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Abstract: Four commercial immobilized lipases biocatalysts have been submitted to modifications
with different metal (zinc, cobalt or copper) phosphates to check the effects of this modification on
enzyme features. The lipase preparations were Lipozyme®TL (TLL-IM) (lipase from Thermomyces
lanuginose), Lipozyme®435 (L435) (lipase B from Candida antarctica), Lipozyme®RM (RML-IM), and
LipuraSelect (LS-IM) (both from lipase from Rhizomucor miehei). The modifications greatly altered
enzyme specificity, increasing the activity versus some substrates (e.g., TLL-IM modified with
zinc phosphate in hydrolysis of triacetin) while decreasing the activity versus other substrates
(the same preparation in activity versus R- or S- methyl mandelate). Enantiospecificity was also
drastically altered after these modifications, e.g., LS-IM increased the activity versus the R isomer
while decreasing the activity versus the S isomer when treated with copper phosphate. Regarding
the enzyme stability, it was significantly improved using octyl-agarose-lipases. Using all these
commercial biocatalysts, no significant positive effects were found; in fact, a decrease in enzyme
stability was usually detected. The results point towards the possibility of a battery of biocatalysts,
including many different metal phosphates and immobilization protocols, being a good opportunity
to tune enzyme features, increasing the possibilities of having biocatalysts that may be suitable for a
specific process.

Keywords: solid phase enzyme mineralization; nanoflowers; immobilized lipases; enzyme specificity;
enzyme stability

1. Introduction

Lipases are among the most utilized enzymes, both academically and industrially [1–5].
This is because they are very robust biocatalysts, able to perform a wide variety of reactions,
such as hydrolysis, esterifications [6–9], transesterifications [10–14] or acidolysis [15,16].
They can be used in a wide variety of reaction media (aqueous medium, organic sol-
vents [17,18], solvent-free [19], ionic liquid [20–22], deep eutectic solvents [23] and super-
critical fluids [24–27]) and have a wide substrate specificity, accepting substrates that are
very different structurally. However, this is in many instances bound to a high regioselec-
tivity, enantiospecificity and selectivity [28–34].

In fact, they are one of the most successful examples of enzymes presenting promiscu-
ous activities [1,35–40].

In homogeneous media, most lipases present a conformational equilibrium between
a form where a polypeptide chain (lid) isolates its active center from the medium (closed
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form) and a form where this lid is shifted exposing the active center to the medium
(open form) [41–43]. In the presence of insoluble drops of substrate, the open form of the
lipase becomes adsorbed on the hydrophobic surface and becomes stabilized [42]. This
can occur also on any other hydrophobic surface, such as the open form of other lipase
molecule [44–48], a hydrophobic protein [49,50] or a hydrophobic matrix [51].

The use of immobilized enzymes permits enzyme recovery and their reuse, providing
that the enzyme remains active [52–59]. This also enables a simpler control of the reaction
and also the utilization of any reactor configuration [60]. Researchers have tried to couple
this immobilization step in the design of industrial enzyme biocatalysts in a way to im-
prove many enzyme features. That way, a proper immobilization may improve enzyme
stability by different reasons (recently reviewed [61]), and in that way, increase the range
of conditions where the enzyme may be utilized, increasing the prospect of success in the
design of a bioprocess [62,63]. Furthermore, enzyme immobilization will alter enzyme
selectivity, specificity and activity [28], may reduce inhibitions and, if adequately designed,
enable the one step immobilization-purification of the target enzyme [64–66].

In the last decade, the production of hybrid enzyme nanoflowers proved to be an
immobilization method able to improve some enzyme features, such as enzyme stabil-
ity and activity [67–74]. In some cases, this technique has been applied to immobilize
lipases [75–89].

However, the mechanical fragility of nanoflowers makes their use complex in most
reactor configurations. One alternative to solve this problem in some instances is to trap the
nanoflowers in solids with better mechanical performance or confer a magnetic character
to the biocatalyst [67,76,78,86,90–92].

Recently, we tried to reproduce this strategy using immobilized enzymes [93]. We
found that in some instances, the enzyme features (activity or stability) were significantly
improved [93]. Although there was no evidence of the production of hybrid enzyme-lipase
nanoflower structures, the modification of the enzyme nucleation sites with the metal
phosphate was assumed to be the cause of these positive effects.

