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Abstract: (1) Background: Non-small cell lung cancer (NSCLC) is the most common lung cancer. 

Enhancer RNA (eRNA) has potential utility in the diagnosis, prognosis and treatment of cancer, but 

the role of eRNAs in NSCLC metastasis is not clear; (2) Methods: Differentially expressed transcrip-

tion factors (DETFs), enhancer RNAs (DEEs), and target genes (DETGs) between primary NSCLC 

and metastatic NSCLC were identified. Prognostic DEEs (PDEEs) were screened by Cox regression 

analyses and a predicting model for metastatic NSCLC was constructed. We identified DEE inter-

actions with DETFs, DETGs, reverse phase protein arrays (RPPA) protein chips, immunocytes, and 

pathways to construct a regulation network using Pearson correlation. Finally, the mechanisms and 

clinical significance were explained using multi-dimensional validation unambiguously; (3) Re-

sults: A total of 255 DEEs were identified, and 24 PDEEs were selected into the multivariate Cox 

regression model (AUC = 0.699). Additionally, the NSCLC metastasis-specific regulation network 

was constructed, and six key PDEEs were defined (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, 

PSMF1 and TNS4); (4) Conclusions: This study focused on the exploration of the prognostic value 

of eRNAs in the metastasis of NSCLC. Finally, six eRNAs were identified as potential markers for 

the prediction of metastasis of NSCLC. 
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1. Introduction 

Lung cancer is the malignant tumor with the highest incidence and mortality rates in 

recent years. Approximately 1.6 million people die per annum as a result and lung cancer 

death rates worldwide are estimated to be higher by the World Health Organization 

(WHO) [1,2]. Non-small cell lung cancer (NSCLC) is the most common lung cancer, con-

sisting of over 80% of cases [3]. NSCLC is mainly treated with surgery, radiotherapy, or 

chemotherapy [4]. However, only a few patients with early-stage NSCLC can be treated 

by surgery, which makes the 5-year survival rate for stage IA NSCLC patients reach up 

to 70% [5]. Patients with more advanced NSCLC are usually treated with chemotherapy 

or radiotherapy, which means the 5-year survival rate decreases to around 23%. Besides, 

significant limitations still exist in new treatments, such as immunological and targeted 
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therapies [6]. Therefore, a more comprehensive understanding of the molecular mecha-

nism of progression and metastasis is critical to improve the prognosis of patients with 

NSCLC. 

Enhancers are short genomic regions [7,8] that can modulate gene expression by in-

teracting with promoters [9]. Enhancer RNAs (eRNAs), produced during the transcription 

process of enhancers, are of functional importance. Their expression levels correlate with 

enhancer activity [10,11]. In human cells, quite a lot of eRNAs have been found, many of 

which play critical roles in the meditation of the activation of target genes by transcrip-

tional circuitry [12]. eRNA promotes transcription by regulating the chromatin accessibil-

ity near target gene promoters and binding to target gene promoters [13,14], or forming 

eRNA-proteins complexes that promote enhancer-promoter loops [15]. Many studies re-

ported the role of eRNAs in cancers. For instance, the activation of ESR1 can broadly in-

duce the increase of eRNA transcription in breast cancer [16], indicating that eRNAs are 

associated with activating oncogenes or oncogenic signaling pathways. Moreover, KLK3e 

is an androgen-induced eRNA regulating the gene KLK3, it can regulate AR-dependent 

gene expression in prostate cancer by scaffolding the androgen receptor (AR)-associated 

protein complex [17], which means that in some cases, tumorigenesis can be promoted 

directly by oncogene-induced eRNAs. Importantly, tissue and individual patient specific-

ity were found in the expression of eRNAs, indicating eRNAs’ potential clinical utility in 

diagnosis, prognosis and therapy for cancers [18–20]. 

However, the eRNA regulation mechanisms underlying NSCLC metastasis have not 

been elucidated, and eRNA targeted anti-cancer agents that can improve the prognosis of 

NSCLC patients are still insufficient. Here, differentially expressed transcription factors 

(DETFs), eRNAs (DEEs), and target genes (DETGs) between primary and metastatic 

NSCLC patients were determined. Prognostic DEEs (PDEEs) were further identified using 

univariate and multivariate Cox regression analyses, based on which a metastatic NSCLC-

specific prognosis prediction model was constructed. Significant immune cells and im-

mune-related pathways were identified using cell type identification by estimating the 

relative subsets of RNA transcripts (CIBERSORT) [21] and single sample gene set enrich-

ment (ssGSEA) algorithms [22], respectively. Hallmark pathways correlated with key 

DEEs were quantified using gene set variation analysis (GSVA) [23]. Importantly, six 

PDEEs (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4), along with DETFs, 

DETGs, immune cells, immune-related pathways, and hallmark pathways were inte-

grated into co-expression analysis to construct a regulation network. The results above 

were demonstrated by multi-dimensional validation to explain the mechanisms and clin-

ical significance unambiguously. 

2. Results 

2.1. DEG Identification and Functional Enrichment Analysis 

The mechanism by which eRNAs promote the transcription of target genes was 

shown in Figure S1 A. An analysis process of this study was shown in Figure S1B. All 

clinical baseline information for primary NSCLC samples was summarized in Table 1. The 

differential expression patterns of 1648 DEGs (506 upregulated DEGs and 1142 downreg-

ulated DEGs) between primary NSCLC and metastatic NSCLC samples were illustrated 

by the heatmap plot (Figure 1A) and volcano plot (Figure 1B). The GO terms, including 

biological processes (BPs), cellular components (CCs), and molecular functions (MFs) 

where the DEGs were mostly enriched were the regulation of peptidase activity, extracel-

lular matrix and enzyme inhibitor activity, respectively (Figure 1C). Moreover, amyo-

trophic lateral sclerosis was the most significant KEGG pathway in which the DEGs were 

mostly enriched (Figure 1D). 

In addition, we can see from the heatmap plot (Figure 2A) and volcano plot (Figure 

2B) that 255 DEEs (59 upregulated DEEs and 196 downregulated DEEs) were identified 

from 5100 eRNAs between primary NSCLC and metastatic NSCLC samples. 
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Table 1. Clinical baseline information of 829 primary NSCLC patients. 

