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Abstract: Plants are an important source of drug development and numerous plant derived mole-
cules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-
4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. 
The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the 
downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated 
protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including 
inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signal-
ing, which is implicated in the inflammatory process using a computational approach. These com-
pounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone 
glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the 
TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydropho-
bic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had 
the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and 
icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square 
deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were 
calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding 
energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simu-
lation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed 
for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maxi-
mum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were 
also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited 

Citation: Khan, A.; Khan, S.U.; 

Khan, A.; Shal, B.;  

Sabih-Ur-Rehman;  

Shaheed-Ur-Rehman; Htar, T.T.; 

Khan, S.; Anwar, S.; Alafnan, A.;  

Rengasamy, K.R. Anti- 

Inflammatory and Anti-Rheumatic 

Potential of Selective Plants  

Compounds by Targeting  

TLR-4/AP-1 Signaling: A  

Comprehensive Molecular Docking 

and Simulation Approaches.  

Molecules 2022, 27, 4319. 

https://doi.org/10.3390/ 

molecules27134319 

Academic Editor: Kyoko  

Nakagawa-Goto  

Received: 11 May 2022 

Accepted: 29 June 2022 

Published: 5 July 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Molecules 2022, 27, 4319 2 of 25 
 

 

promising physico-chemical as well as drug-likeness properties. Consequently, these selected com-
pounds portray promising anti-inflammatory and drug-likeness properties. 

Keywords: natural products; TLR-4; NF-κB; AP-1; inflammation 
 

1. Introduction 
Inflammation is the critical event involved in the pathophysiology of numerous dis-

eases [1] and is considered as a protective response of the body toward the invading agent, 
however, if not managed properly, then it became troublesome [1,2]. The inflammatory 
process involves the immune system, vascular compartments, and inflammatory media-
tors that decide the fate of ongoing inflammatory process [3]. The immune cell infiltration 
involves neutrophils, macrophages, and their products such as cytokines and chemokines 
with the ambition to fend off the inflammatory process [4]. However, these mediators leak 
into systemic circulation and produce generalized effects such as pain, fever, and discom-
fort. The inflammatory cytokines are the key player involved in the dissemination of local 
effects into a generalized effect on the body. The various inflammatory mediators that are 
involved in inflammation include interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor 
necrosis factor-α (TNF-α). The immune cells release these inflammatory mediators to fa-
cilitate inflammatory events including the infiltration of the immune cells and the dilation 
of the local vessels. However, the infiltrated immune cells further release the immune cells 
via a positive feedback mechanism, which leads to the further aggravation of the inflam-
matory process [5]. 

The inflammatory cytokine production and release is facilitated by the upstream sig-
naling mechanism such as TLR-4/AP-1 [6]. The Toll-like receptor-4 (TLR-4) binds with the 
LPS and triggers the activation of the downstream signaling such as nuclear factor κappa 
B (NF-κB) and mitogen activated protein kinases (MAPKs) [6]. The LPS activation induced 
the phosphorylation of the MyD88 protein, TIR Domain Containing Adaptor Protein 
(TIRAP), and the TIR-domain containing adapter-inducing interferon-β (TRIF) protein, 
which are linked with the downstream MAPKs (JNK) and NF-κB [7]. The NF-κB is inac-
tive within the cytosol under the influence of the inhibitor of nuclear factor kappa B (IκB), 
however, any inflammatory insult facilitates the phosphorylation and subsequent degra-
dation of IκB [7]. Following degradation of IκB, the NF-κB (p65 and p50) becomes free 
and translocated to the nucleus to influence the expression of the concerned genes associ-
ated with the inflammation and oxidative stress [8]. Similarly, the activation of MAPKs is 
facilitated by the LPS interaction with the TLR-4, which induces the expression of the con-
cerned genes by AP-1 (activated protein-1) signaling. The AP-1 is the transcriptional fac-
tor, which regulates the expression of the numerous genes associated with the inflamma-
tion, oxidative stress, and cell growth [8]. 

Natural products are a rich and cheap source of in the development of new drugs 
and several plant-derived compounds are in clinical practice for various remedies [9]. The 
natural product-derived compounds and semi-synthetic compounds provide an im-
portant source of a new class of compounds [10]. Similarly, the computational approach 
has recently been focused on by several researchers, which serves as a reliable and rapid 
method of drug screening against various diseases. The molecular docking provides the 
binding affinity of the compounds with the protein target and the mechanism by which 
this interaction occurs [10]. The computational approach is considered as a reliable 
method for screening larger number of compounds for their biological activities and the 
mechanism with which the ligands bind with the protein target [11,12]. In the present 
study, the computational approach was used to assess the anti-inflammatory activity of 
the selected compound from natural sources and to explore the possible mechanism of 
interaction. Furthermore, the computational approach was used to assess the various 
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biological properties such as the pharmacokinetic, physico-chemical, and toxicokinetic be-
havior of the studied compounds 

2. Methods 
2.1. Protein Selection 

In the present study, four proteins were selected as targets expressed in inflammation 
for docking and downloaded as a PDB file from the protein data bank including TLR-4 
(4g8e), NF-κB (1le5), JNK (30xi), and AP-1 (4hmy) [13,14]. Swiss PDB viewer software was 
used for the energy minimization of target proteins. The TLR-4 is a surface protein and 
LPS interacts as a ligand, which recruits the downstream proteins such as MyD88 toward 
the cytoplasmic membrane [15]. The MyD88 is an adaptor protein along with the TIRAP 
and TRIP recruited to the plasma membrane following TLR-4 activation [16]. The MyD88 
induces the MAPKs (JNK) and NF-κB signaling, which interacts with the AP-1 signaling 
to induce the expression of the concerned genes [17]. 

