
Citation: Hu, N.; Cai, Y.; Li, L.; Wang,

X.; Gao, J. Amino-Functionalized

Titanium Based Metal-Organic

Framework for Photocatalytic

Hydrogen Production. Molecules

2022, 27, 4241. https://doi.org/

10.3390/molecules27134241

Academic Editor: Tifeng Xia

Received: 9 June 2022

Accepted: 29 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Amino-Functionalized Titanium Based Metal-Organic
Framework for Photocatalytic Hydrogen Production
Niannian Hu 1, Youlie Cai 1 , Lan Li 2 , Xusheng Wang 1,3,4,* and Junkuo Gao 1,3,*

1 Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech
University, Hangzhou 310018, China; 202030302117@mails.zstu.edu.cn (N.H.);
201920301012@mails.zstu.edu.cn (Y.C.)

2 College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China;
lilan123@mail.ustc.edu.cn

3 Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
4 College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
* Correspondence: xswang@zstu.edu.cn (X.W.); jkgao@zstu.edu.cn (J.G.)

Abstract: Photocatalytic hydrogen production using stable metal-organic frameworks (MOFs), espe-
cially the titanium-based MOFs (Ti-MOFs) as photocatalysts is one of the most promising solutions
to solve the energy crisis. However, due to the high reactivity and harsh synthetic conditions, only
a limited number of Ti-MOFs have been reported so far. Herein, we synthesized a new amino-
functionalized Ti-MOFs, named NH2-ZSTU-2 (ZSTU stands for Zhejiang Sci-Tech University), for
photocatalytic hydrogen production under visible light irradiation. The NH2-ZSTU-2 was synthesized
by a facile solvothermal method, composed of 2,4,6-tri(4-carboxyphenylphenyl)-aniline (NH2-BTB)
triangular linker and infinite Ti-oxo chains. The structure and photoelectrochemical properties of
NH2-ZSTU-2 were fully studied by powder X-ray diffraction, scanning electron microscope, nitro
sorption isotherms, solid-state diffuse reflectance absorption spectra, and Mott–Schottky measure-
ments, etc., which conclude that NH2-ZSTU-2 was favorable for photocatalytic hydrogen production.
Benefitting from those structural features, NH2-ZSTU-2 showed steady hydrogen production rate
under visible light irradiation with average photocatalytic H2 yields of 431.45 µmol·g−1·h−1 with
triethanolamine and Pt as sacrificial agent and cocatalyst, respectively, which is almost 2.5 times
higher than that of its counterpart ZSTU-2. The stability and proposed photocatalysis mechanism
were also discussed. This work paves the way to design Ti-MOFs for photocatalysis.

Keywords: metal-organic frameworks; photocatalytic hydrogen production; amino-functionalized;
titanium; photocatalyst

1. Introduction

Photocatalytic hydrogen production from water using solar light as clean and sustain-
able energy is one of the most promising solutions to solve the energy crisis [1–5]. As a new
kind of porous materials, metal-organic frameworks (MOFs) have been applied in many
fields such as gas adsorption/storage/separation, sensor, drug delivery, batteries, electro-
catalysis, photocatalysis, due to their ultrahigh surface area and void space, adjustable
structure, tunable pore sizes, and modifiable internal surfaces [6–21]. Since Mori et al. first
reported that MOFs can achieve photocatalytic hydrogen production, a series of MOFs
have been reported to show potential in this application [22–29]. However, most of those
MOFs survived low stability during photocatalysis process.

Titanium-based MOFs (Ti-MOFs), as a kind of robust MOFs, are constructed by
organic ligands and high valent Ti4+ ions, showing high chemical stability [9,30]. The
high stability of Ti-MOFs can be explained by the Pearson’s hard-soft acid-base principle,
in which carboxylate ligands can be seen as hard base, and the high valent Ti4+ ions as
hard acid, thus, robust coordination bond between carboxylate ligand and Ti4+ ions are
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formed [7]. Moreover, titanium ions are preferred to form Ti-oxo clusters or infinite Ti-oxo
chains/sheets, which will be coordinated with many ligands, further strengthening the
stability of Ti-MOFs. However, due to the high reactivity and harsh synthetic conditions of
titanium precursors, only a limited number of Ti-MOFs have been reported so far [31–45].