In this new research, we investigate if this simple immobilized enzyme treatment may
improve some of the most utilized commercial immobilized lipase preparations. The lipase
B from Candida antarctica immobilized on moderately hydrophobic Lewatit VP OC 1600
via interfacial activation [94], with commercial name Novozym® 435 [94], has been one
of the used preparations. Additionally, the lipase from Rhizomucor miehei immobilized on
Duolite ES 562, a weak anion-exchange resin based on phenol-formaldehyde copolymers
(RML-IM), has been included in this study [95] and a new biocatalyst called LipuraSelect,
with scarce information available on the preparation way (that is, the immobilization
mechanism is unknown). Finally, the lipase from Thermomyces lanuginosus immobilized on
a cationic silicate (TLL-IM) was included [96]. All these commercial preparations have been
treated with phosphate and the chloride salts of Cu2+, Co2+ and Zn2+, and their functional
properties have been analyzed.

2. Results and Discussion
2.1. Modification of Commercial Immobilized TLL (IM-TL)

IM-TL was modified as indicated in methods and the activities of the different biocata-
lysts versus diverse substrates were determined (Table 1). The modification with phosphate
and Co2+ produced a significant decrease of the activity of IM-TL versus triacetin, almost
by 50%. However, the activity significantly increased using Cu2+ (by a 40%) and even more
significantly using Zn2+ (almost a 70%). However, all treatments produced a decrease in
the activity versus both methyl mandelate isomers, more significant for the S-isomer. This
means that the treatment alters both specificity versus the substrates and enantiospecificity.
In the most significant cases, the activity ratio of activities between R-methyl mandelate
and triacetin (which is initially just under 1.3) increases to 2 when the enzyme is modified
using phosphate and Co2+, or to 0.6 using phosphate and Zn2+. The enantiospecificity for
the isomers of methyl mandelate also changes, but not so significantly from the initial ratio
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of reaction rate using R/S isomer of almost 1.6, to almost 2 if the biocatalyst is modified
with phosphate and Co2+. These changes suggested that the metal phosphate modification
should produce quite large changes in the functional properties of the enzyme (very likely
caused by enzyme conformational changes), as reported in many papers regarding the
effects of the immobilization protocol [97–106] or the chemical or physical modification
of the enzymes [107–113] on enzyme specificity or selectivity. The fact that an enzyme is
immobilized did not mean that the enzyme mobility is fully suppressed, and chemical or
physical modifications can induce conformational changes. For example, it has been shown
that the blocking of TLL-octyl-vinyl sulfone biocatalyst with different reagents can fully
alter the enzyme functionality as well as the enzyme structure [114].

Table 1. Specific activity of different biocatalysts with 50 mM R- or S-methyl mandelate (pH 7,
25 ◦C) and 50 mM of triacetin (pH 7, 25 ◦C). Experiments were performed as described in the
Methods section.

Biocatalysts Activity (U/g)

Triacetin R Mandelate S Mandelate

TLL-IM 7.73 ± 0.35 9.90 ± 0.49 6.33 ± 0.57
TLL-IM-ZnP 13.02 ± 0.64 7.88 ± 0.27 5.31 ± 0.18
TLL-IM-CuP 10.80 ± 0.44 8.77 ± 0.37 5.12 ± 0.26
TLL-IM-CoP 4.08 ± 0.19 8.09 ± 0.40 4.18 ± 0.32

Figure 1 shows the inactivation course of the different IM-TL biocatalysts. While
Co2+/Cu2+ and phosphate treatment produced a drastic decrease in enzyme stability, the
treatment with Zn2+ resulted in a biocatalyst that fully maintained the enzyme stability
at pH 7. These results disagree with the results obtained using octyl-agarose-TLL [93],
where stability was greatly improved after this treatment, while the activity (versus p-NPB)
was slightly decreased. This suggested that the immobilization protocol could greatly
alter the effect of the metal phosphate modification of the biocatalyst. This result agrees
with previous reports that state that the immobilization protocol can alter the effect of the
enzyme modification on enzyme features, either chemical or physical [112,113]. In the
case of IM-TLL, the modification with phosphate and Zn2+ was permitted to increase the
enzyme activity versus some substrates, altering enzyme specificity, while maintaining
enzyme stability.