2.2. Ligand Database Preparation 
In the present study, 22 plant compounds (Figure 1) were selected based on their 

reported anti-inflammatory activities [18]. In earlier investigations (liver injury, lung in-
jury, inflammatory pain, colitis, etc.), the selected compounds showed considerable anti-
inflammatory activity and marked improvement in the underlying inflammatory activi-
ties. These compounds, on the other hand, were not tested for anti-arthritic activity against 
TLR-4 and downstream signaling proteins such as MAPKs (JNK), AP-1 (activation pro-
tein-1), and NF-κB [19,20]. TLR-4 signaling plays a key role in arthritis pathogenesis by 
activating a number of downstream signaling proteins including MAPKs (JNK), AP-1, 
and NF-κB. The activation of these signaling pathways results in the production of pro-
inflammatory cytokines, aggravating the joint’s inflammatory milieu [20,21]. Further-
more, despite their different biological functions, the pharmacokinetic and toxicokinetic 
aspects of these drugs have not been thoroughly investigated. Any compound’s pharma-
cokinetic and toxicokinetic properties have a substantial impact on its pharmacodynamic 
efficacy and ability to be used clinically [19–21]. These compounds were retrieved from 
the PubChem database and downloaded as a three-dimensional (3D) representation in the 
SDF structural format (SDF) [22]. The ligands were converted to the PDB file using Open 
Babel software and their energies were minimized [23]. 
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Figure 1. The selected plant product docked against the TLR-4, NF-κB, JNK, and AP-1. 

2.3. Docking Protocol 
The downloaded protein structures were downloaded in the PDB format and MGL 

Tools was used to convert them into the pre-requisite PDBQT format [24]. The proteins 
were prepared by adding polar hydrogen atoms, and gasteiger charges before docking 
were processed in MGL Tools. The AutoDock Vina software was used to perform the 
docking analysis [25]. The size and dimension of the Grid box was selected using co-crys-
talized ligand coordinates within the target protein [26]. Visualization of the protein–lig-
and interaction was performed using Discovery Studio Visualizer_16 for the presentation 
in two- and three-dimensions [27]. 

2.4. Pharmacokinetics Parameters Assessment 
The pharmacokinetic behaviors of the selected compounds were assessed using Swis-

sADME and pkCSM software [28,29]. The various parameters that were considered in-
cluded intestinal absorption, the blood–brain barrier (BBB), Caco-2 cell, metabolism, and 
P-glycoprotein substrate [28,30]. 

2.5. Toxicokinetic Parameter Assessment 
The toxicokinetic parameters were assessed with pkCSM and SwissADME using the 

computational approach [27]. The toxicity of the selected compounds was assessed for 
minnow toxicity, hepatotoxicity, skin sensitivity, cardiac toxicity, and oral maximum tol-
erable dose [31]. 
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2.6. Drug-Likeness Analysis 
The drug-likeness behavior of the studied compounds was analyzed using the bioinfor-

matics software SwissADME and pkCSM [32]. The drug likeness behavior provides a quali-
tative insight into the pharmacokinetic parameters of the compounds after oral administration 
using the Lipinski rule including their absorption, bioavailability, and physico-chemical char-
acteristics [33]. Similarly, the toxicokinetic profile of the studied compounds was investigated 
computationally against the liver, heart, and Ames toxicity test [34]. 

2.7. MD Simulation 
Molecular dynamic simulation was performed using YASARA structure software 

(version 14.12.2) (Wien, Austria) by selecting the AMBER14 force field [35]. The whole 
protein was embedded in the water-filled simulation cell (20 Å). During the entire simu-
lation process, the experimental condition was maintained at a constant pressure (107p) 
and a temperature of 298 K. The TLR-4 protein and rutin molecule was placed at the center 
of the cubic box, adding the counterion to adjust the pH to the physiological level (i.e., 7.4) 
[36]. The simulation was commenced for 150 ns with a 2.5 fs time step at a constant tem-
perature and pressure (NPT ensemble) [37]. A pre-established macro script (md run.mcr) 
within the YASARA package was used during the simulation steps and the output of the 
conformation was 100 ps [38]. The results of the simulations were visualized using Dis-
covery Studio Visualizer version 2018. 

2.8. Analysis of MD Simulation and Calculation of Secondary Structure Content 
The TLR-4 protein flexibility was analyzed during the simulation process by assessing 

the different parameter of all of the amino acid residues for 150 ns [39,40]. The RMSD and 
RMSF, which indicate the overall stability of the hit compounds, were calculated. The various 
factors that were assessed included C alpha, backbone, and the RMSD of all of the atoms of 
the TLR-4 and rutin complex for 150 ns [39,41]. The secondary structural features of the TLR-
4 protein before the MD simulation and after the simulation were assessed using secondary 
YASARA software. The results also consist of the percent contribution of the sheet, helix, turn, 
and coil compared to the total structure composition [39,42]. 

2.9. Statistical Analysis 
The GraphPad Prism version 5 software (GraphPad software, San Diego, CA, USA) 

was used to plot the docking score of the protein and ligand complex. 

3. Results 
3.1. The Physico-Chemical Analysis of Selected Compounds 

The physico-chemical analysis of the selected compounds was assessed using a com-
putational tool (swissAMDE software) [43]. The various properties that were evaluated 
included molecular weight, LogP, the number of rotational bonds, the number of H-bond 
acceptors, the number of H-bond donors, and surface area [43]. The compounds showed 
variable physico-chemical properties, as shown in Table 1. Icariin showed higher molec-
ular weight, while the linoleic acid showed the lowest molecular weight. Rutin showed 
the lowest LogP value, while linoleic acid exhibited the highest LogP value. The linoleic 
acid showed the highest rotational bonds, while the matrine, coumarin, and alactolactone 
revealed the lowest rotational bonds. Similarly, icariin showed the highest H-bond accep-
tors, while linoleic acid and continentalic acid showed the lowest H-bond acceptors. Rutin 
showed the highest H-bond donor value, while anomalin, alantolactone, matrine, couma-
rin, and berberin exhibited a lower H-bond energy. Icariin showed the maximum surface 
area, while coumarin showed the lowest surface area, as shown in Table 1. 
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Table 1. The analysis of the physico-chemical properties of the selected compounds using compu-
tational analysis. 