Characteristics Total Patients (N = 829) 

Age, years  

• Mean ± SD 66.30 ± 9.35 

• Median(Range) 68 (33–87) 

Gender  

• Female 301 (36.31%) 

• Male 528 (63.69%) 

Stages  

• Stage i 415 (50.06%) 

• Stage ii 242 (29.19%) 

• Stage iii 144 (17.37%) 

• Stage iv 28 (3.38%) 

 

Figure 1. The analysis of DEGs. (A,B) DEGs were defined between primary NSCLC and metastatic 

NSCLC. A total of 1648 DEGs (506 upregulated DEGs and 1142 downregulated DEGs) were defined 

between primary NSCLC and metastatic NSCLC. In the heatmap (A), red color represented primary 

NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B), red dot represented 

upregulated DEGs and green dot represented downregulated DEGs, the two dashed horizontal 

lines mark the positions of p-value = 0.05 and p-value = 0.0001, respectively, and the 4 vertical dotted 

lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3 and logFC = 1.5, 

respectively. (C,D) GO and KEGG pathway enrichment analysis. DEGs enriched in regulation of 

peptidase activity, extracellular matrix enzyme inhibitor activity and amyotrophic lateral sclerosis 

significantly. NSCLC, Non-small cell lung cancer; SD, Standard deviation. DEGs, differential 
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expressed genes; NSCLC, Non-small cell lung cancer; GO, Gene Oncology; KEGG, Kyoto Encyclo-

pedia of Genes and Genomes. 

 

Figure 2. The DEEs identification and DEEs univariate Cox regression analysis. (A,B) The identifi-

cation of DEEs. A total of 255 DEEs (59 upregulated DEEs and 196 downregulated DEEs) were iden-

tified between primary NSCLC and metastatic NSCLC. In the heatmap (A), red color represented 

primary NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B), red dot rep-

resented upregulated DEEs and green dot represented downregulated DEEs, the two dashed hori-

zontal lines mark the positions of p-value = 0.05 and p-value = 0.0001, respectively, and the four 

vertical dotted lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3 

and logFC = 1.5, respectively. (C) DEEs univariate Cox regression analysis. Twenty-four eRNAs 

were identified as PDEEs (p < 0.05). DEEs, differentially expressed eRNAs; NSCLC, Non-small cell 

lung cancer; PDEEs, prognostic differentially expressed eRNAs; eRNAs, enhancer RNAs. 
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2.2. Multivariate Prognostic Model Construction and Independent Prognostic Factors 

Identification 

Twenty-four PDEEs were identified by univariate Cox regression analysis (p < 0.05) 

(Figure 2C) and integrated into the multivariate prognostic model. Then, the efficiency of 

the model was evaluated by an ROC curve (AUC = 0.699) (Figure 3D). 

For the evaluation of the independent prognostic value of RS, the formula mentioned 

in the methods was applied to calculate the RS for each NSCLC patient, and the distribu-

tion of NSCLC patients with low and high RS was shown by the risk scatter plot (Figure 

3A) and risk line plot (Figure 3B). 

Besides, the survival probability of the high-risk group and low-risk group was 

shown by the Kaplan–Meier survival curve, which indicated a lower survival probability 

in the high-risk group (p < 0.001) (Figure 3C). Furthermore, the distribution of the high-

risk group and low-risk group within the principal components (PCs) (PC1, PC2 and PC3) 

was shown in Figure 3E. Finally, RS was identified as an independent prognostic factor in 

the univariate Cox regression (hazard ratios (HR) = 76.734, 95% confidence interval (CI) 

(30.391–193.746), p < 0.001) (Figure 3F) and multivariate Cox regression (HR = 1.372, 95% 

CI (1.271–1.482), p < 0.001) models (Figure 3G), which were adjusted by age, gender, and 

stage. Then, boxplots showed the LncRNA expression of 24 PDEEs in each TNM staging 

and stage of NSCLC (Figure 4A–D). 
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Figure 3. Independent prognosis analysis. RS was calculated by 24 PDEEs integration multivariate 

Cox model. (A,B) The scatter plot and line plot illustrated the distribution of RS among all NSCLC 

patients. (C) The ROC curve indicated that the multivariate Cox regression model was of good pre-

dictive power (AUC = 0.699). (D) The Kaplan–Meier curve showed that RS had prognostic value for 

NSCLC patients (p < 0.05), red line and green line represented low-risk group and high-risk group, 

respectively. (E) The distribution of low-risk and high-risk groups in PC1, PC2 and PC3, red plots 

represented high-risk groups and green plots represented low risk groups, the proportion of vari-

ance for PC1, PC2 and PC3 were 0.141, 0.087 and 0.074, respectively, the cumulative proportion was 

0.302. (F,G) The univariate (HR = 76.734, 95% CI (30.391–193.746), p < 0.001) and multivariate (HR = 

1.372, 95% CI (1.271–1.482), p < 0.001) Cox regression analysis for RS defined RS as an independent 

prognostic factor for NSCLC patients. The multivariate Cox regression model was corrected by age, 

gender and stage. RS, risk score; PDEEs, prognostic differentially expressed eRNAs; eRNAs, en-

hancer RNAs; ROC, receiver operator characteristic; AUC, area under curve; NSCLC, non-small cell 

lung cancer; HR, hazard ratios. 

2.3. Correlation Analysis of PDEEs and Immune Cells 

In all samples, the composition of 22 immune cells was estimated by the CIBERSORT 

algorithm (Figure 4E), Macrophage M2, T cell CD4+ memory resting and Macrophage M1 

have a higher proportion. Figure 4F, G illustrated the differential infiltration degree of the 

immune cells between the primary NSCLC and metastatic NSCLC and co-expression 

analysis of 22 immune cells, respectively. As is shown in Figure 4F, the infiltration degree 

of T cell CD4+ naive, T cell CD4+ memory activated, T cell follicular helper, T cell gamma 

delta, NK cell activated, Macrophage M2, Macrophage M1 and Mast cell resting in meta-

static NSCLC is significantly lower than that in primary NSCLC, but the infiltration de-

gree of T cell regulatory (Tregs) and NK cell resting is significantly higher in metastatic 

NSCLC. Figure 4G showed that T cell CD8+ is positively correlated with NK cell activated 

and T cell CD4+ memory activated significantly, but Mast cell activated and Mast cell rest-

ing, T cell CD4+ memory resting and T cell follicular helper showed significant negative 

correlations. Furthermore, co-expression analysis between PDEEs and 22 immune cells 

indicated a significant regulatory relationship among 16 immune cells and 15 PDEEs with 

a |correlation coefficient| > 0.15 and p < 0.05. 

2.4. Correlation Analysis of PDEEs, DETFs, Immune-Related Gene Sets, and Hallmark 

Pathways 

The expression levels of 30 DETFs were illustrated in a heatmap plot (Figure 5A) and 

volcano (Figure 5B) plot, 29 immune gene sets were shown in a heatmap plot (Figure 5F). 

Besides, the heatmap plot (Figure 5C), volcano plot (Figure 5D), together with the bar plot 

(Figure 5E) showed the differentially expressed gene sets of hallmarks of cancer in GSVA, 

HALLMARK_PANCREAS_BETA_CELLS and HALLMARK_KRAS_SIGNALING_DN 

are highly expressed in metastatic NSCLC. Afterward, correlation analysis was performed 

based on PDEEs with DETFs, immune-related gene sets, and hallmark pathways, respec-

tively. 