Figure 1. Inactivation courses of TLL-IM unmodified and modified with metallic salt/sodium
phosphate. The inactivation was performed with 10 mM Tris buffer at pH 7.0 and 75 ◦C. Other
specifications are described in the Methods section. Unmodified TLL-IM (open squares and dotted
line); TLL-IM modified with ZnCl2/sodium phosphate (solid squares); CuCl2/sodium phosphate
(solid circles); CoCl2/sodium phosphate (solid triangles).
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2.2. Modification of Commercial Immobilized CALB (L435)

Table 2 shows the effect of the modification of L435 with different metal phosphate
on the enzyme activities versus different substrates. Using triacetin, Zn2+ and phosphate
treatment produced a 25% increase of enzyme activity, while the other two salts have a
marginal negative effect. Using both isomers of methyl mandelate, the decrease in activity
was more significant, to 1/3 using phosphate and Co2+ for the R isomer, and 1/5 using
the R isomer. This produced a great effect on enzyme specificity, while the activity versus
triacetin/activity versus R isomer of the initial biocatalyst was 2.9 for the unmodified
enzyme, this increased to 6.5 for the enzyme modified using Zn2+ and phosphate, 5.9 using
Cu2+ or 8.5 using Co2+. Regarding the activity versus R/activity versus S isomers, they
are in the range of 1.3–1.4 for the initial preparation or the biocatalysts treated with zinc
phosphate, 1.9 if treated with copper phosphate and over 2 if treated using cobalt phosphate.

Table 2. Specific activity of different biocatalysts with 50 mM R- or S-methyl mandelate (pH 7,
25 ◦C) and 50 mM of triacetin (pH 7, 25 ◦C). Experiments were performed as described in the
Methods section.

Biocatalysts Activity (U/g)

Triacetin R Mandelate S Mandelate

L435 119.0 ± 5.2 42.6 ± 1.8 31.2 ± 1.6
L435-ZnP 149.9 ± 7.8 23.1 ± 0.9 17.3 ± 0.9
L435-CuP 113.9 ± 5.9 19.4 ± 1.0 11.5 ± 0.6
L435-CoP 116.2 ± 6.9 13.3 ± 0.6 6.4 ± 0.4

Figure 2 shows the inactivation courses, and it becomes obvious that all the modi-
fications presented a similarly small negative effect on enzyme stability at pH 7. Using
octyl-agarose-CALB, the results were again quite different, with some increase on enzyme
stability and activity. Explanations for these results may be similar to those given in the
case of TLL.

Figure 2. Inactivation courses of L435 unmodified and modified with metallic salt/sodium phosphate.
The inactivation was performed with 10 mM Tris buffer at pH 7.0 and 75 ◦C. Other specifications
are described in the Methods section. Unmodified L435 (open squares and dotted line); L435
modified with ZnCl2/sodium phosphate (solid squares); CuCl2/sodium phosphate (solid circles);
CoCl2/sodium phosphate (solid triangles).

2.3. Modification of Commercial Immobilized RML (RM-IM and LS-IM)

In the case of RML, we have got two different commercial preparations, RM-IM and
LS-IM. The activities of both biocatalysts (intact and metal phosphate modified) may be
found in Table 3 (RM-IM) and Table 4 (LS-IM). First, we will compare the activities of both
biocatalysts versus the different substrates used in this study. RM-IM was slightly more
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active versus triacetin than LS-IM; however, it was significantly more active (almost by
a 10-fold factor) versus R-methyl mandelate. The hydrolysis of the R isomer was more
rapid using RM-IM (1.15-fold) than using LS-IM, while LS-IM preferred the S-isomer
(1.4-fold). That way, both RML biocatalysts presented a very different specificity and
enantiospecificity, as has been reported in many other instances for RML immobilized on
different supports [97–102].

Table 3. Specific activity of different biocatalysts with 50 mM R- or S-methyl mandelate and 50 mM
of triacetin (pH 7, 25 ◦C). Experiments were performed as described in the Methods section.

Biocatalysts
Activity (U/g)

Triacetin R Mandelate S Mandelate

RML-IM 86.2 ± 4.7 11.3 ± 0.8 9.8 ± 0.5
RML-IM-ZnP 70.00 ± 3.7 9.9 ± 0.6 9.8 ± 0.4
RML-IM-CuP 38.4 ± 1.9 10.2 ± 0.6 9.8 ± 0.4
RML-IM-CoP 69.9 ± 3.8 10.1 ± 0.5 9.9 ± 0.2

Table 4. Specific activity of different biocatalysts with 50 mM R- or S-methyl mandelate and 50 mM
of triacetin (pH 7, 25 ◦C). Experiments were performed as described in the Methods section.