S. No Molecular 
Weight LogP Rotatable 

Bonds Acceptors Donors Surface 
Area 

Anomalin 426.465 4.3925 4 7 0 179.832 
Alantolactone 232.323 3.2406 0 2 0 102.727 

Baicalein 270.24 2.5768 1 5 3 112.519 
Berberin 336.367 3.0963 2 4 0 144.867 
Bergenin 328.273 −1.2006 2 9 5 129.813 
Catechin 290.271 1.5461 1 6 5 119.662 

Continentalic 
acid 

302.458 5.2062 2 1 1 134.232 

Coumarin 146.145 1.793 0 2 0 63.079 
Epi-catechin 290.271 1.5461 1 6 5 119.662 
Ferulic acid 194.186 1.4986 3 3 2 81.065 
Gallic acid 170.12 0.5016 1 4 4 67.135 
Honokiol 266.34 4.2218 5 2 2 118.887 

Icariin 676.668 0.0679 9 15 8 273.926 
Linoleic acid 28.452 5.8845 14 1 1 124.520 

Magnolol 266.34 4.2218 5 2 2 118.887 
Matrine 248.37 1.8717 0 2 0 109.506 

P-coumaric acid 164.16 1.49 2 2 2 69.587 
Pimelic acid 160.169 1.1061 6 2 2 64.840 

Poncirin 594.566 −0.8622 7 14 7 239.713 
Quercetin 302.238 1.988 1 7 5 122.108 

Rutin 610.521 −1.6871 6 16 10 240.901 
Vanillic acid 168.148 1.099 2 3 2 69.025 

3.2. Toxicokinetic Analysis of Selected Natural Compounds 
Except for berberin, no compound showed Ames toxicity, while no compound 

showed herG I toxicity and only honokiol, icariin, magnolol, poncirin, and rutin showed 
herG II toxicity, as shown in Table 2. Similarly, anomalin, berberin, continentalic acid and 
linoleic acid showed hepatotoxicity, while alantolactone, linoleic acid, and matrine 
showed skin sensitivity. Furthermore, the compounds showed variable properties with 
respect to T. Pyriformis toxicity, minnow toxicity, and oral toxicity, as shown in Table 2. 
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Table 2. The toxicity assessment of the selected compounds using computational assessment. 

S. No 
Ames 

Toxicit
y 

herG I 
Inhibito

r 

herG II 
Inhibito

r 

Hepatotoxici
ty  

Skin 
Sensitizati

on  

T. 
Pyriformis 

Toxicity 

Minnow 
Toxicity 

Max. 
Tolerated 

Dose 
(Human) 

Oral Rat 
Acute 

Toxicity 
(LD50) 

Oral Rat 
Chronic 
Toxicity 
(LOAEL) 

Anomalin NO NO NO YES NO 0.365 0.325 0.135 3.266 2.137 
Alantolacton

e 
NO NO NO NO YES 1.237 0.936 0.042 1.597 1.856 

Baicalein NO NO NO NO NO 0.42 1.25 0.498 2.325 2.645 
Berberin YES NO NO YES NO 0.354 −0.277 0.144 2.571 1.89 
Bergenin NO NO NO NO NO 0.285 5.688 −0.013 1.879 3.614 
Catechin NO NO NO NO NO 0.347 3.585 0.438 2.428 2.5 

Continentali
c acid 

NO NO NO YES NO 0.31 −0.35 0.008 1.838 2.207 

Coumarin NO NO NO NO NO 0.365 1.555 0.435 2.112 1.903 
Epi-catechin NO NO NO NO NO 0.347 3.585 0.438 2.428 2.5 
Ferulic acid NO NO NO NO NO 0.271 1.825 1.082 2.282 2.065 
Gallic acid NO NO NO NO NO 0.285 3.188 0.7 2.218 3.06 
Honokiol NO NO YES NO NO 0.749 0.14 0.305 2.184 1.791 

Icariin NO NO YES NO NO 0.285 5.51 0.451 2.631 5.081 
Linoleic acid NO NO NO YES YES 0.701 −1.31 −0.827 1.429 3.187 

Magnolol NO NO YES NO NO 0.941 −0.054 0.468 1.976 1.851 
Matrine NO NO NO NO YES 0.56 2.264 0.141 2.54 0.874 

P-cumaric 
acid NO NO NO NO NO 0.319 1.607 1.111 2.155 2.534 

Pimelic acid NO NO NO NO NO −0.103 2.006 0.106 1.338 3.11 
Poncirin NO NO YES NO NO 0.285 5.65 0.259 2.545 4.096 

Quercetin NO NO NO NO NO 0.288 3.721 0.499 2.471 2.612 
Rutin NO NO YES NO NO 0.452 2.491 3.673 0.285 7.677 

Vanillic acid NO NO NO NO NO 0.265 1.926 0719 2.454 2.032 

3.3. Pharmacokinetic Behavior 
The pharmacokinetic parameters of the selected compounds were evaluated using 

SwissADME software [44]. The pharmacokinetic parameters that were studied included 
GIT absorption, blood–brain barrier, Caco-2 cell permeability, glycoprotein substrate and 
inhibitor, and cytochrome p450 isoenzyme inhibition [32]. The selected compounds 
showed diverse pharmacokinetic behavior with respect to absorption, blood–brain barrier 
penetration, Caco-2 cell permeability, glycoprotein (serving as the substrate and inhibitor 
of the glycoprotein), and cytochrome p450 isoenzyme inhibition, as shown in Table 3. 
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Table 3. The pharmacokinetic parameter assessment of the selected compounds using the compu-
tational approach. 