Among the various semiconductors, TiO2 is the first example used for photocatalytic
hydrogen production due to its light sensitive Ti ions [46]. Superior to TiO2, Ti-MOFs not
only possess Ti-oxo clusters or Ti-oxo chains/sheets, but also have light harvested ligands,
endowing them with promising photocatalytic activity [47]. Especially, the adjustable
structures of Ti-MOFs make them efficiently utilize the solar light beyond ultraviolet region
(accounts only 4%). Herein, we synthesized an amino functionalized Ti-MOF, named
NH2-ZSTU-2 (ZSTU stands for Zhejiang Sci-Tech University), for photocatalytic hydrogen
production. This MOF is composed of infinite Ti-oxo chains and amino functionalized
ternary carboxylic acid ligands, which is isomorphic to ZSTU-2 (Figure 1). Compared with
the counterpart ZSTU-2, NH2-ZSTU-2 showed a nearly 2.5 times higher photocatalytic
hydrogen production activity with a rate of 431.45 µmol·g−1·h−1.
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The crystallinity of NH2-ZSTU-2 was improved by introducing acetic acid as the 
modulator, which can delay the crystallization speed of MOF, and finally obtain better 
crystallinity. The regular rod-shaped crystallites with diameter of approximately 50 nm 
and length of 150 nm were characterized by scanning electron microscope (SEM), which 
is isomorphic to ZSTU-2 (Figure 2). The size of NH2-ZSTU-2 is too small to directly deter-
mine the crystal structure using single-crystal diffraction measurements. Therefore, pow-
der x-ray diffraction (PXRD) analysis was used to discovery the MOF structure. The PXRD 
pattern of NH2-ZSTU-2 is quite similar to ZSTU-2 (Figure S1), and we thus modeled the 
structure of NH2-ZSTU-2 using the framework of ZSTU-2 with installed amino group on 
BTB linkers, followed by structural optimization using material studio. Based on the struc-
ture model, Pawley refinement was performed on the PXRD data, and we obtained the 
unit cell parameters of a = 11. 7987 Å, b = 34.6036 Å, and c = 20.1266 Å, and α = β = γ = 90°, 
with agreement factors of Rp = 0.0720 and Rwp = 0.0943 for NH2-ZSTU-2 (Figure 3), strongly 
supporting its validity. Detailed lattice parameters and atomic coordinates of NH2-ZSTU-
2 are provided in Tables S1 and S2. Based on the structure of NH2-ZSTU-2 we obtained by 
Pawley refinement, every six titanium atoms form a secondary unit of Ti6(μ3-O)6(COO)6 
through a bridge, while such a Ti6 cluster is interconnected on the c-axis by adjacent μ2-

Figure 1. Crystal structures of the ZSTU-2 (a) and NH2-ZSTU-2 (b).