Biocatalysts
Activity (U/g)

Triacetin R Mandelate S Mandelate

LS-IM 80.5 ± 4.9 0.92 ± 0.04 1.29 ± 0.06
LS-IM-ZnP 54.9 ± 3.0 0.73 ± 0.04 0.67 ± 0.03
LS-IM-CuP 63.8 ± 3.3 1.50 ± 0.09 0.88 ± 0.06
LS-IM-CoP 63.7 ± 3.9 1.10 ± 0.07 0.99 ± 0.05

When RM-IM was treated with the metal salts, the activity versus triacetin decreased
much more than the activity versus the methyl mandelate esters. The activity versus
triacetin decreased to 81% when the biocatalyst was modified with zinc or cobalt phos-
phates, but below 50% if using copper phosphate. The activity versus R-methyl mandelate
decreased to around 10% in the more drastic case (when modified with zinc phosphate),
while using the S-isomer the activity was maintained. That way, the activity versus tri-
acetin/activity versus R methyl mandelate ratio was moved from 7.6 for the original
biocatalyst to 3.7 for the enzyme modified with copper phosphate. The changes in the R/S
methyl mandelate activity ratio were much smaller (from the original 1.15 to almost 1).

Results were very different using LS-IM. Activity versus triacetin decreased after the
treatment, but it decreased more using zinc (below 70%), while the other two preparations
maintained around 80% of the initial activity. In the case of methyl mandelate, the effects
were very different using each of the isomers. The activity versus R methyl mandelate
increased by 60% when treated with copper and by 20% using cobalt, while the use of zinc
salts decreased the activity by 20%. However, the activity versus the R isomer decreased in
all cases, more using zinc (to 50%) and less using cobalt (75%). This means some changes in
enzyme specificity, going from an activity of 62 versus triacetin/S methyl mandelate (much
higher than using RM-IM) to 82 (after modification with Zn), and more significant changes
in the activity versus S/R methyl mandelate ratio. The unmodified biocatalyst presented an
activity ratio of 1.4. All modified biocatalysts preferred the R isomer, giving a value around
0.6 when modified with copper. That way, for this preparation, the modification produced
a more significant change in the enantiospecificity than in the specificity, in opposition
with RM-IM.

The comparison between two biocatalysts of the same enzyme confirms that the
effect of the modification with metal phosphate is greatly dependent on the immobiliza-
tion protocol, as has been reported for other physical or chemical immobilized enzyme
modifications [107,110–113,115].
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Figure 3 shows the effect of the metal phosphate treatments on the stability of RM-IM.
All the treatments had a scarce, but positive effect on enzyme stability. The comparison with
Figure 4 shows that LS-IM is much more stable than RM-IM. The modification of LS-IM
with zinc phosphate had no effect on enzyme stability, while the other two treatments
produced a clear decrease on enzyme stability. Again, different enzyme preparations of the
same enzyme exhibited a very different response to the treatment with metal phosphate.

Figure 3. Inactivation courses of RM-IM unmodified and modified with metallic salt/sodium
phosphate. The inactivation was performed with 10 mM Tris buffer at pH 7.0 and 60 ◦C. Other
specifications are described in the Methods section. Unmodified RM-IM (open squares and dotted
line); RM-IM modified with ZnCl2/sodium phosphate (solid squares); CuCl2/sodium phosphate
(solid circles); CoCl2/sodium phosphate (solid triangles).

Figure 4. Inactivation courses of LS-IM unmodified and modified with metallic salt/sodium phos-
phate. The inactivation was performed with 10 mM Tris buffer at pH 7.0 and 60 ◦C. Other specifica-
tions are described in the Methods section. Unmodified LS-IM (open squares and dotted line); LS-IM
modified with ZnCl2/sodium phosphate (solid squares); CuCl2/sodium phosphate (solid circles);
CoCl2/sodium phosphate (solid triangles).

3. Materials and Methods
3.1. Materials

In this study, we have employed different commercial immobilized lipase. Lipozyme®TL
(TLL-IM), Lipozyme®435 (L435), Lipozyme®RM (RML-IM) and LipuraSelect (LS-IM) were
kindly donated by Novozymes Spain (Madrid, Spain). Triacetin, (R)- and (S)-methyl
mandelate, zinc chloride (ZnCl2), copper chloride (CuCl2), cobalt chloride (CoCl2), sodium
chloride (NaCl) and acetonitrile for HPLC (gradient grade, ≥99.9%) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All other reagents were of analytical grade.
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3.2. Methods
3.2.1. Modification of Immobilized Enzyme with Metallic Salt/Phosphate

TLL-IM, L435, RML-IM and LS-IM were modified with metallic salt/phosphate fol-
lowing the procedure described by Guimarães et al. [93]. A mass of 1 g of immobilized
enzyme was suspended in 10 mL of saline buffer (10 mM sodium phosphate buffer and
125 mM NaCl) at pH 7.4 and, then, 400 µL of 230 mM of the corresponding metal salt was
added. The enzyme treatment was conducted at room temperature under gentle stirring
for 5 h in an orbital shaker at 550 rpm. After modification, the suspension was filtered and
the biocatalysts were washed with distilled water (10 times with 10 volumes of water), and
stored at 4 ◦C.