Compounds 
GI 

Absorpti
on 

BBB 
Permeation 

Caco-2 
Permeabilit

y 

P-
Glycoprotei
n Substrate  

P-
Glycoprotei
n Inhibitor  

CYP1A2 
Inhibitor 

CYP2C19 
Inhibitor 

CYP2C9 
Inhibitor 

CYP3A4 
Inhibitor 

Anomalin High NO 0.938 NO YES NO YES YES YES 
Alantolactone High YES 1.603 NO YES NO YES YES NO 

Baicalein High  NO 1.117 NO NO YES NO NO YES 
Berberin High YES 1.734 YES NO YES NO NO YES 
Bergenin Low NO 0.289 YES NO NO NO NO NO 
Catechin Low NO −0.283 YES NO NO NO NO NO 

Continentalic 
acid High YES 1.742 NO NO NO YES YES NO 

Coumarin High YES 1.649 NO NO YES NO NO NO 
Epi-catechin Low  NO −0.283 YES NO NO NO NO NO 
Ferulic acid High YES 0.176 NO NO NO NO NO NO 
Gallic acid Low NO −0.081 NO NO NO NO NO YES 
Honokiol High  YES 1.586 YES NO YES YES YES YES 

Icariin Low NO −0805 YES YES NO NO NO NO 
Linoleic acid High YES 1.57 NO NO YES NO  YES NO 

Magnolol High YES 1.707 YES NO YES YES YES YES 
Matrine High YES 1.463 YES NO NO NO NO NO 

P-cumaric 
acid 

High YES 1.21 NO NO NO NO NO NO 

Pimelic acid High NO 0.598 NO NO NO NO NO NO 
Poncirin Low NO 0.62 YES YES NO NO NO NO 

Quercetin Low NO −0.229 YES NO YES  NO NO YES 
Rutin Low NO −0.949 YES NO NO NO NO NO 

Vanillic acid High NO 0.33 NO NO NO NO NO NO 

3.4. Drug-Likeness Behavior of the Studied Compounds 
The drug-likeness properties such as the Lipinski rule, Ghose, Veber, Egan, and 

Muegge rule can be found using the computational approach [45]. Most of the study com-
pounds followed the Lipinski rule except for icariin, poncirin, and vanillic acid. However, 
the compounds showed variable properties in terms of the Ghose, Veber, Egan, and 
Muegge rule, as shown in the Table 4. 
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Table 4. The drug-likeness behavior of the selected compounds using computational analysis. 

Compounds Lipinski Ghose Veber Egan Muegge 
Anomalin YES YES YES YES YES 

Alantolactone YES YES YES YES YES 
Baicalein YES YES YES YES YES 
Berberin YES YES YES YES YES 
Bergenin YES NO NO NO YES 
Catechin YES YES YES YES YES 

Continentalic 
acid YES YES YES YES NO 

Coumarin YES NO YES YES NO 
Epi-catechin YES YES YES YES YES 
Ferulic acid YES YES YES YES NO 
Gallic acid YES NO YES YES NO 
Honokiol YES YES YES YES YES 

Icariin NO NO NO NO NO 
Linoleic acid YES NO NO NO NO 

Magnolol YES YES YES YES YES 
Matrine YES YES YES YES YES 

P-cumaric 
acid 

YES YES YES YES NO 

Pimelic acid YES NO YES YES NO 
Poncirin NO NO NO NO NO 

Quercetin YES YES YES YES YES 
Rutin NO NO NO NO NO 

Vanillic acid YES YES YES YES NO 

3.5. Bioavailability Radar Analysis of the Drugs 
Radar analysis was performed for all of the studied compounds, which is a compu-

tational tool that gains ideas about the rule, followed by compounds such as FLEX, LIPO, 
SIZE, POLAR, INSATU, and INSOLU [45]. These parameters provide an insight into the 
drug likeness behavior of the studied compounds. The bioavailability radar analysis was 
analyzed using the computational approach (pink area represent optimal range of partic-
ular property) using SwissADME software. The LIPO represents lipophilicity as the 
XLOGP3, size represents the molecular weight of the compound, POLAR (topological po-
lar surface area) represents the polarity, INSOLU represents the insolubility in water by 
log S scale, INSATU represents the instauration as per fraction in the carbon in the SP3 
hybridization, and FLEX represents the flexibility as per rotatable bonds. The anomalin, 
matrine, pimelic acid, alantolactone, and bergenin showed promise as a bioavailability 
radar, as shown in Figure 2. 
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Figure 2. The bioavailability radar analysis of the selected compounds using SwissADME software. 
The various properties that were assessed included LIPO, FLEX, SIZE, POLAR, INSOLU, and IN-
SATU, which indicates the lipophilicity, Molecular weight, polarity, water solubility, etc. The com-
pounds lying within the gray area reflect a good pharmacokinetic and drug profile. 

3.6. Boiled Egg Analysis 
The SwissADME software was used for the boiled egg analysis [46]. The boiled egg 

analysis provides useful information about the BBB, HIA, PG+, and PG- [47]. The com-
pounds that showed BBB permeability included linoleic acid, continentalic acid, magno-
lol, honokiol, alantolactone, berberine, coumarin, matrine, p-cumaric acid, ferulic acid, 
and vanillic acid while the rest of the compounds showed intestinal absorption, but no 
BBB permeability, as shown in Figure 3. 
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. 

Figure 3. The boiled egg analysis was performed to assess the blood–brain barrier and human in-
testinal absorption of the studied compounds. The compounds that can penetrate the blood–brain 
barrier lie within the yellow color, while those lying within the yellow color indicate not permeable 
to the brain. 