Finally, several elements aforementioned were considered to have significant corre-

lations which were extracted for the construction of a regulation network. Specifically, 

this regulation network consisted of pairwise interactions between 24 DETFs and 15 

PDEEs with a |correlation coefficient| > 0.20 and p < 0.05, pairwise interactions between 

24 immune-related gene sets and 13 PDEEs with a |correlation coefficient| > 0.20 and p < 

0.05, and pairwise interactions between 34 hallmark pathways and 16 PDEEs with a |cor-

relation coefficient| > 0.25 and p < 0.05. 
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Figure 4. Clinical correlation analysis and immune infiltration analysis. (A–D) Boxplots showed the 

LncRNA expression of 24 PDEEs in each TNM staging and stage of NSCLC. (E) CIBERSORT algo-

rithm estimated the composition of 22 immune cells in entire NSCLC samples. (F) The immune cells 

that were differentially expressed between primary NSCLC and metastatic NSCLC, purple color 

and blue color represented primary NSCLC and metastatic NSCLC, respectively. (G) Co-expression 

analysis in entire 22 immune cells. NSCLC, Non-small cell lung cancer. 
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Figure 5. Differential expression analysis among TFs, 50 cancer-related hallmark signaling path-

ways and 29 immune-related gene sets. (A,B) Differential expression analysis of TFs. Thirty-one 

differentially expressed TFs were defined between primary NSCLC and metastatic NSCLC. In the 

heatmap plot (A), red color represented primary NSCLC and blue color represented metastatic 

NSCLC. In the volcano plot (B), red dot represented upregulated TFs and green dot represented 

downregulated TFs, the two dashed horizontal lines mark the positions of p value = 0.05 and p value 
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= 0.0001, respectively, and the four vertical dotted lines mark the positions of log2 foldchange 

(logFC) = −1.5, logFC = −0.3, logFC = 0.3 and logFC = 1.5, respectively. (C–E) Differential expression 

analysis of 50 cancer-related hallmark signaling pathways. In the heatmap (C), red color represented 

primary NSCLC and blue color represented metastatic NSCLC. In the volcano plot (D), red dot 

represented the upregulated cancer-related hallmark signaling pathways and green dot represented 

the downregulated cancer-related hallmark signaling pathways, the two dashed horizontal lines 

mark the positions of the p-value = 0.05 and p-value = 0.0001, respectively, and the four vertical 

dotted lines mark the positions of log2 foldchange (logFC) = −1.5, logFC = −0.3, logFC = 0.3 and logFC 

= 1.5, respectively. Bar plot (E) showed the t-value of the GSVA score among all cancer-related hall-

mark signaling pathways. (F) Differential expression analysis for 29 immune-related gene sets. Red 

color represented primary NSCLC and blue color represented metastatic NSCLC. TFs, transcription 

factors; NSCLC, non-small cell lung cancer. 2.6 The Construction of NSCLC metastasis-specific 

eRNA regulation network. 

2.5. Correlation Analysis of PDEEs, DETGs, and RPPA Protein Chips 

The heatmap plot (Figure 6A) and volcano (Figure 6B) plot showed significantly dif-

ferential expression patterns for 17 DETGs. Afterward, correlation analysis indicated 

strong correlations between 17 DETGs which were selected for the construction of a reg-

ulation network based on a |correlation coefficient| > 0.20 and p-value < 0.05. 

 

Figure 6. Differential expression analysis of target genes of eRNAs. (A,B) Differential expression 

analysis of target genes of eRNAs. Seventeen differentially expressed target genes of eRNAs were 

defined between primary NSCLC and metastatic NSCLC. In the heatmap plot (A), red color repre-

sented primary NSCLC and blue color represented metastatic NSCLC. In the volcano plot (B), red 

dot represented the upregulated part and green dot represented the downregulated part in target 

genes of eRNAs, the two dashed horizontal lines mark the positions of p-value = 0.05 and p-value = 

0.0001, respectively, and the four vertical dotted lines mark the positions of log2 foldchange (logFC) 

= −1.5, logFC = −0.3, logFC = 0.3 and logFC = 1.5, respectively. eRNAs, enhancer RNAs; NSCLC, non-

small cell lung cancer. 

Besides, 38 RPPA protein chips and 11 PDEEs were identified to have significant cor-

relations with the criterion of a |correlation coefficient| > 0.25 and p-value < 0.05. 
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2.6. The Construction of NSCLC Metastasis-Specific eRNA Regulation Network 

Twenty-eight DEGs were eventually integrated to construct a regulatory network, 

and the expression levels of them between primary NSCLC samples and metastatic 

NSCLC samples were shown in the heatmap plot (Figure 7A). Specifically, 6 PDEEs, 17 

DETFs, 5 DETGs, 33 RPPA protein chips, 23 hallmark pathways, 13 immune cells, and 21 

immune-related gene sets were selected to construct the NSCLC metastasis-specific eRNA 

regulation network (Figure 7B). Figure 7C showed the results of co-expression analysis 

among 6 PDEEs, 17 DETFs, 5 DETGs, 33 RPPA protein chips, 23 hallmark pathways, 13 

immune cells, and 21 immune-related gene sets. Finally, ANXA8L1 mainly positively reg-

ulated TP63 (DETF, r = 0.345, p < 0.001), EXT1 (DETG, r = 0.361, p < 0.001), PAI1 (RPPA 

protein chip, r = 0.368, p < 0.001), EGFR (RPPA protein chip, r = 0.258, p < 0.001), HALL-

MARK_P53_PATHWAY (hallmark signaling pathway, r = 0.398, p < 0.001), and Mast cell 

resting (immune cell, r = 0.214, p < 0.001) in NSCLC metastasis. CASTOR2 mainly posi-

tively regulated H2AFX (DETF, r = 0.451, p < 0.001), SLC23A2 (DETG, r = 0.316, p < 0.001), 

TFRC (RPPA protein chip, r = 0.318, p < 0.001), HALLMARK_G2M_CHECKPOINT (hall-

mark signaling pathway, r = 0.336, p < 0.001) and NK cell resting (immune cell, r = 0.204, p 

< 0.001) in NSCLC metastasis. CYP4B1 mainly positively regulated FOS (DETF, r = 0.302, 

p < 0.001), GTF2IRD2B (DETG, r = 0.250, p < 0.001), NAPSINA (RPPA protein chips, r = 

0.365, p < 0.001), HALLMARK_FATTY_ACID_METABOLISM (hallmark signaling path-

way, r = 0.365, p < 0.001), Mast cell activated (immune cell, r = 0.359, p < 0.001) and 

