol Solutions 

Figure 1 shows the 3D fluorescence spectra of CH and ECH in methanol solutions. In 
these spectra, CH and ECH have the same maximum excitation/emission wavelengths 
(λex/λem) of 279 nm/400 nm, which indicates that both CH and ECH have the same 
fluorophore in methanol solutions. Considering the differences in the molecular struc-
tures between these two compounds, it is inferred that the existing forms of CH and/or 
ECH in methanol should have changed. 

350 400 450 500 550
200

250

300

350

400

λem(nm)

λ ex
(n

m
)

(a)

 

350 400 450 500 550
200

250

300

350

400

(b)

λem(nm)

λ ex
(n

m
)

 
Figure 1. 3D fluorescence spectra of CH (a) and ECH (b) in methanol solutions. cCH = 0.133 μg·mL−1, 
cECH = 0.181 μg·mL−1, contour interval: 500. 

Considering that the polar C=N+ bond of QBAs molecules is characterized by its 
sensitivity to nucleophilic attack [36], it is easy to form adducts at the C6 atoms when CH 
is dissolved in protic solvents such as methanol or ethanol (which can ionize protons to 
produce negatively charged nucleophilic ions). In methanol solution, CH molecules 
(CH+) can react with methanol to form 6-methoxy-5,6-dihydrochelerythrine (MCH), as 
shown in Scheme 2. According to an earlier report by Huang et al. [37], MCH can be ob-
tained from Z. nitidum (Roxb.) DC. by a methanol recrystallization method. Our research 
proves the existence of MCH, and its formation mechanism may be shown in Scheme 2. 

N

O

O

H3CO CH3
OCH3

N+

O

O

H3CO CH3OCH3 H3CO

+  CH3OH +  H+

 
Scheme 2. Conversion of CH+ to MCH when dissolved in methanol. 

On the other hand, CH can be transformed into MCH in methanol solution through 
a competitive reaction with methoxy and ethoxy groups, as shown in Scheme 3.  

Scheme 2. Conversion of CH+ to MCH when dissolved in methanol.

On the other hand, CH can be transformed into MCH in methanol solution through a
competitive reaction with methoxy and ethoxy groups, as shown in Scheme 3.
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Therefore, CH and ECH in methanol solutions could be transformed into MCH by ad-
dition reaction or displacement reaction, respectively, resulting in the same 3D fluorescence
spectra. The fluorescence quantum yields of CH and ECH in methanol solutions were also
estimated to be the same, Y = 0.13, which was in agreement with the above discussion. In
further experiments in which the experimental conditions were changed as follows, the
CH and ECH methanol solutions still exhibited the same spectral and chromatographic
properties, which verified the above conclusion.

3.2. 3D Fluorescence Spectra of CH and ECH in Acidic Methanol Solutions

Figure 2 shows the 3D fluorescence spectra of CH and ECH methanol solutions con-
taining 0.01 M H+. When excited at either 270 nm or 315 nm, the steady-state fluorescence
spectra of these two compounds showed the maximum emission at 550 nm, but their
fluorescence peaks at 400 nm presented in Figure 1 almost disappeared. As described
in Scheme 2, when H+ is added to the methanol solution of CH or ECH, the proton ion-
ization of the solvent will be inhibited, resulting in a decrease in the concentration of
negatively charged nucleophilic ions, which will promote the reverse reaction of forming
CH+. Therefore, the fluorescence peak at λem = 550 nm should belong to CH+, and its
emission wavelength is longer than that of MCH (λem = 400 nm), which is attributed to
the high conjugation in its molecular structure. Compared with MCH, the fluorescence
intensity of CH is much weaker, at less than 1/20 of that of MCH at the same concentration.
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3.3. Absorbance Spectra of CH and ECH in Methanol–Water Solutions Containing Different
Proportions of Water

