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Abstract: Charles T. Currelly, first director of the Royal Ontario Museum, participated in excavations
of the tomb of King Nebhepetre, now known as Mentuhotep II, (Dynasty XI) in Deir el-Bahri, Egypt in
1906. He brought to Canada many objects from the excavations, and objects that he purchased while
in Egypt; these formed the initial collection of the museum. Among the objects were seven fragments
of fine linen cloth with intricate pleat patterns. Recently, the cloths became the subject of a study to
learn how they had retained their pleats for 4000 years. Samples were examined and analysed using
polarised light microscopy, scanning electron microscopy-electron dispersive X-ray spectrometry, gas
chromatography-mass spectrometry, and pyrolysis-gas chromatography-mass spectrometry. Three of
the cloths were likely fragments of clothing re-purposed as bandages and were found to be saturated
in mummification balms composed of Pinaceae resin, Pistacia resin, and an essential oil characterised
by a high abundance of cedrol, possibly originating from a juniper species. All seven of the cloths
were found to have traces of polysaccharides from two probable sources: an arabinogalactan gum
such as gum arabic or a fruit gum, and a polyglucoside, possibly starch.

Keywords: Ancient Egypt; pleated linen textiles; polysaccharides; starch; gum arabic; fruit gum; gas
chromatography-mass spectrometry; pyrolysis-gas chromatography-mass spectrometry; microscopy

1. Introduction

Collections may be considered a museum’s most valuable asset in terms of their ability
to shape strategies and values, as a source to create experiences to engage and attract
visitors, to be a physical archive for research among professionals within the heritage
sector and, in some cases, may be a source of income to perpetuate the longevity of the
museum spaces themselves. The re-discovery of objects is not an uncommon phenomenon
within museum collections stores, and both the heritage experts and popular media alike
periodically embrace these stories of rediscovery as opportunities to re-evaluate existing
paradigms and re-ask questions that in the past were generally thought to be unanswerable.

The first Director of the Royal Ontario Museum (ROM), Charles T. Currelly, had a
talent for collecting and dedicated his life to the development of the ROM. Prior to his
appointment as director, Currelly excavated in Egypt (1905-1907) and also purchased
many objects that formed the initial collection of the ROM. His publication, I Brought the
Ages Home, outlines his archaeological field work with Flinders Petrie and his quest to
establish a museum as part of the University of Toronto (which would ultimately become
the ROM) [1].

The purpose of the analysis highlighted in this paper was precipitated by the examina-
tion of a large group of archaeological textile fragments from the ROM’s Egyptian collection
in preparation for gallery rotations, focused on selecting enough artefacts to carry out
rotations of light sensitive textile material periodically for several years. An investigation
of the many drawers of fragments in the Egyptian department uncovered an impressive
range of artefacts, including pleated, beaded, painted, and inscribed textiles. According to
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the card files, most of the fragments had been acquired by Currelly in Egypt at Deir el-Bahri
(Figure 1). It is known that he was a participant in the excavations at this site and possibly
a leader during the operation [1-3]. The tomb had been plundered prior to this excavation,
and an account of the findings remarked upon the “heaps of mummy cloths” that were
left behind [1]. These fragments of interest are from the excavation carried out on the tomb
of King Nebhepetre, now known as Mentuhotep II (Dynasty XI, 2060-2009 BCE) at Deir
el-Bahri, Egypt. Early excavations at the site proved to be very successful in uncovering a
variety of objects. Indeed, in a letter from Currelly to a Mr. Walker from the excavation at
Deir el-Bahri on 8 December 1905, Currelly writes, “[w]e are having wonderful success,
things are simply tumbling out of the mounds, sculpture, paintings on linen, enamels and
tools mostly, but other stuff as well” [4].
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Figure 1. Charles T. Currelly, first Director of the Royal Ontario Museum; Attribution: University of
Toronto Archives, 2004-30-7MS, public domain. Line drawing made by Currelly during excavation of
the tomb of King Nebhepetre, also known as Mentuhotep II, (Dynasty XI) in Deir el-Bahri, Egypt in
1906 [2], Plate VIII, public domain.

At the ROM, over one hundred years after the original accession of the items, the
fragments that were of particular interest were a collection of finely pleated linen textiles
that had retained their crisp pleats, intact after several thousand years. Tomb illustrations,
an example of which is drawn by Currelly’s hand and shown in Figure 1, are numerous,
depicting men wearing pleated kilts or women in pleated dresses [2]. These items must
have been popular in Egypt’s hot climate, since the pleating gave greater volume with the
additional material allowing for greater airflow and freedom of movement resulting in
more flexibility for the wearer.

Examples of fragments in the drawers ranged from single pleated textiles to a more
complicated double pleat with folds carried out both horizontally and vertically; indeed,
some of the examples had pleating intervals of 16 mm. This finer linen fabric was of a
higher quality and probably easier to pleat. In order to create a pleat, it is necessary to
double the fabric over itself thereby using more fabric yardage. Due to the uniformity
and crispness of the pleats among the Egyptian examples, it is surmised that some sort of
pleating board or device was utilized to achieve that quality of pleat [5-8]. It also seems
likely that it would have been necessary to have the garments re-pleated after use. The use
of a fine linen fabric, using an excessive amount of yardage, and the likelihood of repeated
pleating after use, suggests that these textiles would have been considered a luxury item
reflecting wealth and power. Pleated garments were often depicted in contemporaneous
statuary and stone carvings as very stiff and protruding from the body, and sometimes in
darker tones than the non-pleated portions of their garments. It has been postulated that
they may have been starched or similarly stiffened; however, no such reinforcement has
ever been identified [5,6].
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In this paper we present a combined methodology featuring microscopy, scanning electron
microscopy/ energy dispersive X-ray spectrometry (SEM/EDS), and two chromatography-
mass spectrometry techniques to identify the types of commodities that may have been
employed as coating and stiffening agents to achieve this permanent stiffness. In this we aim to
highlight a multi-method approach to identify mixed organic commodities utilized in Ancient
Egyptian contexts. In doing so, we address the complexity of identifying carbohydrate-derived
materials from ancient contexts along with demonstrating the value of revisiting items curated
from collections long ago to shed light on quotidian and ritual aspects of life in ancient cultures.