3.7. Molecular Docking of Selected Compounds with TLR-4 
The TLR-4 is a surface receptor that interacts with the LPS to induce the downstream 

signaling and produce the inflammatory response [48]. The molecular docking analysis of 
the selected compounds was performed using AutoDock Vina software against the TLR-
4 receptor. The compounds showed different affinity toward the target protein (i.e., TLR-
4). Among these compounds, anomalin, baicalein, berberin, catechin, continentalic acid, 
epi-catechin, icariin, poncirin, and rutin have shown the lowest binding score. These com-
pounds interacted via multiple hydrophilic and hydrophobic bonds. The anomalin exhib-
ited three H-bonds (Met B437, His A458, Gln B436) with the TLR-4 receptor. Similarly, 
baicalein binds with the TLR-4 protein via two H-bonds (ASN A486, ASN B531), berberin 
binds via two H-bonds (His A456, His A555), catechin binds via two H-bonds (Thr B459, 
ARG A460), continentalic acid binds via two H-bonds (Gln B507, Ser B482), and epi-cate-
chin binds via three H-bonds (Leu A553, His A555, Gln A505) with TLR-4. Moreover, icar-
iin binds with the TLR-4 via five H-bonds (Leu B434, Arg B460, Gln B507, Met B437, Glu 
B439), poncirin binds by five H-bonds (His A456, Arg A460, His B458, Gln B507, Gly B480, 
Thr B459), and rutin via four H-bonds (His A458, Arg A460, Ser A438, His B458), as shown 
in Figure 4. The molecular docking energies are represented in kcal/mol and are presented 
in Table 5. 



Molecules 2022, 27, 4319 12 of 25 
 

 

. 

Figure 4. The molecular docking analysis of the selected compounds with the TLR-4 receptor using 
AutoDock Vina software. The molecular docking showed binding of the studied ligand with the 
TLR-4 via multiple hydrophilic and hydrophobic bonds. The ligand and protein interactions were 
visualized in Discovery Studio Visualizer_16 and ligands whose negative binding energy was high 
were plotted. 
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Table 5. The molecular docking score of the selected compounds against the TLR-4, JNK, NF-κB, 
and AP-1 proteins. 

Sample TLR-4 (4g8e) 
Energy (kcal/mol) 

JNK (30xi) 
Energy (kcal/mol) 

P65 (1le5) 
Energy (kcal/mol) 

AP-1 (4hmy) 
Energy (kcal/mol) 

Anomalin −7.0 −7.0 −6.6 −7.0 
Alantalactone −6.2 −7.1 −7.1 −8.7 

Baicalein −7.7 −8.1 −8.0 −8.6 
Berberin −7.6 −8.2 −6.9 −8.1 
Bergenin −7.5 −7.5 −6.7 −6.9 
Catechin −7.5 −7.3 −7.3 −7.9 

Continentalic acid −7.3 −6.8 −6.9 −7.5 
Coumarin −6.2 −6.9 −6.3 −7.9 

Epi-catechin −7.9 −7.6 −7.6 −8.6 
Ferulic acid −5.9 −6.2 −5.7 −6.9 
Gallic acid −6.0 −5.6 −6.0 −6.1 
Honokiol −6.7 −7.2 −7.1 −7.8 

Icariin −9.1 −9.4 −7.0 −9.1 
Linoleic acid −4.7 −5.9 −4.9 −5.9 

Magnolol −6.9 −7.5 −6.9 −8.9 
Matrine −6.1 −6.8 −7.1 −6.6 

P-coumaric acid −5.8 −6.1 −5.2 −6.6 
Pimelic acid −4.5 −4.6 −5.3 −5.4 

Poncirin −10.1 −9.5 −9.4 −8.0 
Quercetin −8.0 −7.8 −7.3 −8.0 

Rutin −10.4 −9.1 −7.8 −8.6 
Vanillic acid −6.1 −5.6 −5.2 −6.2 

3.8. Docking Interaction with the NF-κB 
NF-κB activation is followed by interaction of the LPS with the TLR-4 receptor. NF-

κB translocates to the nucleus to induce the pro-inflammatory cytokine genes and aggra-
vates the underlying inflammation [48]. Several compounds have shown promising bind-
ing affinities with NF-κB via multiple hydrophilic and hydrophobic bonds. The com-
pounds that showed the highest negative binding energies included alantolactone, cate-
chin, epi-catechin, icariin, poncirin, quercetin, and rutin. Alantolactone binds with one H-
bond (Ard B161), catechin via four H-bonds (Thr B122, Gly B162, Gly B181, Gly B180), epi-
catechin via two H-bonds (Glu A89, Gln A132), icariin via four H-bonds with the NF-κB 
(Arg B54, Ser B240, Asn B247, Arg B51), poncirin with four H-bonds (Leu B140, Ser B110, 
Asp B118, Arg B154), quercetin via two H-bonds (Arg B161, Phe B225), and rutin showed 
four H-bonds with NF-κB (Val B169, Gln B196, Gln B201, Ser B171), as shown in Figure 5. 
The molecular docking energies are represented in kcal/mol and are presented in Table 5. 
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Figure 5. The molecular docking analysis of the selected compounds with the NF-κB receptor using 
AutoDock Vina software. The molecular docking showed binding of the studied ligand with the 
NF-κB via multiple hydrophilic and hydrophobic bonds. The ligand and protein interactions were 
visualized in Discovery Studio Visualizer_16 and ligands whose negative binding energy was high 
were plotted. 

3.9. Docking Interaction with the MAPKs (JNK) 
The molecular docking interaction was performed targeting the mitogen activating 

protein kinases (MAPKs) [49]. The MAPK activation is under the influence of upstream 
signaling proteins such as MyD88, TIRAF, and TRAP [50]. The phosphorylation of 
MAPKs triggers the activation of the downstream transcription factor (i.e., AP-1). The 
phosphorylated JNK interacts with the downstream transcription factor and induces the 
expression of concerned genes. The molecular docking analysis showed the highest neg-
ative binding energies with the anomalin, alnatolactone, baicalein, berberin, bergenin, cat-
echin, epi-catechin, honokiol, icariin, magnolol, poncirin, quercetin, and rutin. Anomalin 
binds with one H-bond (Asn A194), baicalein (Glu A147), bergenin (Met A149), catechin 
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bind with one H-bond (Lys A93), icariin binds with seven H-bonds (Asp A150, Ala A151, 
Lys A191, Lys A93, Ile A70, Ser A193, Gln A75), poncirin via three H-bonds (Met A 149, 
Lys A93, Asp A207), quercetin via two H-bonds (Gln A75, Glu A147), and rutin via four 
H-bonds with the JNK protein (Lys A93, Asn A194, Asp A189, Gln A75), as showbn in 
Figure 6. The molecular docking energies are represented in kcal/mol and are presented 
in Table 5. 