Figure 3 shows the absorbance spectra of CH and ECH in methanol–water solutions
containing different proportions of water. As shown in Figure 3, the CH and ECH solutions
have the same absorbance spectra. When the proportion of water increases from zero to
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95%, an absorption band at 370–500 nm appears and rises, indicating that MCH (CH and
ECH have transformed into MCH) changes into another form with a higher degree of
conjugation. Since water can undergo an autoprotolysis reaction to produce H+, MCH can
be converted into CH+ in neutral aqueous solution, as shown in Scheme 4.
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Figure 3. Absorption spectra of CH (a) and ECH (b) in methanol–water solutions containing different
proportions of water. CCH = 6.50 µg·mL−1, cECH = 7.95 µg·mL−1.
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Scheme 4. Conversion of MCH in methanol to CH+ when diluted with water.

Scheme 4 seems to be the inverse reaction of Scheme 2, except that the solvent is
different. Since the autoprotolysis constant Ks = 10−14.0 of water is greater than Ks = 10−16.7

of methanol, the concentration of H+ in water is larger than that in methanol. The structural
transformation shown in Scheme 4 can move to the right.

In the molecular structure of MCH, N5 and C6 atoms occupy sp3 hybridized orbitals,
and are not conjugated with other parts of the molecule, so the whole molecule of MCH is
non-planar [38] and it is colorless. When MCH is converted to CH+, the N5 and C6 atoms
are transformed to sp2 hybridized orbitals, which provide p-electron for the conjugation of
molecules and display a pale yellow color.

3.4. 3D Fluorescence Spectra of CH and ECH in Aqueous Solutions at Different pH Values

Figure 4 is the 3D fluorescence spectra of CH and ECH in acidic aqueous solutions
(pH = 1.9). The fluorescence peaks at λem = 550 nm in Figure 4 are almost the same as those
in Figure 2, but the shape and fluorescence peak intensity in these two figures are slightly
different, which is mainly due to the different solvent environments.
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As shown in Figure 6, with the further increase of the pH value of solutions, the 
fluorescence peak at λem = 550 nm in Figure 5 weakens and finally disappears, while the 
fluorescence peak at λem = 410 nm is significantly enhanced. 

Figure 4. 3D fluorescence spectra of CH (a) and ECH (b) acidic aqueous solutions. cCH = 5.04 µg·mL−1,
cECH = 5.20 µg·mL−1, pH 1.9, MeOH 2.0%, contour interval: 50.

Figure 5 is the 3D fluorescence spectra of CH and ECH aqueous solutions with pH 5.7.
Compare Figure 5 with Figure 4, the fluorescence peak located at λem of 550 nm remains
almost invariant, but a new fluorescence peak with λem of about 410 nm has appeared,
indicating that a new fluorescent substance has formed.
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Figure 5. 3D fluorescence spectra of CH (a) and ECH (b) aqueous solutions. cCH = 5.04 µg·mL−1,
cECH = 5.20 µg·mL−1, pH 5.7, MeOH 2.0%, contour interval: 50.

As shown in Figure 6, with the further increase of the pH value of solutions, the
fluorescence peak at λem = 550 nm in Figure 5 weakens and finally disappears, while the
fluorescence peak at λem = 410 nm is significantly enhanced.



Molecules 2022, 27, 4693 8 of 13Molecules 2022, 27, x FOR PEER REVIEW 8 of 13 
 

 

350 400 450 500 550 600 650
200

250

300

350

400

(a)

λ ex
 (n

m
)

λem (nm)
 

350 400 450 500 550 600 650
200

250

300

350

400

λ ex
 (n

m
)

λem (nm)

 (b)

 
Figure 6. 3D fluorescence spectra of CH (a) and ECH (b) in alkaline solutions. cCH = 0.159 μg·mL−1, 
cECH = 0.146 μg·mL−1, pH 11.9, MeOH 2.0%, contour interval: 500. 

Figure 6 is very similar to Figure 1, but the solvent is different. In alkaline aqueous 
solutions, CH can react with H2O to form 6-hydroxyl-5,6-dihydrochelerythrine (CHOH), 
as shown in Scheme 5. 

 
Scheme 5. Conversion between CH+ and CHOH in alkaline aqueous solution. 