2. Results and Discussion
2.1. Microscopic Examination

Photomicrographs of small fragments from the seven linen objects are shown under
normal and raking UV light illumination in Figure 2. Each cloth was woven in uneven
1/1 plain weave; however, since none of the fragments has a selvedge, it is not known
which are warp-faced or weft-faced; both types have been identified in Ancient Egyptian
linen fabrics [9]. Except for object 977 x 337.30, which is very heavily saturated with dark
resinous material, all fragments show inhomogeneous bright green fluorescence under
UV illumination. Evident dark resinous coatings are also present on the fragments from
cloths 907.18.20a and 907.18.20b, yet they fluoresce much more brightly than 977 x 337.30,
which may indicate that the resin mixture was applied more thickly to this latter cloth. It is
possible that the three darker cloths originate from mummy wrappings, as resin-soaked
cloths were commonly laid over the body after embalming.

Normal light UV light Normal light UV light

907.18.19

907.18.20a

907:18.20b

909.80.589

910.63.7

977x337.30

910.63.1

Figure 2. Photomicrographs of small samples from the seven linen fragments. The images were
acquired under normal and UV light illumination.

The question of how the pleats were set into the individual cloths lead to the premise
that they may have been coated with starch, just as one might treat a modern-day cloth
intended to be pleated. Examination of the intact threads by polarised light microscopy
(PLM) did not identify any intact starch granules. The threads were also examined under a
stereomicroscope and stained with potassium iodide/iodine (Lugol’s stain). Although some
of the stained threads did show amorphous particles of black colouring along the surfaces
of the threads, which may indicate a possible presence of gelatinised starch, the lack of
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continuity and the difficulty in visualizing the staining along the surface, particularly given
that a coating would be expected to have a relatively continuous distribution, rendered
this stream of examination inconclusive. Photomicrographs of the threads before and after
staining can be found in the Supplementary Materials (Figure S1).

2.2. Instrumental Analysis
2.2.1. Elements: Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry

Elemental analysis by SEM/EDS was undertaken to determine the possible presence
of fibre-bound mineral dyes, such as ferrihydrite (iron buff), which has been reported
on Egyptian linen textiles, both from Ancient Dynastic Egypt [10] and the more recent
Byzantine and early Medieval periods (4-9th centuries CE) [11]. All threads were found to
consist mainly of carbon and oxygen, typical for cellulosic fibres, and common traces of
silicon and calcium were also noted for the majority of the fibres; this may be attributed to
minerals from the depositional environment. The cloth (977 x 337.30) that appeared darkest
under UV light (Figure 2) and that has the thickest coating of dark brown embalming
resin was also found to contain traces of sodium, possibly from contact with natron,
a commonly used desiccant during mummification comprised of a mixture of sodium
carbonate decahydrate, sodium bicarbonate, sodium sulfate and sodium chloride [12]. This
cloth also presented a trace abundance of elemental iron which was determined to be
present as a likely contaminant from the burial tomb, and not in a fibre-bound state.

2.2.2. Non-Polymeric Organic Components: Gas Chromatography-Mass Spectrometry

The linen textiles visually appear to be shades of yellow-brown to dark brown, seem-
ingly due to degradative processes that occur as cellulose ages and oxidises [13-15]. Addi-
tionally, for three of the cloths, the presence of dark brown resinous material contributes
to their appearance. Previous studies, however, have identified organic or mineral dyes
such as safflower or iron buff on Ancient Egyptian linen textiles [10,16,17], and there are
extensive case studies on the identification of the botanical resources utilised in embalm-
ing rituals throughout the Ancient Egyptian chronologies [18-24]. With the potential of
multiple sources of organic materials, including the possibility of intact or degraded or-
ganic dyes that may be present on the cloths, threads from each textile were extracted in
m-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFTH) and toluene and
subsequently analysed using GC-MS [25]. This technique is useful for investigating non-
polymerised organic components from textiles. With the exception of textile 909.80.589, which
was a smaller sample and yielded a weak extract, the extracts from each of the thread samples
contained compounds related to hydrolysable tannins and humic substances [26-29]. To illus-
trate these results, an extracted ion chromatogram (EIC) from textile 910.63.7 (m/z 221, 223,
224,226,251, 279, and 309) is shown in Figure 3; the remaining EICs are presented in the
Supporting Information (Figure S2). The extracted peaks show many of the compounds
related to hydrolysable tannins and humic substances that are present on the cloths, in-
cluding methylated derivatives of gallic acid (26), benzenetricarboxylic acids (27 and 29), a
hydroxybenzenedicarboxylic acid (31), a hydroxybenzenetricarboxylic acid (32), benzenete-
tracarboxylic acids (34, 35, and 36), and a hydroxybenzenetetracarboxylic acid (38). All of
the benzenecarboxylic acid compounds shown in Figure 3 are typical for textiles that have
been exposed to tannin-containing plant material. This contact can occur through dyeing or
mordanting, and also through exposure to water from a tannin-rich source during cleaning
or processing of the cloth or fibres. Exposure can also occur at wet bog burial sites [30]. It is
also possible that some of the tannins and humic substances present in these samples may
originate from exposure of the fibres to degrading plant material during the fermentation
process of retting the flax plants [7]. If this is the source, it would be reasonable for all of
the cloths to contain similar compounds. Notably, there is no evidence in these extracts
of compounds that might arise from the degradation and oxidation of lignin, which is
present at approximately 2% in retted linen fibres [31]. Because the lignin polymer in linen
is predominantly composed of guaiacol units [32], compounds including fully methylated
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guaiacol (1,2-dimethoxybenzene) and 4-vinyl guaiacol (1,2-dimethoxy-4-vinylbenzene) in
the chromatograms would have been an indication of the degradation process [32], and
these were not detected. It is assured that any lignin present in these cloths has undergone
some degradation; however, the indicator compounds may not be detected due to very low
lignin content, as might be the case for fine, white linen cloth.
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Figure 3. Extracted ion chromatogram (EIC) created using m/z 221, 223, 224, 226, 251, 279, and 309
for cloth 910.63.7. Peak labels correspond to compounds listed in Table 1.

The TMTFTH extracts from the three cloths with visible resinous coatings (909.18.20a,
909.18.20b, and 977 x 337.30) provided the most complex chromatograms indicative of
organic mixtures. Total ion chromatograms (TICs) of these extracts are shown in Figure 4.
In the three chromatograms, one of the key constituents was identified as highly oxidized
Pinaceae resin. Compounds attributed to this component include methyl esters of dehy-
droabietic acid (39), 7-methoxy-tetradehydroabietic acid (40), and 7-oxo-dehydroabietic
acid (42) [33]. Additional peaks indicating the advanced state of oxidation of the resin on each
cloth are also present and include methyl esters of 7-methyoxy-pentadehydroabietic acid (41),
7-oxo-tetradehydroabietic acid (45), and 15-hydroxy-7-oxo-dehydroabietic acid (47) [33]. Due to
ageing, oxidation and loss of species-identifying markers, the conifer type(s) was not deter-
mined [34]. The presence of trace relative abundances of retene in the TICs may indicate
that the Pinaceae resin in the balm coatings was thermally processed, at least mildly [35,36].
However, the very low abundance of the retene relative to the other diterpenoid com-
pounds does not seem to indicate the presence of strongly heated Pinaceae tar. Conifer
resins are commonly found in Egyptian mummification balms [21,22,37-40].