2. Results and Discussions
2.1. Structural Characterizations of Photocatalysts

The crystallinity of NH2-ZSTU-2 was improved by introducing acetic acid as the
modulator, which can delay the crystallization speed of MOF, and finally obtain better
crystallinity. The regular rod-shaped crystallites with diameter of approximately 50 nm
and length of 150 nm were characterized by scanning electron microscope (SEM), which is
isomorphic to ZSTU-2 (Figure 2). The size of NH2-ZSTU-2 is too small to directly determine
the crystal structure using single-crystal diffraction measurements. Therefore, powder
X-ray diffraction (PXRD) analysis was used to discovery the MOF structure. The PXRD
pattern of NH2-ZSTU-2 is quite similar to ZSTU-2 (Figure S1), and we thus modeled the
structure of NH2-ZSTU-2 using the framework of ZSTU-2 with installed amino group
on BTB linkers, followed by structural optimization using material studio. Based on the
structure model, Pawley refinement was performed on the PXRD data, and we obtained the
unit cell parameters of a = 11. 7987 Å, b = 34.6036 Å, and c = 20.1266 Å, and α = β = γ = 90◦,
with agreement factors of Rp = 0.0720 and Rwp = 0.0943 for NH2-ZSTU-2 (Figure 3), strongly
supporting its validity. Detailed lattice parameters and atomic coordinates of NH2-ZSTU-2
are provided in Tables S1 and S2. Based on the structure of NH2-ZSTU-2 we obtained by
Pawley refinement, every six titanium atoms form a secondary unit of Ti6(µ3-O)6(COO)6
through a bridge, while such a Ti6 cluster is interconnected on the c-axis by adjacent µ2-OH
to form an infinite one-dimensional [Ti6(µ3-O)6(µ3-OH)6(COO)6]n chain of titanium-oxygen
clusters. The 1D Ti-oxo chains were then extended by the triangular NH2-BTB linkers to
form a 3D porous structure. The high porous structure of NH2-ZSTU-2 was further studied
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by nitrogen sorption isotherms (Figure 4). The calculated BET specific surface area from
nitrogen sorption isotherms is about 604 m2/g, which is comparable to its counterparts
ZSTU-2 (657 m2/g). Through the infrared (IR) spectrogram (Figure S2), we can find that
the titanium oxide bonds had been formed in both NH2-ZSTU-2 and ZSTU-2, with the
corresponding vibration band near 773 cm−1 [38]. Furthermore, IR vibration band at
approximately 1430 cm−1, 1604 cm−1, 3459 cm−1 are associated with the C-O stretching
vibration, the benzene ring skeleton vibration, and the stretching vibration of hydroxyl
coordination, respectively. Compared with ZSTU-2, an extra vibration band near 3399 cm−1

of NH2-ZSTU-2 can be attributed to the uncoordinated amino group. In addition, we found
that the IR peak at 3399 cm−1 was kept but 3459 cm−1 was decreased after heating the
NH2-ZSTU-2 at 200 ◦C for 2 h under vacuum, which indicated that the absorbed water was
vapored and the amino groups were retained after heating. In order to obtain the thermal
stability of the MOFs, thermogravimetry analysis (TG) was further studied (Figure S3).
Through the TG curves, we can conclude that both NH2-ZSTU-2 and ZSTU-2 can maintain
their structure at about 400 ◦C. The weight loss at around 200 ◦C is mainly attributed to the
loss of coordinated solvents in MOFs.
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As we know, the band structures determine thermodynamics of photocatalysts for
photocatalytic hydrogen production. The band gaps of ZSTU-2 and NH2-ZSTU-2 were first
studied by solid-state diffuse reflectance absorption spectra. As shown in Figure 5a, the
light harvesting region of ZSTU-2 can only reach 450 nm, and the corresponding band gap
calculated from Tauc plot is 3.29 eV (Figure 5b). To extend the absorption range of ZSTU-2
to visible region, amino functionalized NH2-BTB linkers were adopted to replace the H3BTB
linkers during MOF synthesis. The light absorption region of the NH2-ZSTU-2 illustrated
by solid-state diffuse reflectance absorption spectra can be largely extended to 700 nm
(Figure 5c), and the band gap is only 2.24 eV (Figure 5d). For photocatalysts, the larger light-
harvesting region and lower band gap mean that they can utilize more sunlight and achieve
better photocatalytic hydrogen production performance. The conduction band positions
of ZSTU-2 and NH2-ZSTU-2 were further determined by Mott–Schottky measurements.
Positive slope in both Figure 5e,f indicated that both ZSTU-2 and NH2-ZSTU-2 are n-type
semiconductors. The conduction band potentials of them were determined to be −0.68 eV
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and −0.66 eV, respectively. Then the valence band potentials of them were calculated to be
2.61 eV and 1.58 eV, respectively. The energy band diagram of ZSTU-2 and NH2-ZSTU-2
are shown in Figure S4. The introduction of amino groups in MOFs mainly shifts the
valence band potential to a higher position and shows little impact on the conduction band
potential. Based on the band structural information, we can conclude that both ZSTU-2
and NH2-ZSTU-2 were favorable for photocatalytic hydrogen production.
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2.2. Photoelectrochemical Characterizations of Photocatalysts