The reaction of CH+ with H2O is similar to that of CH+ with CH3OH described in 
Scheme 2. Both reactions are the electrophilic addition reaction and are sensitive to the 
pH values of solutions. Increasing the pH value can promote the reaction to proceed in 
the positive direction, and vice versa.  

The molecular structures of CHOH and MCH are similar, so they have similar flu-
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Figure 6. 3D fluorescence spectra of CH (a) and ECH (b) in alkaline solutions. cCH = 0.159 µg·mL−1,
cECH = 0.146 µg·mL−1, pH 11.9, MeOH 2.0%, contour interval: 500.

Figure 6 is very similar to Figure 1, but the solvent is different. In alkaline aqueous
solutions, CH can react with H2O to form 6-hydroxyl-5,6-dihydrochelerythrine (CHOH),
as shown in Scheme 5.
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Scheme 5. Conversion between CH+ and CHOH in alkaline aqueous solution.

The reaction of CH+ with H2O is similar to that of CH+ with CH3OH described in
Scheme 2. Both reactions are the electrophilic addition reaction and are sensitive to the pH
values of solutions. Increasing the pH value can promote the reaction to proceed in the
positive direction, and vice versa.

The molecular structures of CHOH and MCH are similar, so they have similar fluo-
rescence spectra. A slight difference between them is that λem of CHOH is about 410 nm,
while that of MCH is 400 nm. The fluorescence quantum yields of CH and ECH (actually
CHOH) in alkaline solutions at pH = 11.0 were measured, and the same value Y = 0.15
was obtained.

3.5. Absorbance Spectra of CH and ECH in Aqueous Solutions at Different pH Values

Figure 7 is the absorbance spectra of CH and ECH aqueous solutions with different
pH values. The spectral characteristic of Figure 7 is very similar to that of Figure 3. The
appearance of an isosbestic point in the spectra proves that there are only two light-
absorbing species, CH+ and CHOH, in the solutions, and the interconversion between
them occurs with the change of pH value. This spectral characteristic is consistent with the
reaction mechanism shown in Scheme 5.
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Figure 7. Absorption spectra of CH (a) and ECH (b) in aqueous solutions with different pH.
cCH = 6.50 µg·mL−1, cECH = 7.95 µg·mL−1.

3.6. Effect of pH Value on Fluorescence Intensity of CH and ECH in Aqueous Solutions

Figure 8 is the excitation and emission spectra of CH and ECH in aqueous solutions
at various pH values. The spectra of CH and ECH are very similar, which is consistent
with the above discussion. In these spectra, the centers of λex and λem locate at 279 nm
and 406 nm, respectively, which is consistent with the 3D fluorescence spectra shown in
Figure 6. Changing the pH value will result in the change in fluorescence intensity, but it
has no effect on λex and λem.
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3.7. HPLC Chromatograms of CH and ECH in Acidic Aqueous MOBILE phase 
To confirm the structural transformation of CH and ECH in protic solvents, CH, 

ECH and their mixture in methanol were analyzed by HPLC (Figure 10). All three 
chromatograms show a retention time of about 9.4 min. The same compound has the 
same retention time under the same chromatographic condition, which is the qualitative 
basis of HPLC. The above result confirms that CH and ECH transform into the same 
molecular structure in the experiment, which is consistent with the above conclusion. 
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Figure 9 shows the relationship between fluorescence intensity and pH values of the
CH and ECH aqueous solutions. These two curves are nearly the same. When pH > 6.0,
there is an increase of fluorescence intensity due to the transformation of CH+ to CHOH.
When pH > 12.0, the decrease in fluorescence intensity is probably due to the proton
ionization of the 6-hydroxyl group of CHOH. CHOH does not participate in the conjugate
plane of the molecule, and its proton ionization has almost no effect on the fluorescence
wavelength and only a slight effect on the fluorescence intensity.
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3.7. HPLC Chromatograms of CH and ECH in Acidic Aqueous MOBILE phase

To confirm the structural transformation of CH and ECH in protic solvents, CH,
ECH and their mixture in methanol were analyzed by HPLC (Figure 10). All three chro-
matograms show a retention time of about 9.4 min. The same compound has the same
retention time under the same chromatographic condition, which is the qualitative basis
of HPLC. The above result confirms that CH and ECH transform into the same molecular
structure in the experiment, which is consistent with the above conclusion.
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Figure 10. HPLC chromatograms of CH (1), ECH (3) and the mixture of the two (2). 