 
Figure 6. The molecular docking analysis of the selected compounds with the JNK receptor using 
AutoDock Vina software. The molecular docking showed binding of the studied ligand with the 
JNK via multiple hydrophilic and hydrophobic bonds. The ligand and protein interactions were 
visualized in Discovery Studio Visualizer_16 and ligands whose negative binding energy was high 
were plotted. 

3.10. Docking Interaction with the AP-1 
The computational analysis was performed to assess the binding interaction and ex-

plore the possible mechanism of interaction of the studied compounds with the AP-1 tran-
scriptional factor [49]. AP-1 is a transcriptional factor that is activated when it receives 
upstream signals from the MAPK protein. Following activation, AP-1 induces the expres-
sion of various genes associated with inflammation and oxidative stress [51]. The molec-
ular docking analysis revealed the highest negative binding energies for several selected 
compounds such as alanatolactone, baicalein, bergenin, catechin, continentalic acid, cou-
marin, epi-catechin, honokiol, icariin, magnolol, poncirin, quercetin, and rutin. Baicalein 
binds with AP-1 via four H-bonds (Asp B553, Arg B375, Asp B340, Lys B372), bergenin 
via one H-bond (Ser B468), catechin via two H-bonds (Ala B362, Leu B355), coumarin via 
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one H-bond (Leu B395), honokiol (Leu B436), icariin bind with five H-bonds (Asn A516, 
Asp B416, Lys B415, Arg B304, Asp A556), magnolol binds with one H-bond (Thr B394), 
poncirin with three H-bonds (Arg B379, Asp B416, Lys B415), quercetin via a single H-
bond (Arg B375), and rutin via seven H-bonds (Ser A518, Asp B533, Arg B379, Glu B409, 
Lys B372, Ser A520, Asp B556), as shown in Figure 7. The molecular docking energies are 
represented in kcal/mol and are presented in Table 5. 

 
Figure 7. The molecular docking analysis of the selected compounds with the AP-1 protein using 
AutoDock Vina software. The molecular docking showed binding of the studied ligand with AP-1 
via multiple hydrophilic and hydrophobic bonds. The ligand and protein interactions were visual-
ized in Discovery Studio Visualizer_16 and ligands whose negative binding energy was high were 
plotted. 

3.11. Analysis of MD Simulation and Calculation of Secondary Structure Content 
The MD simulation studies were performed to assess the binding stability of TLR-4 

and rutin using YASARA software [52]. The root mean square fluctuation and root mean 
square displacement were measured to assess the stability of the TLR-4 and rutin complex 
[52]. The results of the MD simulation were obtained from the TLR-4 protein backbone 
flexibility by plotting the RMSD, RMSF, and radius of gyration of all of the amino acid 
residues of TLR-4 [52]. 
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3.12. RMSD Analysis 
The stability of the ligand (i.e., rutin within the active pocket of the TLR-4 receptor) 

and the effect of the ligand on the stability of the overall ligand–protein complex was as-
sessed using the RMSD plot. The results of the simulation revealed that the complex was 
stable and the RMSD was within the acceptable region (less than 2 Å). The average RMSD 
value was found to be in the range of 0.2 and 0.75. Figure 8 shows that the complex re-
mained stable; however, at a few points during the MD simulation, there was some fluc-
tuation for a small period within the acceptable range (avg. RMSD of 0.45 Å). Afterward, 
the complex became stabilized for the rest of the simulation (i.e., 150 ns). Thus, the result 
of the simulation suggests a stable internal motion and minimum fluctuation during the 
whole process of simulation. The difference in RMSD is associated with the binding and 
unbinding of the ligand with the protein with the passage of time. Furthermore, the sta-
bility of the system can be assessed from the smooth entrance of the system into the pro-
duction phase and the ligand remains intact with the protein. Apart from this, the small 
molecule simulation affected the system in a different way when the orientation of the 
ligand changed over time during the MD simulation. 

 
Figure 8. The MD simulation analysis using the root mean square deviation (RMSD) plot. The MD 
simulation was performed to assess the RMSD value of the TLR-4 and rutin complex for 150 ns. The 
MD simulation analysis showed a RMSD score within the acceptable range and no significant devi-
ation was observed. 

3.13. RMSF Analysis 
The RMSF analysis exhibited the flexibility of the residues. As evident from Figure 9, 

the flexibility pattern was almost similar and was noted between 4.05 to 4.25 in all second-
ary components, except for the region where the loop was located and showed an in-
creased fluctuation of the residues, as shown in Figure 9. However, the residue of the 
active site remains stable during the process of simulation because of the active site recog-
nition of the ligand. The findings of the simulation showed that TLR-4 was stabilized fol-
lowing binding of the rutin ligand (i.e., the binding of the ligand markedly affected the 
fluctuation of the residue) and is due to the internal residue’s disturbance by the ligand 
interaction with TLR-4, which influences the correlated and non-correlated motions. 
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Figure 9. The MD simulation analysis using the root mean fluctuation (RMSF) plot. The molecular 
dynamic simulation revealed that the RMSF value of the TLR-4 and rutin complex was within the 
acceptable range and no significant deviation was noted. 

3.14. Radius of Gyration 
The radius of gyration (RoG) provides insights into the stability of the folding and 

unfolding of protein during ligand interaction within the protein. The high compactness 
(more folding) indicates a low Rdg value and higher structural stiffness, while low com-
pactness (more unfolding) indicates a high RdG and less structural stiffness. In short, the 
RdG value tends to provide information about the system compactness during simulation. 
As evident from Figure 10, the ligand–protein complex showed a gyration score of 1.5 to 
5.5 Å across the whole duration of the simulation. Relative high fluctuation at the C- and 
N-terminal of the protein was due to large-scale conformational motions. Based on the 
MD simulation data, we can decipher the overall compactness of the complexes, which is 
greatly influenced by the binding and unbinding of the ligand within the protein. 