The generation of separated electron-hole pairs was characterized by both transient
photocurrent responses and electrochemical impedance spectroscopy (EIS) measurements.
As shown in Figure 6a, ZSTU-2 showed low transient photocurrent response under visible
light due to the narrow light-harvesting region. As expected, the transient photocurrent
responses of NH2-ZSTU-2 increased dramatically, which indicated that a better photogen-
erated charge carries separation efficiency. The EIS of NH2-ZSTU-2 was further studied
both with and without visible light irradiation. As shown in Figure 6b, compared with the
dark state, dramatically decreased radius of the EIS curve under visible light irradiation
indicated that a large number of separated electron-hole pairs were photogenerated in
NH2-ZSTU-2 with visible light shining on.
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2.3. Photocatalytic Hydrogen Production of Photocatalysts

Before photocatalytic hydrogen production, both MOFs were loaded with Pt using
a photo deposition method [48]. The Pt nanoparticles were successfully deposited in
MOFs and characterized by TEM (Figure S5). The photocatalytic hydrogen production
was then performed in TEOA/CH3CN/H2O mixed solvents under 300 W Xe lamp ir-
radiation with a L42 light filter and triethanolamine (TEOA) as a sacrificial agent, and
Pt as cocatalyst [48]. Before the photocatalytic reaction, the solution was degassed for
20 min to remove the dissolved O2 in solvent. The production of hydrogen was detected
by an on-line GC with a TCD detector. As shown in Figure 7a, both Pt@ZSTU-2 and
Pt@NH2-ZSTU-2 showed steady hydrogen production rate under visible light irradia-
tion. The average photocatalytic H2 yields of Pt@ZSTU-2 and Pt@NH2-ZSTU-2 were
170.45 µmol·g−1·h−1 and 431.45 µmol·g−1·h−1, respectively. The almost 2.5 times en-
hanced photocatalytic hydrogen production rate of Pt@NH2-ZSTU-2 is mainly attributed
to the enlarged light-harvested region. It should be noted that the cocatalyst Pt plays
important role on photocatalytic hydrogen production. The hydrogen production rate
of Pt@NH2-ZSTU-2 is also comparable to the state-of-the-art Ti-MOFs, such as PCN-416
(484 µmol·g−1·h−1), MIL-100(Ti) (42 µmol·g−1·h−1), MUV-10(Mn) (271 µmol·g−1·h−1),
NH2-MIL-125 (367 µmol·g−1·h−1) [28,49–51]. The stability of Pt@NH2-ZSTU-2 during pho-
tocatalysis was studied by the recycle experiments, which indicated that Pt@NH2-ZSTU-2
is stable at least three cycles under visible light irradiation. The hydrogen evolution rates
of the first, second and third cycles were 431.45 µmol·g−1·h−1, 421.50 µmol·g−1·h−1 and
420.71 µmol·g−1·h−1, respectively (Figure 7b). The retained PXRD patterns of the recycled
Pt@NH2-ZSTU-2 also indicated that Pt@NH2-ZSTU-2 is stable (Figure S3).
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Figure 7. Photocatalytic performance. (a) Time-dependent photocatalytic hydrogen production of
Pt@ZSTU-2, Pt@NH2-ZSTU-2, and NH2-ZSTU-2 in triethanolamine/acetonitrile/water system under
visible light irradiation; (b) recycle performance of Pt@NH2-ZSTU-2 under same condition.