4. Conclusions 
The chemical reference substances CH and ECH have different molecular struc-

tures, and this study found that they have the same fluorescence, absorbance and chro-
matographic properties in protic solvents, because they can react with solvent molecules 
such as methanol, ethanol and water and transform into the same molecular structure. 
After CH and ECH were dissolved in methanol, they were converted to MCH by the 
nucleophilic addition reaction and displacement reaction, respectively. MCH emitted 
significant fluorescence at the wavelength of 400 nm. When the pH value of methanol 
solution decreased, MCH was converted into CHz, and the emission wavelength was 
red-shifted to 550 nm with a fluorescence quenching at 400 nm. When diluted with wa-
ter, the MCH methanol solution was converted into CH+ aqueous solution. As the pH 
value of the solution increased, CH continued to be converted into CHOH, and strong 
fluorescence was observed at the wavelength of 410 nm. The CH and ECH methanol so-
lutions had the same chromatographic retention time, as well as the fluorescence and 
absorption spectra, proving that they were indeed transformed into the same molecular 
structure. The spectral and chromatographic characteristics and molecular mechanisms 
of CH and ECH revealed in this work may be applied in the future drug testing.  

Author contributions: Conceptualization, W.L. and Y.Z.; Methodology, W.L. and J.C.; Formal 
analysis and investigation, J.C., T.L., J.L. (Jiamiao Liu), J.L. (Jinze Liu), J.W. and Q.S.; Writ-
ing—Original draft preparation, W.L. and J.C.; Writing—Review and editing, W.L., J.C. and T.L.; 
Funding acquisition, Y.W., W.L. and J.C.; Resources, Y.W., W.L. and J.C.; Supervision, Y.W., W.L. 
and Y.Z. All authors have read and agreed to the published version of the manuscript. 
Funding: This work was supported by the National Natural Science Foundation of China (No. 
81173496), the Natural Science Foundation of Hebei Province, China (No. 17273003), Science and 
Technology Research Project of Hebei Province (Nos: ZD2019033, Z2020138), the Doctoral fund of 
Hebei College of Industry and Technology (Nos: BZ201701, BZ2020004) and Hebei Province “333 
Talents Project” Funded project (No. A202101097). 
Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: All data generated or analyzed during this study are included in this 
published article. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Figure 10. HPLC chromatograms of CH (1), ECH (3) and the mixture of the two (2).
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4. Conclusions

The chemical reference substances CH and ECH have different molecular structures,
and this study found that they have the same fluorescence, absorbance and chromato-
graphic properties in protic solvents, because they can react with solvent molecules such
as methanol, ethanol and water and transform into the same molecular structure. After
CH and ECH were dissolved in methanol, they were converted to MCH by the nucle-
ophilic addition reaction and displacement reaction, respectively. MCH emitted significant
fluorescence at the wavelength of 400 nm. When the pH value of methanol solution de-
creased, MCH was converted into CHz, and the emission wavelength was red-shifted to
550 nm with a fluorescence quenching at 400 nm. When diluted with water, the MCH
methanol solution was converted into CH+ aqueous solution. As the pH value of the
solution increased, CH continued to be converted into CHOH, and strong fluorescence
was observed at the wavelength of 410 nm. The CH and ECH methanol solutions had the
same chromatographic retention time, as well as the fluorescence and absorption spectra,
proving that they were indeed transformed into the same molecular structure. The spectral
and chromatographic characteristics and molecular mechanisms of CH and ECH revealed
in this work may be applied in the future drug testing.
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