Type_II_IFN_Reponse (immune-related gene set, r = 0.269, p < 0.001) in NSCLC metasta-

sis. GTF2H2C mainly positively regulated NAIP (DETG, r = 0.469, p < 0.001), TTF1 (RPPA 

protein chip, r = 0.412, p < 0.001), HALLMARK_PROTEIN_SECRETION (hallmark signal-

ing pathway, r = 0.323, p < 0.001), Macrophage M2 (immune cell, r = 0.179, p < 0.001) and 

iDCs (immune-related gene sets, r = 0.231, p < 0.001) in NSCLC metastasis. PSMF1 mainly 

positively regulated TP63 (DETF, r = 0.320, p < 0.001), EXT1 (DETG, r = 0.276, p < 0.001), 

TFRC (RPPA protein chip, r = 0.251, p < 0.001), HALLMARK_MYC_TARGETS_V1 (hall-

mark signaling pathway, r = 0.344, p < 0.001) and Mast cell resting (immune cell, r = 0.152, 

p < 0.001) in NSCLC metastasis. TNS4 mainly positively regulated TP63 (DETF, r = 0.289, 

p < 0.001), EXT1 (DETG, r = 0.310, p < 0.001), CD49B (RPPA protein chip, r = 0.332, p < 

0.001), HALLMARK_P53_PATHWAY (hallmark signaling pathway, r = 0.320, p < 0.001) 

and Mast cell resting (immune cell, r = 0.200, p < 0.001) in NSCLC metastasis. 

Because eRNA-related transcriptional regulatory changes were implicated in the 

pathological processes of NSCLC, and traditional long-term treatment with drugs may 

result in refractoriness and unsatisfactory outcomes, it is urgent to find potential inhibi-

tors which target NSCLC-related PDEEs, DETGs, and DETFs. Therefore, the small-mole-

cule bioactive inhibitors for DEGs within the regulatory network in this study were iden-

tified based on the CMap database. The heatmap plot (Figure 7D) showed the statistically 

significant small-molecule bioactive inhibitors in more than 10 types of cancers. The re-

sults indicated that irinotecan (enrichment score = 0.996, p value < 0.001) may be the best 

small-molecule bioactive inhibitor that may inhibit NSCLC metastasis by suppressing the 

expression of key DEGs in this study. 
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Figure 7. The metastasis-specific regulation network construction of NSCLC and Cmap analysis. 

(A) A total of 28 DEGs were extracted in the construction of the regulatory network. Red color and 

blue color represented primary and metastatic NSCLC. (B) Construction of the NSCLC metastasis-

specific regulation network. Six PDEEs, 17 DETFs, 5 DETGs, 33 RPPA protein chips, 23 hallmark 

signaling pathways, 13 immune cells, and 21 immune-related gene sets in total were selected for the 

construction of the regulation network. In the network, PDEEs were represented by red rhombus in 

the center, immune-related gene sets were represented using green triangles, hallmark signaling 

pathways were represented by dark blue rectangles, immune cells were represented by purple el-

lipses, DETGs were represented by pink octagons, DETFs were represented by yellow concave 

quadrilaterals, and RPPA protein chips were represented by light blue hexagons. (C) Co-expression 

analysis among all elements selected in the regulatory network. (D) Cmap analysis. Heatmap plot 

of Cmap analysis showed significant small-molecule bioactive inhibitors in more than 10 types of 

cancer. Irinotecan (enrichment score = 0.996 p-value < 0.001) may be the potential small-molecule 

bioactive inhibitor for key PDEEs in NSCLC metastasis. DEGs, differentially expressed genes; 

NSCLC, non-small cell lung cancer; PDEEs, prognostic differentially expressed eRNAs; Cmap, con-

nectivity map; eRNAs, enhancer RNAs. 
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2.7. Analysis of Single-Cell RNA-Seq Transcriptomes 

Data of the single-cell RNA sequencing (scRNA-seq) from 24 NSCLC samples 

(GSE153935) were obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153935, accessed on 8 June 

2022) for validation of the subcellular locations of six key PDEEs. Fifteen cell clusters and 

seven cell types (Alveolar, B, NK/T, Endothelial, Epithelial, Fibroblast and Myeloid) were 

identified by t-distributed Stochastic Neighbor Embedding (t-SNE) analysis (Figure 8A). 

The heatmap showed the genes that were up- or down-regulated in the 15 clusters (Figure 

8B). Figure 8C showed the expression of the major genes of the seven cell types in each 

cell type. The Cleveland plot (Upper part of Figure 8D) showed the expression of canoni-

cal markers in seven cell types and the bar plot (Lower part of Figure 8D) showed the 

distribution of seven cell types in 24 NSCLC samples, which validated the accuracy of our 

cell type annotations. 

Expressions of five key PDEEs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1 and TNS4) 

(Figure 9A), three key TFs (TP63, H2AFX and FOS) and four key DETGs (EXT1, 

GTF2IRD2B, NAIP and SLC23A2) (Figure S23) in seven cell types were displayed in fea-

ture plots. The UMAP plot displayed the cell cycle of cells above (Figure 9B), which 

showed that cells from cluster 1 were mainly in G1 phase and cells from cluster 4 were 

mainly in S phase. Pairs of ligand and receptor among the clusters above were displayed 

by the ligand-receptor plot (Figure 9C). All the results above suggested that in NSCLC, 

ANXA8L1 and CYP4B1 are mainly expressed in Alveolar cells, TNS4 is mainly expressed 

in epithelial cells, GTF2H2C is mainly expressed in NK/T cells and PSMF1 is significantly 

expressed in the seven cell types above. 
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Figure 8. Analysis of scRNA-seq transcriptome for NSCLC to verify the distribution of key bi-

omarkers in various cell types. (A) Distribution of 24 NSCLC samples, 15 cell clusters and seven cell 

types identified by t-SNE analysis. (B) Heatmap plot of genes that were up- or down-regulated in 

the 15 clusters. (C) Heatmap plot for the expression of the major genes of the seven cell types in each 

cell type. (D) Cleveland plot (Upper) showed the expression of canonical markers in seven cell types 

and the bar plot (Lower) showed the distribution of seven cell types in 24 NSCLC samples. scRNA-

seq, single-cell RNA sequencing. 