A proposed, photocatalytic hydrogen evolution mechanism of Pt@NH2-ZSTU-2 is
shown in Figure 8. Under visible light irradiation, NH2-BTB linkers absorb light and the
generated photogenerated electrons then transfer to infinite Ti-oxo chains through LMCT
mechanism, thus reducing Ti4+ to Ti3+, and the photogenerated electrons in NH2-ZSTU-2
conduction band transfer to Pt cocatalyst for reduction of water to produce H2 [16,26,35].
The holes in the valence band oxidize the sacrificial agent TEOA to TEOA+, constituting a
complete REDOX reaction.
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3. Experimental
3.1. Synthesis of NH2-ZSTU-2

2,4,6-tris(4-carboxyphenyl)-aniline (NH2-BTB) (100 mg, 0.220 mmol) and ultra-dry
DMF (5 mL) were first added into a 25 mL Teflon-lined stainless-steel autoclave, and then
100 µL glacial acetic acid was added dropwise. After sonication for 10 min, NH2-BTB
was fully dissolved to obtain a yellow transparent solution, and then titanium tetraiso-
propanolate (Ti(i-Pro)4) (0.04 mL, 0.128 mmol) was added dropwise, and sonication was
performed for 20 min to form a yellow slurry. The autoclave was then heated in an oven
at 190 ◦C for 22 h. After cooling down, the yellow powder NH2-ZSTU-2 was obtained
by centrifuging and washing with DMF and methanol for several times. At last, NH2-
ZSTU-2 was dried in a vacuum oven at 60 ◦C for 12 h to remove the residual methanol.
CHN element analysis data of NH2-ZSTU-2 had also been done with average weight
ratio of 43.915:2.612:2.18. The chemical formula of NH2-ZSTU-2 was determined to be
Ti6(µ3-O)6(µ2-OH)6(NH2-BTB)2 (DMF)0.3 based on element analysis and its structural in-
formation obtained from Pawley refinement of PXRD data.

3.2. Synthesis of Pt@NH2-ZSTU-2

Pt NPs were deposited in the NH2-ZSTU-2 using a photo deposition method [52]. First,
NH2-ZSTU-2 (50 mg) was dispersed in a mixture of H2O (8 mL) and MeOH (13 mL) in a
reaction vessel. After NH2-ZSTU-2 was fully dispersed in the mixture, 1 mL chloroplatinic
acid hexahydrate aqueous solution (1.33 mg·mL−1) was then added and the system was
vacuumed for 20 min to remove the air. The mixture was then irradiated with a 300 W Xe
lamp without light filter for 4 h. The sample was then centrifuged and dried overnight in
an oven at 100 ◦C, and resulted sample was labeled as Pt@NH2-ZSTU-2. The chlorine and
Pt content in NH2-ZSTU-2 had been determined to be 1.25 wt% and 9.33 wt% by energy
dispersive spectrometer (FESEM, JEOL, Japan).

3.3. Photoelectrochemical Measurementsz

Electrode Preparation: About 10 mg of photocatalyst was dispersed in 1 mL of iso-
propanol, and then 30 µL of naphthol solution (5% w/w in water) was added, and the
mixture was sonicated for 2 h afterwards. The obtained dispersion was then dropped onto
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one side of a FTO glass with an area of 1 × 1 cm2 (total area of 1 × 3 cm2), and dried in air
at 60 ◦C on a hotplate.