A series of small peaks eluting late in the TICs indicate the presence of a triterpenoid resin
in the coatings on each of the three cloths in Figure 4. The peaks include three unidentified
compounds (48, 49, and 50) having characteristic mass ion fragments m/z 189, 203, and
262, which are typical for lupane, ursane and oleanane compounds [41], respectively. The
additional presence of moronic acid (3-oxo-olean-18-en-28-oic acid, 51) likely indicates that the
resin is mastic, derived from Pistacia genus trees [42,43]. These trees grew in the Mediterranean
at the time that the cloths were created [44]. Like conifer resin, mastic resin is a commonly
identified ingredient in Egyptian mummification balms [21,22,37-40]. In previous studies,
nororlean-17-en-3-one has been designated as a marker for heated Pistacia resins [44,45]. The
absence of this marker in the chromatograms in Figure 4 may indicate that the mastic resin
was not strongly heat-processed in the manufacture of the balm used on the three cloths.
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Figure 4. Total ion chromatograms from cloths with visible embalming resins (907.18.20a, 907.18.20b,
and 977 x 337.30). A product derived from the pesticide pentachlorophenol is labelled with an
asterisk (*). Peak labels correspond to compounds listed in Table 1.

Sesquiterpene compounds are also present in the resinous balms on the three cloths.
Details of the chromatograms have been expanded in Figure 4 to highlight these peaks. The
most abundant sesquiterpene detected in each chromatogram is cedrol (23), and smaller
peaks of a-cedrene (17), 3-cedrene (18), cuparene (22), calamenene (24), and cadalene (25)
have also been identified. The latter three compounds are associated with Pistacia resin [46];
therefore, this must account for at least a portion of the amounts detected in the resin
coatings. More significant, however, is the possibility that the majority of the sesquiterpene
compounds identified on the cloths may originate from juniper oil (such as Juniperus
oxycedrus), or a mixture of conifer oils of which juniper is a major constituent [18,47,48].
This conclusion is based on the high relative abundance of cedrol and the additional
presence of a-cedrene and (3-cedrene, which is consistent with juniper oil [48]. The purpose
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of including essential oils from conifer sources in mummification balms was possibly to
stave off microbial attack and help conserve biological tissue [48].

Very low abundances of monocarboxylic fatty acids, mainly palmitic acid (C16:0, 30)
and stearic acid (C18:0, 33), are present in the three cloths shown in Figure 4, and also
on the four cloths without visible coatings. It is difficult to assign such peaks to a source,
given the pervasiveness of these compounds in nature. They might derive from any of
the plant-sourced resin components on the cloths or originate from a separately added
component such as a plant or animal oil [21,22,37-40].

One out of place component is present in all three chromatograms in Figure 4. 2,3,5,6-
Tetrachloroquinone is the key degradation product of the pesticide pentachlorophenol [49],
and the presence of the methylated derivative (*) in these extracts may indicate that this
pesticide was used at the ROM in a past treatment.

The combination of Pinaceae resin, mastic resin, and a conifer essential oil (probably
sourced from a juniper tree or shrub) is consistent with embalming mixtures that have
been previously characterised in Ancient Egyptian mummies, mummy wrappings, and
funerary jars [21,22,38,39,50]. Mummy bandages were often made from old clothing [7],
and it is notable that although resin-saturated, these three cloth fragments have retained a
pleated appearance. In his memoir, Currelly briefly describes the types of textiles that they
encountered during the excavations at Deir el-Bahri. He differentiates between those that
were used as mummy wrappings and articles of clothing [1]: “In front of the temple the
king had buried six of his wives, one of who, Henhenet, Hall had found, stripped naked by
robbers hunting for her jewellery, lying on a pile of her wrappings and two of her shawls.”
Although Currelly does not provide any further descriptions of the cloths in the memoir, it
is probable that he could differentiate based on the obvious presence of dark brown coating
on the wrappings, and the extra inflexibility that this gave to the cloths.

2.2.3. Threads and Coatings: Pyrolysis-Gas Chromatography-Mass Spectrometry

Consistent with linen, Py-GC-MS analysis with tetramethylammonium hydroxide
(TMAH) derivatisation of whole threads from the textiles showed that they each contain
compounds originating from the pyrolysis and methylation of cellulose. Additionally, the
three textiles having embalming coatings also show abundant peaks from Pinaceae resin
components and smaller peaks of triterpenoids from mastic resin which were previously
described from the TMTFTH extractions and GC-MS analysis (Section 2.2.2). TICs from
each textile are presented in Figure 5, and the most abundant components are labelled on
the chromatograms and described in Table 1. Compounds in the TICs that derived from
the linen fibres include furans (1,7), cyclopentenones (2,3), hydroxybenzenes (4, 6, 9, 11,
13, 14), and the anhydro sugar levoglucosan (1,6-anhydro-3-D-glucopyranose, 20) [51]. Of
the several unidentified cellulose-derived compounds present, a notable marker that forms
through TMAH derivatisation with Py-GC-MS is compound 15, having the characteristic mass
spectral ions m/z 88, 73, 103, 135. Another peak (compound 16) eluting in each chromatogram
just after this cellulose marker is also unidentified and presents an interpretation challenge.
Compound 16 has the characteristic mass spectral ion fragments m/z 101, 99, 127, 71, and 75.
It remains unknown after being first reported by Fabbri and Helleur more than 20 years
ago [51]. When first discovered, it was described as a degradation product formed through
TMAH thermochemolysis reactions of both cellulose and starch, possibly the dehydrated
and partially methylated product of a deoxy-hydroxymethyl-pentonic acid [51]. Although
acknowledged to be present in low relative abundances in cellulose [51], it is present in
such a high abundance in the TMAH pyrolysis of starch that it has been suggested as a
starch marker [51,52]. In a more recent study, Schilling et al. referred to this unknown
compound as Schellmannose [52], and it has been published under this name multiple
times [52-56]. In studies conducted at the Canadian Conservation Institute (CCI), very low
relative abundances of this compound have been found to form during TMAH Py-GC-MS
analysis of other materials containing glucose linkages, including dextrin and sucrose.
However, methylated derivatives of sucrose can be identified through TMAH Py-GC-MS,



Molecules 2022, 27,4103 8 of 24

and since these compounds were not detected on the threads, sucrose is not the source of
Schellmannose (16) in this study.