 
Figure 10. The MD simulation analysis using the radius of gyration (RdG) plot. The MD simulation 
analysis of the TLR-4 and rutin complex showed a radius of gyration within the acceptable range. 
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4. Discussion 
The inflammatory response is considered to be a protective mechanism to fend off 

the offending agent, however, if not dealt with properly, it can lead to deleterious effects 
on the body [53]. The inflammatory process is associated with the plethora of events such 
as vascular dilation, immune cells infiltration, and the production of pro-inflammatory 
mediators [54]. During inflammatory insult, the vascular compartment becomes dilated 
and facilitates the infiltration of the immune cells. The infiltrated immune cells aim to 
counter the offensive agents and inhibit the systemic dissemination of the inflammatory 
response [54]. The infiltrated immune cells trigger the release of pro-inflammatory medi-
ators such as cytokines, chemokines, and even free radicals [55]. These mediators further 
facilitate the infiltration of the immune cells and inflammatory mediators, which is asso-
ciated with the tissue damage and discomfort. Several efforts are underway to explore 
new avenues for the treatment of inflammation and associated symptoms [56]. Plants are 
a rich and cheap source of drug development, and numerous plant-derived products are 
in clinical practice for the ailment of various diseases [57]. Computational drug design has 
recently been of focus for new drug development. In recent times, its use for the discovery 
of new drug development and the screening of large libraries of compounds in a very 
short time has tremendously increased [56]. 

The current study investigated the natural compounds for anti-inflammatory activi-
ties targeting TLR-4/AP-1 signaling [58]. TLR-4 signaling plays a crucial role in inflamma-
tion following binding with the LPS, which induces the downstream pathway to stimulate 
the production of inflammatory cytokines [8]. The TLR-4 activation recruits the cytosolic 
protein such as MyD88 and TIRAP toward the plasma membrane, which crosstalk with 
the NF-κB and MAPKs (JNK). The NF-κB remains inactive within the cytoplasmic due to 
the inhibitory action of the IκB and cannot translocate into the nucleus to augment the 
production of pro-inflammatory genes [8]. However, during stressful conditions, IκB un-
dergoes phosphorylation and degradation, which leads to the activation of NF-κB. Once, 
the NF-κB (p65 unit) enter the nucleus, it induces the expression of concerned genes asso-
ciated with inflammation such as cytokines. Similarly, the MAPK protein is downstream 
to MyD88 and is responsible for the induction of pro-inflammatory cytokines via AP-1 
signaling. The AP-1 serves as transcriptional factors and associated with the regulation of 
numerous genes [58]. 

The molecular docking analysis of the selected compound with TLR-4 showed a dif-
ference in the binding energies and the docking score ranged between −4.7 kcal/mol with 
pimelic acid and −10.4 kcal/mol energy with rutin. These ligands showed multiple hydro-
philic and hydrophilic binding with the protein targets. According to the study of Weitao 
Fu et al. (2016), it was found that inhibiting the TLR-4 receptor caused downstream sig-
naling to be inhibited, resulting in a significant reduction in the inflammatory response in 
several in vitro and in vivo investigations. Furthermore, Li-Shuang Hou et al. (2020) 
showed that the inhibition of the TLR-4 receptor by rutin improved the hepatic inflamma-
tion and reduced the hepatic fibrosis [59]. Furthermore, inhibiting TLR-4 upstream caused 
a decrease in the expression of downstream signaling proteins including MAPKs and NF-
κB, which resulted in a reduction in inflammatory cytokines [59]. Additionally, the mo-
lecular docking analysis of the selected compounds with the MAPKs (JNK) revealed mul-
tiple interactions via both hydrophilic and hydrophobic bonds. However, the docking 
score of the JNK with the selected compounds ranged between −4.6 kcal/mol and −9.5 
kcal/mol. Pimelic acid showed the lowest binding energy (−4.6 kcal/mol) and poncirin ex-
hibited the highest binding energy (−9.5 kcal/mol). Poncirin interacted with the JNK pro-
tein by multiple H-bonds and hydrophobic bonds. The JNK is linked downstream with 
the AP-1 (activated protein-1) transcriptional factor, which induces the expression of mul-
tiple genes concerned with inflammation, and thus by inhibiting the JNK protein, it will 
lead to the reduced expression of pro-inflammatory genes [60]. The result of the present 
study is consistent with the study of Ullah et al. (2022), which reported that the inhibition 
of the JNK significantly reduced the hepatic inflammation and inflammatory mediators 
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[60]. Similarly, the molecular docking analysis showed the lowest binding energy of 
pimelic acid with the AP-1 protein (−5.4 kcal/mol) and the highest binding energy with 
icariin (−9.1 kcal/mol). Icariin showed multiple H-bonds and hydrophobic bonds with the 
AP-1 protein. The AP-1 comprised of two subunits (i.e., c-fos and c-jun )and its activation 
by the MAPK upstream protein significantly induced its activation and aggravated the 
inflammatory response. The result of the present study was supported by the study of 
Hosek et al. (2019), where the inhibition of the AP-1 signaling significantly reduced the 
inflammatory cytokines and pain associated with the rheumatoid arthritis [61]. 

Furthermore, the molecular docking with tNF-κB showed binding energies between 
−4.9 kcal/mol (linoleic acid) and −9.4 kcal/mol (poncirin). The NF-κB and selected com-
pounds showed multiple hydrophilic bonds and hydrophilic bonds. Poncirin showed the 
highest binding affinity for the NF-κB and interacted via multiple H-bonds and hydro-
phobic bonds. The NF-κB, once activated following degradation of the IkB within the cy-
tosol, was translocated to the nucleus and induced the expression of the genes concerned 
with inflammatory cytokines such as IL-1B, IL-6, and TNF-a. The result of the present 
study was supported by Khan et al. (2019) where the increased expression of the IkB pro-
tein inhibited the NF-κB activation, which led to significant improvement in inflammation 
and inflammatory arthritis [1]. 