Photocurrent measurements were carried out on an electrochemical workstation
(Shanghai Chenhua Instrument Co. Ltd., Shanghai, China) in a standard three-electrode
system with photocatalysts-coated FTO as the working electrode, Pt net as the counter
electrode, Ag/AgCl as the reference electrode, and 0.5 M Na2SO4 solution (pH ≈ 7.0) as
the electrolyte. A 300 W Xe lamp with a L42 light filter was used as visible light source,
and the photo-responsive signals of photocatalysts was then recorded with alternating 20 s
light on/off. Mott–Schottky plots of those photocatalysts were also performed on the same
workstation in a standard three-electrode system at frequencies of 500, 1000, 1500 HZ. EIS
curves were obtained using the same workstation and photocatalysts-coated FTO was used
as the working electrode.

3.4. Photocatalytic Hydrogen Production Experiments

The photocatalytic hydrogen production experiments were evaluated using a batch-
type reaction system (Beijing Perfectlight Technology, Beijing, China) at ambient temper-
ature irradiated by a 300 W Xe lamp equipped with a UV cut-off filter (>420 nm). The
temperature of condensed circulating water for cooling down the solvent vapor was set
to 1 ◦C. In a typical procedure, 50 mg sample was dispersed into 102 mL mixed solu-
tion of acetonitrile, triethanolamine (TEOA), and de-ionized water with volume ratio of
9:1:0.2, and then the suspension was vacuumed for 10 min to remove air. Hydrogen gas
was measured by an on-line gas chromatography (GC) (Techcomp-GC7900, argon as a
carrier gas) using a thermal conductivity detector (TCD). The production of hydrogen
was quantified by a calibration plot to the internal hydrogen standard. For the recycle
experiment, the procedure is as follows: after the first experiment test, the system was
vacuumed to remove the produced hydrogen and then the second run was restarted the
next day. Same procedure was carried out for the third run. In this way, we can avoid the
loss of photocatalyst during recovery.

4. Conclusions

In this work, we had synthesized an amino-functionalized Ti-MOF, named NH2-
ZSTU-2, for photocatalytic hydrogen production. The NH2-ZSTU-2 was synthesized
by a facile solvothermal method, composed of 2,4,6-tri(4-carboxyphenylphenyl)-aniline
(NH2-BTB) triangular linker and infinite Ti-oxo chains. The structure of NH2-ZSTU-2
was fully studied by PXRD, SEM, nitrogen sorption isotherms, etc. The band structural
information was also obtained by using solid-state diffuse reflectance absorption spectra
and Mott-Schottky measurements, which conclude that NH2-ZSTU-2 was favorable for
photocatalytic hydrogen production. The generation of separated electron-hole pairs
was also characterized by both transient photocurrent responses and electrochemical
impedance spectroscopy (EIS) measurements, further showing the potential photocatalytic
hydrogen production ability of NH2-ZSTU-2. Benefitting from those structural features,
NH2-ZSTU-2 showed steady hydrogen production rate under visible light irradiation with
average photocatalytic H2 yields of 431.45 µmol·g−1·h−1 with triethanolamine and Pt as
sacrificial agent and cocatalyst, respectively, which is almost 2.5 times higher than that of
its counterpart ZSTU-2. The stability and proposed photocatalysis mechanism were also
discussed. This work paves the way to design Ti-MOFs for photocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27134241/s1, Figure S1: The PXRD patterns of the simu-
lated ZSTU-2, as synthesized ZSTU-2, and NH2-ZSTU-2; Figure S2: Infrared spectra of the ZSTU-2,
NH2-ZSTU-2, and NH2-ZSTU-2 after heating at 200 °C under vacuum; Figure S3: Thermogravimetry
analysis of ZSTU-2 and NH2-ZSTU-2 under nitrogen atmosphere; Figure S4: The energy band dia-
gram of the ZSTU-2 and NH2-ZSTU-2; Figure S5: TEM image of Pt@NH2-ZSTU-2; Figure S6: Powder
XRD patterns of NH2-ZSTU-2 before and after three cycles of photocatalytic hydrogen production;
Table S1: Crystal data and refinement details; Table S2: Fractional atomic coordinates.
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