() 907.18.19

33

(b) 907.18.20a

3 (d) 910.63.1
f o=
©
©
c
=3
QO
©
2 30
._.g N 33
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Figure 5. Total ion chromatograms obtained by TMAH Py-GC-MS of threads from pleated linen
textiles. Peak labels correspond to compounds listed in Table 1.
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Table 1. List of compounds corresponding to the labelled peaks in Figures 3-7.
MW Characteristic Fragment Ions
Label Compound (% Rel Abund) m/z (% Rel Abundance) RI Source

1 2(5H)-furanone 84 (40) 55 (100), 54 (22), 39 (17), 37 (6), 53 (4) 921 S,
2 2-hydroxy-3-methyl-2-cyclopenten-1-one 112 (100) 55 (48), 69 (47), 83 (30) 97 (6) 1029 cs,
3 3-ethyl-2-hydroxy-2-cyclopenten-1-one 126 (100) 55 (39), 83 (38) 69 (32), 97 (18), 111 (16) 1075 c,s,
4 2-methoxy-phenol 124 (68) 109 (100), 81 (67), 53 (22) 1092 c,s,
5 unidentified 126 (1) 57 (100), 58 (10), 71 (4), 87 (2), 98 (<1) 1097 S,
6 dihydroxy-methoxy-benzene 140 (100) 69 (63), 97 (48) 125 (31) 1153 c,s
7 dimethyl-methoxy-3(2H)-furanone (tentative) 142 (100) 57 (38), 71 (29), 127 (28), 82 (28), 113 (23) 1220 c,s,
8 unidentified 156 (100) 57 (35), 141 (27), 95 (27), 127 (22) 1237 s,
9 dimethoxy phenol (isomer) 154 (100) 53 (40), 139 (33), 83 (28), 125 (27), 111 (22) 1243 c,s,
10 tri-O-methyl-3-deoxy-D-threo-pentonic acid, methyl ester 206 (<1) 129 (100), 75 (35), 115 (35), 161 (24), 101 (19) 1282

(ARA/XYL 1) 2 ’ ’ ’ ’ &
11 dimethoxy phenol (isomer) 154 (100) 139 (79), 53 (46), 66 (29), 125 (27), 83 (27) 1289 S,

tri-O-methyl-3-deoxy-D-erythro-pentonic, methyl ester

12 (ARA/XYL 2) 206 (<1) 129 (100), 115 (37), 75 (37), 101 (24), 161 (24) 1300 g,
13 dimethoxy phenol (isomer) 154 (100) 139 (90), 111 (54), 96 (13), 53 (10) 1334 c,s,
14 1,2,4-trimethoxy benzene 168 (96) 153 (100), 125 (79), 110 (34), 69 (20) 1366 cs,g
15 unidentified carbohydrate (cellulose, poss. glucopyranoside) 88 (100), 87 (67), 73 (48), 103 (29) 1375 1
16 unidentified carbohydrate (Schellmannose) 204 101 (100), 99 (33), 71 (26), 127 (30), 88 (21), 159 (3) 1385 C,S
17 a-cedrene 204 (47) 119 (100), 93 (41), 91 (31), 105 (30), 161 (23) 1435 j
18 -cedrene 204 (48) 161 (100), 69 (60), 93 (44), 120 (31), 133 (26) 1444 j
19 2’4'5’6'te“a'o'methyl'3'de‘Zé&?’f)yio'hexomc acid, methyl ester 250 (<1) 129 (100), 75 (30), 101 (27), 161 (21), 191 (8) 1474 g
20 1,6-anhydro-p-D-glucopyranose (levoglucosan) 162 (<1) 60 (100), 43 (81), 57 (3), 73 (60), 98 (8) 1479 cs,
21 24/5/6-tetra-O-methy1 3'“‘2’322’%’;0'}‘6"0“ acid, methyl ester 250 (<1) 129 (100), 75 (33), 101 (27), 161 (20), 191 (5) 1499 g
22 cuparene 202 (20) 132 (100), 145 (28), 119 (26), 105 (18) 1527 j
23 cedrol 222 (2) 95 (100), 150 (69), 151 (68), 81 (52), 207 (19) 1616 j
24 calamenene 202 (20) 159 (100), 160 (13), 144 (6), 129 (6) 1693 j
25 cadalene 198 (46) 183 (100), 168 (18), 153 (15), 165 (15), 141 (8) 1702 j
26 3,4,5-tri-O-methyl gallic acid, methyl ester 226 (100) 211 (44), 195 (28), 155 (27), 183 (10) 1731 t
* 3,6-dimethoxy-1,2,4,5-tetrachlorobenzene 274 (54) 261 (100), 259 (79), 276 (68), 209 (39), 211 (37), 87 (41) 1745
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MW