 

Figure 9. Distribution of five key PDEEs in seven cell types in NSCLC. (A) Expressions of five key 

PDEEs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1, and TNS4) in each cluster. (B) Cell cycle of each 

cell. (C) ligand-receptor plot for pairs of ligand and receptor among the seven cell types. NSCLC, 

Non-small cell lung cancer; PDEEs, prognostic differentially expressed eRNAs. 
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2.8. Multidimensional validation 

Multiple databases were utilized for reducing the bias caused by different platforms 

and to improve the reliability of our results. The key role of PDEEs including ANXA8L1, 

CASTOR2, CYP4B1, GTF2H2C, PSMF1, and TNS4 in pathogenesis and metastasis of 

NSCLC were validated based on GEPIA (Figure S2), UCSC xena (Figure S3), The Human 

Protein Atlas (Figure S4), cBioPortal (Figure S5), UALCAN (Figure S6, S7) and OncoLnc 

(Figure S8). In GEPIA and UALCAN databases, it was shown that CASTOR2, GTF2H2C, 

PSMF1 and TNS4 were highly-expressed in Lung Adenocarcinoma (LUAD), whereas 

ANXABL1 and CYP4B1 were lowly-expressed in the TCGA LUAD cohort (Figures S2 and 

S6); ANXA8L1, CASTOR2, PSMF1 and TNS4 were highly-expressed in the Lung Squa-

mous Cell Carcinoma (LUSC) cohort, while CYP4B1 and GTF2H2C were lowly-expressed 

in the TCGA LUSC cohort (Figures S2 and S7). CYP4B1 (GEPIA, Figure S2; UALCAN, 

Figure S6; OncoLnc, Figure S8), TNS4 (GEPIA, Figure S2; OncoLnc, Figure S8) were sig-

nificantly associated with the prognosis of LUAD. CASTOR2 (GEPIA, Figure S2), CYP4B1 

(GEPIA, Figure S2; OncoLnc, Figure S8) and PSMF1 (GEPIA, Figure S2; UALCAN, Figure 

S6) were significantly related to the prognosis of LUSC. Besides, TNS4 (UCSC xena, Figure 

S3) was significantly associated with the prognosis of pan NSCLC (all p < 0.05). 

The clinical characteristics, drug responses, and target genes of six key PDEEs were 

validated by the eRic database (https://hanlab.uth.edu/eRic/, accessed on 6 August 2021) 

[19]. The results indicated that ANXA8L1 (cholangiocarcinoma), PSMF1 (stomach adeno-

carcinoma) and TNS4 (head and neck squamous cell carcinoma, lung squamous cell car-

cinoma, rectum adenocarcinoma, stomach adenocarcinoma) were highly expressed in 

these cancers. CYP4B1 was lowly expressed in lung adenocarcinoma (Figure S9). 

ANXA8L1 (kidney renal papillary cell carcinoma) and CYP4B1 (lung adenocarcinoma and 

bladder urothelial carcinoma) were highly expressed at the early stage of these cancers, 

but PSMF1 was highly expressed in stage III stomach adenocarcinoma (Figure S10). 

CYP4B1 was lowly expressed in high-grade bladder urothelial carcinoma (Figure S11). 

The expression levels of CYP4B1 (lung adenocarcinoma, bladder Urothelial Carcinoma, 

bladder urothelial carcinoma, and breast invasive carcinoma) showed a significant rela-

tionship with different subtypes of these cancers (Figure S12). Furthermore, ANXA8L1 

(kidney renal papillary cell carcinoma), CYP4B1 (lung adenocarcinoma) and TNS4 (stom-

ach adenocarcinoma) showed a significant relation with survival in these cancers (Figure 

S13). Moreover, smoking showed a significant relation with the expression of CYP4B1 in 

lung adenocarcinoma (Figure S14) (all FDR p < 0.05). Table S1 showed the information of 

target genes and the drug responses of six key PDEEs. 

The accessibility in chromatin of key PDEEs was validated by the data from ATAC-

seq downloaded from the TCGA database and the results in LUAD and LUSC were 

shown in Figures S15 and S16, and Figures S17 and S18, respectively. Twenty-four chro-

mosome open regions of genic, intergenic, intron, exon, upstream, downstream and distal 

intergenic were shown in Figures S15A and S17A, and Figures S15B and S17B, respectively 

(open regions were shown as green peaks). The distance between the open regions of all 

chromosomes and the regions of gene transcription were calculated and shown in Figures 

S15C and S17C, and Figures S15D and S17D. Figure S15E and 15F showed that in the open 

region, genes were mainly enriched for skeletal system development, centrosome, cell ad-

hesion molecule binding and MAPK signaling pathway in LUAD, and Figures S17E and 

S17F showed that the open region genes were mainly enriched for the positive regulation 

of nervous system development, centrosome, cell adhesion molecule binding and MAPK 

signaling pathway in LUSC. Then, six key PDEEs were detected to be accessible in chro-

matin (Figures S16 and S18). 

The Chip-seq validation was performed by the Cistrome database to determine 

whether PDEEs are bound to DETFs binding sites, PDEEs and DETFs (ANXA8L1-TP63, 

CASTOR2-H2AFX, CYP4B1-FOS, GTF2H2C-TP63, PSMF1- TP63 and TNS4-TP63) with 

the highest correlation were selected for further analysis. Finally, six key PDEEs were de-

termined to be bound to the DETFs binding sites (Figure S19). 
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3. Discussion 

NSCLC is the main type of lung cancer [24], whose mortality ranks top 1 all over the 

world [25]. In general, the prognosis of patients with NSCLC metastasis is not good [6], it 

is vital to explore the potential biological mechanisms and biomarkers for prognostic and 

therapeutic targets related to NSCLC metastasis. Multiple eRNAs are implicated in tu-

morigenesis and metastasis, which were significant therapeutic targets in metastatic 

NSCLC. 

In our study, 24 PDEEs were identified and based on them, the risk score was defined 

by the multivariate Cox regression model (AUC = 0.699). Furthermore, the risk score was 

identified as the significant predictive factor for the prognosis of NSCLC patients by Uni-

variate and multivariate Cox regression analysis adjusted by age, gender and stage. In 

addition, for the exploration of potential mechanisms of NSCLC metastasis, correlation 

analysis was utilized to construct the NSCLC metastasis-specific regulation network, in-

cluding key PDEEs, DETGs, DETFs, RPPA protein chips, hallmark signaling pathways, 

immune-related gene sets, and immune cells. Finally, six key PDEEs including ANXA8L1,  

CASTOR2, CYP4B1, GTF2H2C, PSMF1 and TNS4 were identified. 

ANXA8L1 (annexin A8 like 1) encoded one of the top 10 antigens identified by the 

majority of serological tests for pemphigus vulgaris patients [26]. High expression of 

ANXA8L1 was detected to be associated with poor prognosis in cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC) [27], but there were few studies on 

the relationship between ANXA8L1 and lung cancer. 