3.2.2. Thermal Inactivation of the Different Lipase Preparations

In a standard experiment, 1 g of immobilized biocatalyst was suspended in 10 mL
of 10 mM Tris-HCl at pH 7.0 and incubated at different temperatures. Phosphate was
discarded as medium to inactivate the immobilized enzymes, as it has been reported to
be negative for enzyme stability. The low buffer concentration prevents risks of enzyme
release for the biocatalysts based on ion exchange [116,117].

The temperatures were selected to ensure reliable but not too long half-lives of the
unmodified immobilized enzymes (TLL-IM and L435: 75 ◦C; RML-IM and LS-IM: 60 ◦C).
Periodically, samples of 0.3 mL of inactivation suspension were collected after homogeniza-
tion using a pipette with a cut tip to determine their residual activities. Residual activities
were defined as activity of the biocatalyst after the indicated inactivation time divided
by its initial and expressed in percentage. The experiments were performed, employing
triacetin as substrate for the immobilized biocatalyst.

3.2.3. Enzyme Activity Assays

One unit of activity (U) was defined as the amount of enzyme that hydrolyzes one
µmol of substrate per minute under the described conditions.

Hydrolysis of Triacetin

A volume of 0.3 mL of immobilized enzyme suspension (166 mg/mL) was added to
3 mL of 50 mM of triacetin prepared in 50 mM of sodium phosphate buffer at pH 7.0. Hy-
drolysis was carried out at 25 ◦C under magnetic stirring (100 rpm). The hydrolytic activity
in triacetin was quantified by detection of 1,2 and 1,3 diacetin (under these conditions, 1,2
diacetin suffers acyl migration, giving 1,3 diacetin) [118]. The degree of conversion was
calculated by HPLC in a Waters 486 chromatograph (Waters, Millford, UK.) equipped with
a UV/VIS detector (set to 230 nm) [118] using a Kromasil C18 column (15 cm × 0.46 cm)
with a mobile phase composed of 15% (v/v) of water and 85% (v/v) of acetonitrile with
a flow rate of 1 mL/min. The retention times were 4 min for 1,2 and 1,3 diacetins (under
these conditions eluted at the same time) and 18 min for triacetin. Conversions of 15–20%
were used to calculate enzyme activity [119].

Hydrolysis of R- or S-Methyl Mandelate

A mass of 0.05 g of commercial immobilized lipase were added to 3 mL of 50 mM R-
or S-methyl mandelate in 50 mM sodium phosphate buffer solution at pH 7.0. Hydrolysis
was carried out at 25 ◦C under magnetic stirring (100 rpm). The substrate and product
concentrations were determined by HPLC using a Waters 486 chromatograph (Waters,
Millford, UK) equipped with a UV/VIS detector (set to 230 nm) [114] using a Kromasil C18
column (15 cm × 0.46 cm) with a mobile phase composed of 10 mM ammonium acetate
and acetonitrile (35–65% (v/v)) at pH 2.8 with a flow rate of 1 mL/min. The retention times
were 2.5 min for mandelic acid and 4.2 min for the R- or S-methyl mandelate. Conversions
of 15–25% were used to calculate enzyme activity [120].
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4. Conclusions

The modification of commercial preparations of immobilized lipases with metal phos-
phate, in a treatment similar to the production of nanoflowers, alters enzyme specificity.
These changes means that while the enzyme activity may increase for some substrates, it
may decrease for some others. This also fully alters enzyme enantiospecificity. The best
treatment is different for each enzyme, substrate and even for each immobilization protocol.
The results in this paper point that the immobilization protocol can play a critical role on
the effects of the treatment. Regarding the stability, a feature that was reported as much
improved using octyl-agarose-lipase, using the commercial preparations show a moderate
impact, usually even decreasing enzyme stability, or producing marginal stabilization (in
the case of RM-IM). Although in this paper, we have focused on the effects of the modifica-
tion on the functional properties of the immobilized enzymes, it seems very interesting to
further investigate the mechanism of this modification. The fact that the metal crystals also
grew on the naked supports makes this a very complex goal.

From the results of this paper, it is proposed that the modification of a biocatalyst
with a battery of metals (not reducing the study to the ones used in this paper) may open
new opportunities for tailoring the enzyme features, increasing the opportunities to find a
biocatalyst with the optimal properties for a specific process.
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