Characteristic Fragment Ions

Label Compound (% Rel Abund) mlz (% Rel Abundance) RI Source
27 1,2,3-benezenetricarboxylic acid, trimethyl ester b_ 252 (<1) 221 (100), 236 (18) 1833 t
28 unidentifed (tannin) 224 (100), 255 (28), 194 (25), 165 (17), 137 (10) 1842 t
29 1,2,4-benzenetricarboxylici acid, trimethyl ester? 252 (4) 221 (100), 103 (10), 193 (8) 1851 t
30 hexadecanoic acid, methyl ester 270 (15) 74 (100), 87 (74), 143 (29), 241 (23) 1930 f
31 4,5-dimethoxy-1,2-benzenedicarboxylic acid, dimethyl ester b 254 (52) 223 (100), 122 (6), 152 (4) 1937 t
32 3-methoxy-1,2,4-benezenetricarboxylic acid, trimethyl ester b 282 (12) 251 (100), 219 (15), 192(8), 134 (4) 2052 t
33 octadecanoic acid, methyl ester 298 (22) 74 (100), 87 963), 143 (17), 255 (8), 199 (6) 2118 f
34 1,2,3,4-benzenetetracarboxylic acid, tetramethyl ester be 310 (3) 279 (100), 104 (9), 162 (6), 233 (3) 2135 t
35 1,2,4,5-benzenetetracarboxylic acid, tetramethyl ester be 310 (4) 279 (100), 162 (11), 75 (10), 177 (5), 251 (5) 2161 t
36 1,2,3,5-benzenetetracarboxylic acid, tetramethyl ester be 310 (<1) 279 (100), 162 (4), 220 (2), 103 (2), 75 (2) 2198 t
37 retene 234 (70) 219 (100), 204 (34), 189 (25) 2229 p
38 2-methoxy-1,3,4,5-tetracarboxylic acid, tetramethyl ester b 340 (10) 309 (100), 277 (5), 134 (4), 191 (4), 263 (4) 2331 t
39 dehydroabietic acid, methyl ester 314 (17) 239 (100), 299 (20), 314 (17), 141 (7) 2350 )
40 7-methoxy-tetradehydroabietic acid, methyl ester 342 (100) 267 (89), 227 (55), 283 (43) 2460 )
41 7-methyoxy-6,8,11,13,15-pentadehydroabietic acid, methyl ester ¢ 340 (100) 265 (8), 225 (56), 281 (38) 2558 p
42 7-oxo-dehydroabietic acid, methyl ester 328 (34) 253 (100), 187 (23), 213 (11), 269 (11) 2589 )
43 7,15-dimethoxy-tetradehydroabietic acid, methy] ester 372 (78) 297 (100), 340 (60), 141 (57), 313 (56), 357 (47) 2608 )
44 15-hydroxy-7-methoxy-tetradehydroabietic acid 358 (50) 340 (100), 283 (93), 225 (90), 265 (55), 299 (27) 2640 p
45 7-oxo-tetradehydroabietic acid, methyl ester 326 (34) 251 (100), 185 (21), 211 (12) 2673 )
46 15-methoxy-7-oxo-dehyrdoabietic acid 358 (2) 343 (100), 344 (22), 327 (6), 283 (4) 2748 )
47 15-hydroxy-7-oxo-dehydroabietic acid, methyl ester 344 (3) 329 (100), 269 (15), 128 (15) 2773 p
48 unidentified triterpenoid 454 (7) 189 (100), 439 (24), 119 (24), 203 (17), 249 (16) 3291 m
49 unidentified triterpenoid 500 (25) 189 (100), 119 (40), 203 (37), 81 (32), 262 (28) 3376 m
50 unidentified triterpenoid 500 (11) 203 (100), 262 (60), 189 (36), 143 (25), 81 (20) 3404 m
51 3-oxo-olean-18-en-28-oic acid, methyl ester 468 (12) 189 (100), 203 (26), 249 (21), 119 (19), 409 (9) 3567 m

a [57]; P [27]; € [33]; ¢ = cellulose, f = fat or oil, g = gum, j = juniper oil, m = mastic (Pistacia sp.) resin, p = Pinaceae resin, s = starch, t = tannins and humic substances.
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Further investigation of the unknown Schellmannose compound (16) and its origin on
the pleated textiles, whether from cellulose or starch, was undertaken. Because starch is
soluble in warm water and cellulose is not, small threads from each textile were extracted in
hot (75 °C) deionised water and the extracts were dried and analysed using TMAH Py-GC-MS.
Figure 6 shows side-by-side EICs obtained from the TMAH pyrolysis of the whole threads
(left side of Figure 6) and the hot water extracts of the threads (right side of Figure 6). For the
ion extractions, m/z values of 88, 101, 129, and 168 were used. The m/z 88 EIC highlights
the presence of compound 15, the unidentified marker for cellulose; m/z 101 was chosen to
show the presence of Schellmannose [51]; #1/z 129 highlights methylated 3-deoxy-aldonic acid
pyrolysates that form during TMAH pyrolysis of plant gums [57], and m/z 168 was chosen for
1,2,4-trimethoxybenzene, a pyrolysate common to many carbohydrates, including starch and
plant gums [58]. In the EICs obtained from the whole thread analyses, three main peaks are
present for each textile: the saccharide marker (1,2 4-trimethoxybenzene, 14), the unidentified
cellulose marker (15), and Schellmannose (16). In addition to these compounds, small peaks
of methylated 3-deoxy-D-threo-pentonic acid (10) and 3-deoxy-D-erythro-pentonic acid (12) are
also present in each chromatogram. These compounds form during TMAH thermochemolysis
reactions of polysaccharides containing arabinose and/or xylose [57,58].

(I) Whole threads (1) Hot water extracts
m/z 88, 101,129, 168 m/z 88, ,129,168
14 14
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Figure 6. Partial extracted ion chromatograms (m/z 88, 101, 129, 168) obtained by TMAH Py-GC-MS for
whole threads from the pleated linen textiles (left), and for the hot water extracts of the threads (right).
Peak labels correspond to compounds listed in Table 1.

One of the key differences between the EICs obtained from the analysis of the hot water
extracts and those from analysis of the whole threads (Figure 6) is that the cellulose marker
peak (15) is missing from the hot water extracts. This is attributed to the extracts only containing
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water-soluble components from the threads, while the whole thread chromatograms contain all
those components in addition to the insoluble cellulose substrate as well as any other insoluble
components. This is also important considering the Schellmannose question, and whether
it is originating on these threads from the cellulose component of the linen or from a starch-
containing additive. Unlike the cellulose marker (15), the Schellmannose peak (16) is present
in each water extract, and this indicates that at least a portion of the unknown Schellmannose
compound originates from a source that is water-soluble.

Other differences between the whole thread and the water extract chromatograms in
Figure 6 include an increase in relative abundances of the arabinose/xylose pyrolysates
(10, 12), and the more evident presence of methylated 3-deoxy-D-xylo-hexonic acid (19)
and 3-deoxy-D-Iyxo-hexonic acid (21). These latter two compounds are TMAH pyrolysates
that form from polysaccharide chains containing galactose units [57,58]. The presence of
both arabinose or xylose, and galactose markers from a polysaccharide source indicates
the presence of a plant gum, such as a fruit gum, gum tragacanth (Astragalus genus) or
gum arabic (the acacias, incl. Vachellia nilotica and Senegalia senegal), all of which have been
identified through gas chromatographic analysis of objects from Ancient Egypt, including
paint binders, coatings, textile adhesives and cosmetics [58-65]. To aid in the identification
of the gum, and any other polysaccharide that might be present, a variety of reference
materials were subjected to hot water and the dried residues were analysed by Py-GC-MS
with TMAH derivatisation. Figure 7a—c show the combined EICs for commercial gum
arabic, commercial gum tragacanth, and starch, respectively. Also included in Figure 7 are
the results from the analysis of ancient linen. Figure 7d shows the combined EICs for fibres
from cloth 910.63.7, which were analysed after they had been extracted in hot water. The
marker peaks present in the gum arabic EICs include pyrolysates of polymerised arabi-
nose/xylose (10, 12) and galactose (19, 21), and saccharide marker 1,2,4-trimethoxybenzene
(14). Peaks present in the gum tragacanth EICs include arabinose/xylose markers (10, 12),
the saccharide marker (14), and, due to the presence of some starch in gum tragacanth’s
composition [66], the unknown Schellmannose peak (16) is also present. Although the gum
tragacanth polysaccharide chain does contain a minor abundance of galactose (approxi-
mately 10%), only the most abundant pyrolysate marker (19) from the pair is discernible in
Figure 7b. The EICs constructed for the hot water extract of the starch contain a relatively
minor abundance of the ubiquitous saccharide marker (14), but Figure 7c is dominated
by Schellmannose (16). It is not difficult to see why this compound was designated as a
starch marker by Fabbri et al. [51]. Main peaks present from the analysis of the linen thread
910.63.7 after it was extracted using hot water (Figure 7d) include the saccharide marker
(14), the cellulose marker (15), and Schellmannose (16). This combined EIC for thread
910.63.7 may be compared directly to that of Figure 5f, which shows the thread prior to
extraction. In Figure 7d there are no longer any peaks present from a soluble plant gum.
However, Schellmannose (16) is still present. This is a reminder that the pyrolysate forms
from both water-soluble starch and water-insoluble cellulose.