CASTOR2 (cytosolic arginine sensor for mechanistic target of rapamycin complex 1 

(mTORC1) subunit 2) is a subtype of CASTOR, a kind of protein readily detectable in 

vertebrates [28]. CASTOR2 was found to be related to the regulation of mTORC1 [28–30], 

a central growth controller that integrates diverse environmental inputs to coordinate an-

abolic and catabolic processes in cells [31], cancer cells might promote growth transfor-

mation and tumorigenesis by manipulating CASTOR2, which was reported in Kaposi sar-

coma [32]. 

As a superfamily of enzymes related to phase I drug metabolism, Cytochrome P450 

(CYP) was involved in multiple biological processes, such as maintaining calcium home-

ostasis, fatty acid metabolism, and steroid and cholesterol biosynthesis [33]. CYP4B1 (cy-

tochrome P450 family 4 subfamily B member 1) is an extrahepatic form of cytochrome 

P450 predominantly and responsible for the bioactivation of multiple protoxins with tis-

sue-specific toxicological effects [34]. CYP4B1 was found to be associated with a variety 

of cancers [35] and Czerwinski et al. discovered that CYP4B1 from normal and neoplastic 

lung tissues, compared with normal tissues, had mRNA levels in tumor tissues that were 

reduced by 2.4 times [36]. 

GTF2H2C (GTF2H2 family member C) was a subtype of general transcription factor 

IIH subunit 2-like, related to transcription by RNA polymerase II and DNA nucleotide 

excision repair [37]. The expression level of transcription factor IIH was identified to be 

significantly reduced in alveolar macrophages of idiopathic pulmonary fibrosis patients 

[38]. In fetal lung and placenta, altered methylation may occur in GTF2H2C to repair the 

DNA damage caused by exposure to smoking [37]. However, the relationship between 

GTF2H2C and cancer remained unclear. 

PSMF1 (proteasome inhibitor subunit 1), the proteasome inhibitor PI31 subunit, was 

able to bind to the outer rings of the 20S proteasome directly or compete for 20S binding 

with the activating particles to inhibit the proteasome activities [39–41]. High expression 

of PSMF1 was shown to be associated with better survival of NSCLC patients, hence 

PSMF1 was considered as an underlying suppresser gene in NSCLC [42], which demon-

strated the accuracy and clinical practicality of our hypothesis. 

TNS4 (Tensin 4) participated in the cell movement, which was induced by MET and 

was related to the GPCR signaling pathway. High expression of TNS4 was reported to be 

associated with poor prognosis in gastric cancer and esophageal squamous cell carcinoma 

patients [43,44]. Furthermore, the differential expression and abnormal methylation of 
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TNS4 were identified in LUAD patients. It was found that high expression of TNS4 leads 

to poor prognosis, and TNS4 may be involved in the mechanisms of DNA methylation in 

LUAD, which means it may be a potential marker for the prognosis of LUAD patients. 

[45]. 

Six key PDEEs mainly positively regulated TP63, H2AFX, FOS (TFs), EXT1, SLC23A2, 

GTF2IRD2B, NAIP (DETGs), PAI1, TFRC, NAPSINA, TTF1, CD49B (RPPA protein chips), 

P53 pathway, G2M checkpoint, fatty acid metabolism, protein secretion, MYC targets V1 

(hallmark signaling pathway), Mast cell resting, NK cell resting, Mast cell activated, Mac-

rophage M2 (immune cell), Type_II_IFN_Reponse, and iDCs (immune-related gene sets). 

TP63 (tumor protein p63) was associated with the proliferation, migration, colony 

formation, and invasion of certain squamous cell carcinomas (SCCs) [46,47]. The expres-

sion of H2AFX (H2A histone family, member X) histone was promoted by USP22 (Ubiq-

uitin-specific protease 22), which was involved in the occurrence and progression of 

LUAD [48]. FOS (Fos proto-oncogene, AP-1 transcription factor subunit) can induce the 

abnormal proliferation of lung cancer cells [48]. 

EXT1 (exostosin glycosyltransferase 1) methylation can regulate gene expression and 

activate the WNT pathway, which affected the proliferation and migration of NSCLC and 

predicted a poor prognosis [49]. SLC23A2 (solute carrier family 23 member 2) was known 

to be required for sodium-dependent transporters of vitamin C [50], and several types of 

cancer were reported to be linked with a deficiency in vitamin C [51]. GTF2IRD2B (GTF2I 

repeat domain containing 2B) was involved in chromatin structure modification and gene 

expression regulation [52], mutations in GTF2IRD2B may cause disorders of gene expres-

sion regulation and contribute to carcinogenesis [53]. NAIP (NLR family apoptosis inhib-

itory protein), is a major anti-apoptotic protein and is targeted by miR-1 and miR-145, 

which induces cell death and contributes to the development of cancer[54]. 

PAI1 (phosphoribosylanthranilate isomerase 1) promoted glycolytic metabolism 

[55], and the migration and chemotaxis of cancer cells relies on the energy obtained via 

enhanced glycolysis primarily [56,57]. EGFR (Epidermal growth factor receptor) plays an 

important role in the regulation of the proliferation, differentiation, survival and motility 

of the tumor cells and was found to be highly expressed in over 60% of NSCLCs [58], 

which indicates that it has the potential to promote NSCLC metastasis. TFRC (transferrin 

receptor) promoted the proliferation and metastasis of cancer cells by upregulating the 

expression of AXIN2, which accelerated the development of cancer [59]. NapsinA (napsin 

A aspartic peptidase) and TTF1 (thyroid transcription factor-1) were reported as the spe-

cific clinical diagnosis indexes and prognostic markers for LUAD [60–62]. CD49B was 

shown to be the cell-surface marker for the enrichment of a subpopulation of leiomyoma 

cells that possess stem/progenitor cell properties [63]. The functions of RPPA and their 

regulatory relationship with PDEE were shown in Table S2. 

The transcription factor p53 participated in the mechanism of the cell cycle and was 

reported as an important tumor suppressor [64]. The G2/M checkpoint checked cell size 

and DNA damage in mitosis of multiple organisms. Disorder of mitotic entry can often 

cause oncogenesis or cell death [65]. Deregulated anabolism and catabolism of fatty acids 

metabolic were identified as metabolic regulators that support cancer cell growth [66]. 

Protein secretion signaling was reported to be associated with multiple biological pro-

cesses, such as cancer cell migration and invasion [67]. MYC targets v1 signaling and 

might be related to the higher rates of cell proliferation, resulting in increased aggressive-

ness of the tumor and worse survival [68]. The tumor microenvironment (TME) was sig-

nificantly associated with the pathogenesis of lung cancer [69,70]. The proportion of rest-

ing NK cells and mast cells resting in lung cancer tumor tissues was reported to be lower 

than in normal tissues [71]. Mast cells and their activation might result in tumor cytotoxi-

city and tumor angiogenesis [72]. M2 Macrophages promote the growth, invasion, metas-

tasis, and angiogenesis of cancer cells, and are regarded as one of the main tumor-infil-

trating immune cells [73]. IFN-γ (type II IFN) played an important role in anti-tumor re-

sponses [74]. IFN-γ receptor impairment or IFN-γ-mediated signal disruption may cause 
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insensitivity to IFN-γ, which may promote the development and progress of tumors [75]. 