The computational approach has gained significant attention in the rapid screening 
of physico-chemical properties of new drugs [62]. The computational methods provide an 
important insight into the molecular weight, LogP value, number of rotational bonds, 
number of acceptors and donors, and surface area. The computational analysis showed 
the diverse physico-chemical behavior of the selected compounds. The various toxicity 
tests that were evaluated includes carcinogenicity, cardiotoxicity using herG enzyme, 
hepatotoxicity, skin sensitivity, minnow toxicity, and maximum tolerated dose. The max-
imum compounds showed no carcinogenicity, most of the compounds exhibited no tox-
icity against the liver, and no minnow toxicity was observed. Prior to introducing a sub-
stance into clinical practice, it is critical to investigate its toxicity on essential organs such 
as the liver, kidneys, and heart [63,64]. Similarly, detailed information on the carcinogen-
icity and mutagenicity is critical during pre-clinical trials to avoid the harmful effects of 
such substances on humans. Information on the chemical toxicity assessment is not only 
crucial, but also very time-consuming by employing in vitro and in vivo methods [63,64]. 
As a result, computer-based assessment can help examine the toxicokinetic aspects of a 
large number of compounds in a short amount of time [65]. Similarly, a computer-based 
toxicity assessment, which includes carcinogenicity, mutagenicity, and influence on vital 
organ toxicities, is increasingly widely used in pre-clinical investigations since it reduces 
the toxicity evaluation time and has excellent reliability, as previously reported [63,64]. 
The pharmacokinetic parameters of the selected compounds were assessed using compu-
tational approaches [55]. Any compound’s pharmacokinetic characteristic has a major im-
pact on the compound’s pharmacodynamic activity [21]. Absorption, bioavailability, vol-
ume of distribution, hydrophilicity, lipophilicity, permeability into the brain, metabolism, 
and excretion are all aspects of pharmacokinetics [21,60]. Using in vitro and in vivo mod-
els to determine the pharmacokinetics of a large number of drugs is time consuming, ex-
pensive, and challenging [21,60]. In silico pharmacokinetic investigations, on the other 
hand, are an efficient way of screening a large number of drugs in a short amount of time, 
are inexpensive and have a high level of reliability. The pharmacokinetic parameters were 
assessed using in silico analysis in this study [60,65]. The various parameters that were 
assessed included intestinal absorption, the blood–brain barrier, Caco-2 permeability, cy-
tochrome p450, and P-glycoprotein activity. The 14 compounds showed high GIT absorp-
tion, 10 compounds also showed BBB properties, and the selected compounds portrayed 
differences in their glycoprotein and cytochrome p450 activities. Similarly, the drug-like-
ness properties were found for all of the selected compounds using SwissADME software. 
The drug-likeness properties showed that most of the compounds obeyed the Lipinski 
rule, Ghose, Veber, Egan, and Muegge. The boiled egg analysis was performed using 
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SwissADME software to assess the BBB, human intestinal absorption, and P-glycoprotein 
substrate. Several selected compounds showed BBB permeability and P-glycoprotein sub-
strate activity. 

Computational analysis is a fast and efficient method of screening compounds for a 
number of disorders including inflammation [66,67]. TLR-4 signaling leads downstream 
signaling proteins to become active during inflammatory conditions, boosting the expres-
sion of pro-inflammatory cytokines, and aggravating the underlying inflammatory dis-
ease. By targeting the upstream TLR-4 and downstream signaling cascades, the com-
pounds were investigated for their inflammatory activities using molecular docking, MD 
modeling, and ADMET analysis [67]. This study sheds light on the selected compounds’ 
potential anti-inflammatory and anti-arthritic efficacy against the molecular signaling 
pathways implicated in inflammatory arthritis. The compounds with the highest binding 
energy can be employed to treat rheumatoid arthritis following further in-depth analysis. 
Rheumatoid arthritis affects a large percentage of the population, and its cases are steadily 
rising, having a substantial impact on the patient’s quality of life. The various treatment 
options are unable to effectively reduce all of the symptoms associated with the numerous 
interactable side effects. As a result, there is a need for alternative rheumatoid arthritis 
treatments that are both effective and safe. Because several compounds demonstrated 
promising activity against the inflammatory target, no significant toxicity against key or-
gans, and acceptable pharmacokinetic features, this study provides important insights 
into the treatment of rheumatoid arthritis. 

The current study used molecular docking, MD simulation, and ADMET analysis to 
provide a detail computational investigation of the selected compounds. The computa-
tional analysis revealed the potential binding energies for various compounds and re-
vealed the inflammatory protein target’s maximum affinity, while the MD analysis re-
vealed the stability of the ligand–protein complex. The ADMET study showed a wide 
range of pharmacokinetic and toxicokinetic features for the selected compounds. The 
compounds were not examined after computational analysis using in vitro and in vivo 
analysis, which is a major limitation of the study. The computational analysis can be ver-
ified by conducting detailed in vitro and in vivo analyses against the studied target, par-
ticularly for those molecules with the highest binding energy [67]. Similarly, the com-
pound with the highest binding energy was not studied utilizing an animal model or a 
cell-based assay for pharmacokinetic and toxicokinetic studies. 

5. Conclusions 
The molecular docking analysis showed different binding energies of the selected com-

pounds with the TLR-4, NF-κB, JNK, and AP-1 proteins. The compounds exhibited binding 
with the protein’s targets via multiple hydrophilic and hydrophobic bonds. Furthermore, the 
MD analysis showed significant stability of the ligand–protein complex, as evident from the 
RMSD, RMSF, and RoG. Furthermore, these compounds also portrayed diverse physico-
chemical, drug-likeness, pharmacokinetic, and toxicokinetic properties. Several compounds 
have exhibited strong affinities for TLR-/AP-1 signaling, which can be employed for the treat-
ment of inflammatory disorders. The study’s key limitation is that anti-inflammatory and anti-
arthritic efficacy in vitro and in vivo were not examined for the compounds with promising 
binding energies. The chemicals were also not tested in an in vivo model, despite substantial 
in silico pharmacokinetic and toxicokinetic analysis. 
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