The TMAH Py-GC-MS analysis of the hot water extracts provided more evidence
about possible carbohydrate coatings on the threads than the analysis of the whole threads.
However, due to the high alkalinity of the TMAH reagent and thermolysis reactions that can
occur during carbohydrate analysis such as racemisation, reduction, and decarboxylation,
the technique does not always provide enough information to discern between polysaccha-
rides [67]. For instance, in this case, the reagent cannot differentiate between arabinose and
xylose in a polysaccharide chain. This is because these sugars are C2 epimers that form
the same deoxy-pentonic acid marker compound upon pyrolysis and methylation [58].
Further investigation into the soluble carbohydrates present in the hot water extracts was
undertaken through Py-GC-MS analysis using hexamethyldisilazane (HMDS) derivatisa-
tion. This reagent is milder and less alkaline than TMAH,; therefore, different pyrolytic
pathways and reactions occur through its use [68-70]. As a complement to information
gained through TMAH Py-GC-MS, the marker compounds that are produced can help
differentiate polysaccharides. Using HMDS pyrolysis, the m/z 217 ion fragment is charac-
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teristic in the mass spectra of trimethylsilylated (TMS) saccharide compounds [71-73], and
therefore, diagnostic for polysaccharide materials. However, because the abundance of this
ion in the individual mass spectra varies between marker compounds, the size of peaks
shown in EICs do not necessarily indicate their actual relative abundances. Nevertheless, it
is a useful tool for investigating polysaccharides [71-73].

EICs: m/z 88, 101, 129, 168
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Figure 7. Partial extracted ion chromatograms (1/z 88, 101, 129, 168) obtained by TMAH Py-GC-MS
for hot water extracts of commercial reference materials including (a) gum arabic, (b) gum tragcanth
and (c) starch, and (d) the ancient cellulosic thread (910.63.7) after it had been subjected to hot water
extraction. Peak labels correspond to compounds listed in Table 1.

In Figure 8, the EICs (m/z 217) are shown for the HMDS Py-GC-MS analyses of the
hot water extracts from all seven pleated cloths, as well as similar extracts from reference
starch, and commercial gum arabic and gum tragacanth. Compounds corresponding to
the peak labels are presented in Table 2. There are eight marker compounds present in the
EICs, and some, like S1 (unidentified) and S4 (diTMS derivative of levoglucosan), are not as
diagnostic because they are common to many polysaccharide sources; these compounds are
present in each of the reference materials and the thread extracts in Figure 8. However, other
derivatised saccharide pyrolysates are specific to plant gums, including fully derivatised
anhydro-fucopyranose (52), arabinofuranose (S3), and anhydro-galactopyranose (S5). Ara-
binogalactan polysaccharides, such as gum arabic and many fruit gums, are characterised
by predominant abundances of both arabinose and galactose units in the main polymer
chain. Alternatively, gum tragacanth is distinguished from arabinogalactans through the
presence of a significant relative abundance of fucose and a much lower relative abundance
of galactose in the saccharide polymer [58,63-65].
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Figure 8. Extracted ion chromatograms (1/z 217) from the HMDS Py-GC-MS analysis of hot water
extracts of reference materials (starch, gum arabic, and gum tragacanth) and linen threads from
pleated textiles. Labels correspond to compounds presented in Table 2.
Table 2. List of compounds corresponding to the labelled peaks in Figure 8.
MW Characteristic
Label Compound (% Rel Fragment Ions RI Source 4
Abund) m/z (% Rel Abundance)
. e 73 (100), 217 (64),
S1 unidentified 146 (8), 232 (3) 1252 ats
73 (100), 217 (41), 147 (16),
-0 _ — a
52 tetra-O-TMS-1,4-anhydrofucopyranose 268 (9), 244 (5), 191 (3) 1403 t
. 73 (100), 217 (48), 147 (33),
_ O _ b
S3 1,2,3,5-tetra-O-TMS-arabinofuranose 438 (<1) 129 (15), 230 (12) 1407 at
2,4-di-O-TMS-1,6-anhydro-p-D-glucopyranose 217 (100), 73 (74), 129 (28),
54 (levoglucosan) € 380 (<1) 116 (19), 101 (11) 1628 ats
73 (100), 217 (44), 157 (38),
S5 tri-O-TMS-1,4-anhydro-D-galactopyranose d 332 (6) 191 (37), 147 (19), 1682 at
243 (8), 204 (6)
A " e 73 (100), 204 (71), 217 (52),
S6 tri-O-TMS 1’6(1*‘;“25’?520‘;3 glucopyranose 378 (<1) 147 (27), 129 (15), 333 (15), 1716 s
& 103 (9), 243 (3)
73 (100), 217 (49), 191 (34),
57 tri-O-TMS-1,4-anhydro-D-glucopyranose 4 332 (5) 157 (27), 147 (20), 129 (12), 1723 s
204 (10), 243 (6)
217 (100), 73 (74), 116 (13),
S8 tri-O-TMS-1,6-anhydro-f3-D-glucofuranose d 378 (<1) 101 (10), 129 (9), 319 (8), 1751 S

157 (5), 191 (5), 243 (3)

a[74]; b [75]; ¢ [71];4 [76]; 4 a = gum arabic, s = starch, t = gum tragacanth.
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Through these complementary analyses, it is evident that the deoxy-pentonic acids
(10, 12) formed in the TMAH pyrolyses of the thread extracts (Figure 6) were derived from
arabinose and not xylose. All of the thread extract chromatograms in Figure 8 show the
presence of fully derivatised arabinofuranose (S3). Other plant gum markers present in the
EICs include anhydro-galactopyranose (S5) and anhydro-fucopyranose (S2). The latter fucose
marker was only detected in the gum tragacanth reference, and its absence from the thread
extracts probably indicates that gum tragacanth was not applied to any of the cloths. However,
in the extracts of 907.18.20b and 910.63.7, the arabinofuranose peak is weakly abundant, and
since the fucose marker, if present, would only be roughly one third the size of this peak,
it is possible that fucose could be present in these chromatograms, and not showing as a
resolved peak. Yet it is interesting to note that even on more modern 19th-century textiles,
gum tragacanth was rarely used as a size or coating [77]. The gum has poor solubility in
water, forms thick, ropey solutions, and even when strained can leave particles on the textile
surfaces [77]. Contrary to the missing fucose derivative, the galactose marker compound (S5)
was identified in the gum arabic reference, the gum tragacanth reference, and in five of the
thread extracts (907.18.19, 907.18.20a, 907.18.20b, 910.63.1, and 909.80.589).