Dendritic cells (DCs) were associated with the regulation of the immune response and 

played key roles in inducing anti-tumor activity [76], a decrease in immature dendritic 

cells (iDC) and impaired migration ability may cause cancer [77]. 

Irinotecan is a topoisomerase inhibitor that causes cytotoxic protein-linked DNA 

breaks [78], which is a kind of p53-dependent small-molecule bioactive inhibitor [79]. 

Linked to the results of Cmap, irinotecan may exert an inhibitory effect through the P53 

pathway. 

Five key eRNAs (ANXA8L1, CYP4B1, GTF2H2C, PSMF1, and TNS4) were found to 

be expressed in Alveolar, B, NK/T, Endothelial, Epithelial, Fibroblast and Myeloid cells in 

single cell sequencing analysis and the analysis of the scRNA-seq transcriptomes. The tu-

mor-microenvironment was detected to play an important role in each step of NSCLC 

metastasis, and the synergistic mechanisms of tumor cells and the microenvironment may 

provide biomarkers or potential therapeutic targets for cancers [80], which suggests that 

eRNAs may regulate NSCLC metastasis by interacting with the tumor microenvironment. 

The ATAC-seq validation showed that six key PDEEs were chromatin accessible in 

the NSCLC metastasis state, which indicated that these eRNAs were related to NSCLC 

metastasis. In addition, through Chip-seq validation analysis, these key PDEEs were 

found to bind to the binding sites of enhancers and DETFs in this study. Therefore, our 

study verified that these key eRNAs regulated target genes and mediated NSCLC metas-

tasis by recruiting TFs, which may be implicated in the metastasis of NSCLC. 

This is the first study that explored the roles that eRNAs played in NSCLC metastasis, 

however, several limitations still remained in our study. Firstly, since the samples were 

all from America, selection bias was inevitable, and the applicability of the prediction 

model to other countries was uncertain. Secondly, our results were completely based on 

public databases and have not been verified by our own population studies and experi-

ments. Therefore, multidimensional validation was performed to validate our hypothesis 

based on various online databases in the multi-omics dimension. Moreover, further cell 

and animal experimental validation and clinical trials were warranted in future studies, 

demonstrating correlations between identified key PDEEs and other multi-omics bi-

omarkers, and validating the clinical relevance of our key findings regarding novel eRNA 

regulatory mechanisms from multiple dimensions. 

4. Materials and Methods 

4.1. Data Acquisition 

RNA-seq data from 1011 primary NSCLC, clinical information from 829 primary 

NSCLC, and 258 protein chips were obtained from The Cancer Genome Atlas (TCGA) 

database (https://tcga-data.nci.nih.gov, accessed on 3 August 2020) [81]. RNA-seq data 

from 42 metastatic NSCLC were obtained from the MET500 database 

(https://met500.path.med.umich.edu/, accessed on 4 August 2020) [82], 318 TFs were ob-

tained from the Cistrome database (http://cistrome.org, accessed on 14 August 2020) [83]. 

Immune gene expression profiles were downloaded from the ImmPort database 

(https://www.immport.org/, accessed on 19 February 2020). Fifty cancer-related hallmark 

pathways and 29 immune-related pathways were obtained from the Molecular Signatures 

Database (MSigDB, Version 7.4) (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp, 

accessed on 10 September 2020) [84]. 

4.2. The eRNA Expression Data 

The list of eRNAs, which was normalized and annotated by Ensemble ID and the 

corresponding target gene list was available in the eRic (enhancer RNA in cancers) data-

base (https://hanlab.uth.edu/eRic/, accessed on 6 June 2020) [19] in addition to the Chro-

matin Immunoprecipitation Sequencing (CHIP-seq) results containing acetylated histone 
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H3 lysine 27 (H3K27ac) [85]. In addition, the official gene symbol of each eRNA was iden-

tified by the CHIP seeker package based on the location in the hg38 genome [86]. 

4.3. Differential Expression Analysis 

Differentially expressed genes (DEGs) between primary NSCLC and metastatic 

NSCLC were identified by the limma and edgeR algorithm [87,88] with the criteria of a 

False Discovery Rate (FDR) p-value < 0.05 and |log2 Fold Change (FC)| > 1.0; DEEs, 

DETGs, and DETFs were all identified. To determine the most enriched pathways, the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Oncology (GO) enrichment 

analysis was applied[89]. 

4.4. Multivariate Risk-Prediction Model Construction and Independent Prognostic Factors 

Identification 

Prognostic DEEs (PDEEs) were screened by univariate Cox regression analysis from 

identified DEEs. Furthermore, the Least Absolute Shrinkage and Selection Operator 

(LASSO) regression was used to determine the independent variables with great signifi-

cance, reducing the over-fitting phenomenon [90]. Afterward, we integrated all PDEEs 

into a multivariate Cox regression model, and the receiver operator characteristic (ROC) 

curve was used to evaluate the predictive power of the model. The multivariate Cox re-

gression model formula was applied to calculate the risk score (RS) for each NSCLC sam-

ple as follows: 

RS = β1 × NSCLC1 + β2 × NSCLC2 + β3 × NSCLC3 + …… + βn × NSCLCn  

In this formula, “n” represented the number of PDEEs in the multivariate model; “β” 

represented the coefficient of corresponding PDEEs. Then, the median of the RS was used 

to divide all the NSCLC samples into two groups, including the high-risk group and the 

low-risk group. Additionally, the survival conditions of the high-risk group and the low-

risk group were described by Kaplan–Meier survival analysis. The independent prognos-

tic value of RS was evaluated by univariate and multivariate Cox regression analyses, and 

the multivariate Cox regression model was adjusted by clinical variables, such as age, 

gender, and stage. 

4.5. Identification of PDEE-Related Immune Cells and Immune-Reltaed Gene Sets 

The composition of 22 types of immune cells in all samples was evaluated by the 

CIBERSORT algorithm. To determine the correlations between PDEE signature and im-

mune cell infiltration in NSCLC tissues, PDEE expression matrix data were uploaded to 

CIBERSORT [21]. Infiltrating immune cells were all extracted for subsequent analysis. 

Moreover, nonparametric tests were performed to determine associations between the im-

mune cells and different clinical phenotypes. 