Starch is a glucose-based polysaccharide made up of glucose units in x-D-(1-4) link-
ages and «-D-(1-6) linkages [78]. Marker HMDS pyrolysates formed through analysis of
the reference starch extract (Figure 5a) include fully derivatised levoglucosan (S6), anhydro-
glucopyranose (S7) and anhydro-glucofuranose (S8). Although markers S6-5S8 also form
through similar analysis of dextrin [72] and cellulose [68], these substances are not likely
the source of the compounds in the sample extracts. Dextrin is a water-soluble substance
that was first made industrially in the 19th century through pyro-processing starch and
is probably not present on the ancient cloths [79], and through careful sampling of the
extracts using a stereomicroscope and surgical tools, no cellulose fibres were present in
the analysed hot water extracts from the cloths. Of the three markers, S6 and S8 are the
most relatively abundant in starch and the S7 peak is much smaller in the EIC. Yet, all three
peaks were identified in extracts of cloths 907.18.19, 907.18.20a, 910.63.1, and 909.80.589. In
the remaining three extracts from cloths 907.18.20b, 910.3.7, and 977 x 337.30, the two most
abundant compounds (S6 and S8) of the markers were identified.

The full analytical results for the investigation are presented in Table 3. Based on the
results from both sets of Py-GC-MS analyses of the hot water extracts, using TMAH and
HMDS, it seems likely that each of the pleated cloths had been treated with a plant gum
and a water-soluble polyglucoside, possibly starch. In terms of the plant gum identification,
the presence of arabinose and probable absence of fucose may indicate that these threads
were all treated with an arabinogalactan gum, such as gum arabic or cherry gum, which
have similar carbohydrate profiles [59,72,73]. Fruit gums, however, generally have poor
solubility in water, are dark in colour when compared to gum arabic [59], and they may
not have been suitable for use as a cloth sizing material. Although Py-GC-MS can provide
useful information on the presence of many saccharide constituents, it remains challenging
to assign absolute identity to traces of ancient and degraded polysaccharides. This is espe-
cially true when there is significant variability in the relative proportion of polysaccharide
constituents in plant gums, even within the same genus or species [59,64,65,80], and when
mixtures of different polysaccharide materials are likely present [59,63]. This means that
although it seems probable that plant gum was applied to the linens, either in spinning,
consolidating, and strengthening the warp threads, or sizing the cloth to hold pleats, a
cautious approach to the identification of traces of degraded and aged polysaccharides
from this ancient period is warranted. Therefore, from these results we conclude only that
the cloths, those that had been coated with embalming resins and those without, were each
treated with solutions of plant gum and possibly starch.
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Table 3. Analytical results.

Textile Elements ! Identified Components Original Material
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins, humic substances
907.18.19 carbon, oxygen, polysaccharide, containing arabinose  plant gum, such as gum arabic or
e (silicon, calcium) and galactose units fruit gum
water-soluble polyglucosides possible starch
2,3,5,6-tetrachlroquinonel pentachloropheno
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins, humic substances
polysaccharide, containing arabinose  plant gum such as gum arabic or
and galactose units fruit gum
water-soluble polyglucosides possible starch
carbon, oxygen, oxidized abietanes Pinaceae resin (heated)
907.18.20a s ;
(silicon, calcium) olealane, lupane, and ursane L . .
. N . L Pistacia sp. resin (mastic)
triterpenoids, including moronic acid
sesquiterpenes: x-cedrene, 3-cedrene
cedrol, cuparene, conifer oil, probably juniper oil
calamenene, cadalene
monocarboxylic fatty acids animal fat or plant oil
2,3,5,6-tetrachlroquinone pentachlorophenol
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins, humic substances
polysaccharide, containing arabinose  plant gum such as gum arabic, fruit
and galactose units gum, or gum tragacanth
water-soluble polyglucosides possible starch
907.18.20b carbon, oxygen, (calcium) oxidized abietanes Pinaceae resin (heated)
oleanane, lupane, and ursane L . .
. cq . . . Pistacia sp. resin (mastic)
triterpenoids, including moronic acid
sesquiterpenes: x-cedrene, 3-cedrene,
cedrol, cuparene, conifer oil, probably juniper oil
calamenene, cadalene
monocarboxylic fatty acids animal fat or plant oil
2,3,5,6-tetrachlroquinone pentachlorophenol
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins, humic substances
polysaccharide, containing arabinose  plant gum such as gum arabic or
carbon, oxygen, . .
910.63.1 ) s and galactose units fruit gum
(calcium, silicon) . .
water-soluble polyglucosides possible starch
monocarboxylic fatty acids animal fat or plant oil
2,3,5,6-tetrachlroquinone pentachlorophenol
furans, cyclopentenones, etc. cellulose
polysaccharide, containing arabinose  plant gum such as gum arabic or
carbon, oxygen, . .
909.80.589 o ; and galactose units fruit gum
(silicon, calcium) . .
water-soluble polyglucosides possible starch
monocarboxylic fatty acids animal fat or plant oil
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins, humic substances
polysaccharide, containing arabinose  plant gum such as gum arabic, fruit
carbon, oxygen :
910.63.7 and galactose units gum, or gum tragacanth

(calcium, silicon)

water-soluble polyglucosides
monocarboxylic fatty acids
2,3,5,6-tetrachlroquinone

possible starch
animal fat or plant oil
pentachlorophenol
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Table 3. Cont.