Additionally, a single-sample gene set enrichment analysis (ssGSEA) was carried out 

to quantify 29 immune-related gene sets in all samples[22]. Further, Pearson correlation 

analysis was performed to identify significant correlations between PDEEs and immune 

cells/immune-related gene sets, where a p-value < 0.05 was considered statistically signif-

icant. 

4.6. Identification of Downstream Hallmark Pathways 

Gene Set Variation Analysis (GSVA) was utilized to explore potential downstream 

hallmark pathways of PDEEs. Absolute quantification of 50 hallmark pathways was cal-

culated to determine the differentially expressed hallmark pathways between primary 

NSCLC samples and metastatic NSCLC samples using the GSVA package [23]. 
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4.7. Construction of Metastasis-Specific eRNA Regulation Network for NSCLC 

Key PDEEs along with DETGs, DETFs, RPPA proteins chips, 50 hallmark pathways, 

29 immune gene sets, 22 immune cells, were integrated into Pearson correlation analysis 

to construct a NSCLC metastasis-specific eRNA regulation network with the criterion of 

|correlation coefficient| > 0.20 and p value < 0.05 for PDEEs and DETGs; |correlation co-

efficient| > 0.20 and p value < 0.05 for PDEEs and DETFs; |correlation coefficient| > 0.25 

and p value < 0.05 for PDEEs and RPPA protein chips; |correlation coefficient| > 0.25 and 

p value < 0.05 for PDEEs and hallmark pathways; |correlation coefficient| > 0.20 and p 

value < 0.05 for PDEEs and immune-related gene sets, and |correlation coefficient| > 0.15 

and p value < 0.05 for PDEEs and immune cells. 

Furthermore, the connectivity map (Cmap) database was utilized to identify bioac-

tive small molecule inhibitors with the potential as target drugs for DEGs of the NSCLC 

metastasis-specific regulation network (https://portals.broadinstitute.org/cmap/, accessed 

on 25 September 2020) [91,92]. DEGs, including PDEEs, DETGs, and DETFs were used as 

input data in the Cmap analysis, results of stemness-related DEG analysis in pan-cancer 

were also integrated into the Cmap analysis [91]. Information on targeting inhibitors could 

be acquired from the mechanism of actions (MoA) (http://clue.io/, accessed on 25 Septem-

ber 2020) including human cell lines’ transcriptional responses to perturbagens, structural 

formulas, and protein targets. Therefore, based on MoA, inhibitors that may target 

NSCLC metastasis-related DEGs in this study were all identified. 

4.8. Analysis of scRNA-Seq Transcriptomes 

scRNA-seq data from 24 NSCLC samples obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153935, accessed on 8 June 

2022) were applied to analyze the cellular localization of key PDEEs. The analysis of the 

integrated data was carried out by the R toolkit Seurat [93]. Genes that were expressed in 

over 200 single cells and cells with 1500 to 100,000 gene transcripts were selected for fur-

ther analysis. Moreover, the “vst” method, “FindMarkers” and “FindConservedMarkers” 

functions were utilized to identify the variable genes, and the marker genes for each cell 

type were defined. Then, the variable genes above were used to carry out the principal 

component analysis (PCA) to reduce data dimensionality. The top 15 PCs were selected 

for further analysis, including Unified Manifold Approximation and Dimensionality Re-

duction Projection (UMAP) analysis and cluster analysis. The cell clusters, which were 

based on key PCs, were identified by t-SNE (resolution = 0.50) [94] and absolute values of 

FDR < 0.05 and log2 (FC) > 0.5 were the criterion for DEG in each cell cluster. Annotation 

for every cluster was performed by the CellMarker database and the singleR method 

[95,96]. Visualization of cell cycle stages was performed by the “CellCycleScoring” func-

tion and markers of phases. Finally, in different cell types, the pairs of receptor and ligand 

were identified by the “iTALK” package[97] and visualization of intercellular communi-

cation was performed by the “edgebundleR” package (https://github.com/garthtarr/edge-

bundleR, accessed on 8 June 2022). 

4.9. Multidimensional Validation 

For balancing false positive results and reducing information bias, multi-database 

external verification was performed based on various online databases including Gene 

Expression Profiling Interactive Analysis (GEPIA) [98], UCSC xena [99], The Human Pro-

tein Atlas [100], cBioPortal [101,102], UALCAN [103] and OncoLnc [104]. In addition, Sin-

gle Cell Expression Atlas was adopted to identify eRNA expression at the cellular level 

(https://www.ebi.ac.uk/gxa/sc/experiments, accessed on 30 August 2021) [105]. The assay 

for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data 

was obtained from the TCGA database to explore the accessibility of eRNAs in chromatin 

[106]. Chromatin immunoprecipitation sequencing (Chip-seq) data of eRNAs were col-

lected from the Cistrome database to identify specific binding relationships between key 
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PDEEs and DETFs in this study (http://cistrome.org/, accessed on 30 August 2021) [107–

117]. 

4.10. Statistics Analysis 

All statistical analyses were performed by R version 3.6.1 (Institute for Statistics and 

Mathematics, Vienna, Austria) (Package: e1071, parallel, preprocessCore, sva, limma, 

edgeR, ggplot2, survminer, survival, rms, randomForest, pROC, glmnet, pheatmap,  

timeROC, vioplot, corrplot, ConsensusClusterPlus, forestplot, survivalROC, beeswarm, 

edgeR, chromVAR, Biostrings, BSgenome.Hsapiens.UCSC.hg38, ChIPseeker, 

TxDb.Hsapiens.UCSC.hg38.knownGene, clusterProfiler, org.Hs.eg.db, ggplot2, kary-

oploteR, limma, pheatmap, GSVA, limma, GSEABase, stringr, GEOquery, dplyr, limma, 

ComplexHeatmap, RColorBrewer, clusterProfiler, tibble, ggplot2, cowplot, ggcorrplot, 

xlsx, tidyverse, GEOquery, plyr, circlize, ComplexHeatmap, TCGAbiolinks, Summa-

rizedExperiment, dplyr, tidyverse, fgsea, ggplot2, ImmuLncRNA, iTALK, edgebundleR). 

A two-sided p-value < 0.05 was considered statistically significant, and the utilization of 

the Pearson/Spearman correlation coefficient depended on the results of the normality 

tests. The machine diagram was drawn on the biorender website (https://biorender.com/, 

accessed on 2 June 2022). 

5. Conclusions 

This study verified that eRNAs played significant roles in NSCLC metastasis. More-

over, six key PDEEs (ANXA8L1, CASTOR2, CYP4B1, GTF2H2C, PSMF1, and TNS4) were 

identified as potential markers to predict the prognosis of NSCLC and provide references 

for the treatment of metastatic NSCLC, which occupied the central position in the NSCLC 

metastasis-specific regulation network. 
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