Textile Elements ! Identified Components Original Material
furans, cyclopentenones, etc. cellulose
benzenecarboxylic acids tannins and humic substances
polysaccharide, containing arabinose  plant gum such as gum arabic or
and galactose units fruit gum
water-soluble polyglucosides possible starch
carbon, oxygen, (calcium, oxidized abietanes Pinaceae resin (heated)
977 x 337.30 ; .
sulfur, sodium, iron) oleanane, lupane, and ursane

. L . Lo Pistacia sp. resin (mastic
triterpenoids, including moronic acid P ( )

sesquiterpenes: x-cedrene, 3-cedrene,

cedrol, cuparene, conifer oil, probably juniper oil
calamenene, cadalene

monocarboxylic fatty acids animal fat or plant oil
2,3,5,6-tetrachlroquinone pentachlorophenol

1 Relative abundance: major, minor, (trace).

These two polysaccharide substances may have been applied to the cloths for the
purpose of holding the intricate pleat patterns. It has been postulated that a stiffening agent
was used to set the pleats in Pharaonic linen clothing [3,5,6,8]. Thus, whether folded by
hand or produced using a pleating board [3,5,7,8], it is very likely that the pleats in these
cloths have been reinforced and stabilised through the use of applied solutions of starch
and plant gum. The question of when these substances were applied remains. It is possible
that the gum and the starch were applied at different stages in the production of the cloths.
For instance, one substance may have been applied as an agglutinant to consolidate and
strengthen the warp threads prior to weaving, and a second application may have occurred
after the cloth was woven, prior to being pleated. Another question is whether the plant
gum and starch were used on these cloths because they were designed to be pleated, or
if these sizings were used universally on woven linen in Ancient Egypt to produce linen
cloth that could be useful for multiple purposes, be they ritual, ceremonial, or quotidian.

3. Materials and Methods
3.1. Reference Materials

Reference materials used in this study include commercial gum arabic and gum
tragacanth (Sigma Chemical Company, St, Louis, MO, USA) and precipitated wheat starch
(Zin Shofu, Polistini Conservation Material, Washington DC, USA).

3.2. Archaeological Samples

Samples measuring between 5-10 mm (w) x 5-10 mm (1) were collected from seven
Ancient Egyptian pleated linen cloths from the collection of the ROM. In most instances
these were small fragments that had broken off from the main areas of the cloth. Details and
photographs of the objects from which the samples were removed may be found in Table 4.
Four of the cloths were excavated by Currelly in 1906 from the tomb of King Nebhepetre, now
known as Mentuhotep II, (Dynasty XI) in Deir el-Bahri and were accessioned by the museum
in 1907 (907.18.19, 907.18.20a, and 907.18.20b) and 1910 (910.63.1). Little provenance is known
for the remaining three pleated textile fragments, with the exception that they were removed
from excavations in Egypt. Two were accessioned by the museum in 1909 (909.80.589) and
1910 (910.61.7), and the third was accessioned in 1977 (977 x 337.30). All three were obtained
by Currelly in Egypt while he was participating in the 1906 excavation.
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Table 4. Objects analysed.

Objects Details Overview Photographs 2
Pleated textile fragment, 11th Dynasty

linen, 907.18.19 Middle Kingdom

162.6 cm (L), 48.25 cm (W) c. 2055-1986 BCE

-Royal Ontario Museum

-excavated at Deir el-Bahri, Egypt

Pleated textile fragment,
linen, 907.18.20a

36.5 cm (L), 27.5 cm (W)
-Royal Ontario Museum

11th-13th Dynasty
Middle Kingdom, c. 2055-1650 BCE
-excavated at Deir el-Bahri, Egypt

Double-pleated textile fragment,
linen, 907.18.20b

36 cm (L), 20.5 cm (W)

-Royal Ontario Museum

11th Dynasty

Reign of Mentuhotep II

Middle Kingdom, c. 2055-2004 BCE
-excavated at Deir el-Bahri, Egypt

Pleated textile fragment,
linen, 910.63.1

5cm (L), 4 cm (W)
-Royal Ontario Museum

11th Dynasty

Reign of Mentuhotep II

Middle Kingdom, c. 2055-2004 BCE
-excavated at Deir el-Bahri, Egypt

Pleated textile fragment,
linen, 909.80.589

19 cm (L), 14.5 cm (W)
-Royal Ontario Museum

Egypt
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Table 4. Cont.

Objects Details

Overview Photographs 2

Pleated textile fragment,

linen, 910.63.7 Eovot
6 cm (L), 4 cm (W) gypP
-Royal Ontario Museum

Pleated textile fragment,

linen, 977 x 337.30 Eovot
14.5 cm (L), 10 cm (W) 8YP
-Royal Ontario Museum

2 Copyright Royal Ontario Museum.

3.3. Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry

SEM/EDS analysis was performed on the whole threads using a Hitachi S-3500 N VP
SEM integrated with an Oxford Inca X-act analytical silicon drift X-ray detector and an
AZtec X-ray microanalysis system. The SEM was operated at an accelerating voltage of
20 kV at a pressure of 60 Pa using a backscattered electron detector. With this technique,
elemental analysis of volumes down to a few cubic micrometers can be obtained for
elements from boron (B) to uranium (U) in the periodic table at a level of approximately
0.1-1% or greater.

3.4. Polarised Light Microscopy

For PLM, the fibres were prepared as dispersions in Cargille Meltmount mounting
medium (n = 1.66) and examined using a Leica DMRX polarizing light microscope. Lugol’s
stain (potassium iodide/iodine, 0.1 N) was employed on the threads and dried hot water
extracts were used to test for the presence of starch.

3.5. Stereomicroscopy

Small woven fragments from the cloths, individual threads, and dried hot water ex-
tracts were examined and photographed using a Leica M205C stereomicroscope interfaced
to a DMC 5400 digital camera. All images were collected under normal light illumination,
and the small woven fragments were also photographed under UV illumination using a
Labino UVG3 2.0 Spotlight. Image processing was undertaken using Leica LASX software.
Some images were taken using the LASX automatic z-stacking function, which creates a
high-quality extended depth of field image with system optimized acquisition increments
calculated by the software.

3.6. Gas Chromatography-Mass Spectrometry

For each sample, a fine thread of approximately 3-5 mm in length was placed into
a 2 mL clear glass GC-MS vial (Agilent Technologies). To each of the vials 10 uL of
m-(trifluoromethyl)phenyltrimethylammonium hydroxide (TMTFTH, 0.2 N in methanol)
(TCI America, Portland, OR, USA) and 10 pL of toluene were added. The vials were capped
with PTFE/silicon/PTFE septa screw top vials (Agilent Technologies, Palo Alto, CA, USA)



Molecules 2022, 27, 4103

20 of 24

and placed in a block heater at 60 °C. After 1 h the vials were removed from the heater
and centrifuged at 1500 rpm for 1 min. For each analysis, 2 uL of an extract was injected
into a glass micro-vial (Agilent Technologies) set in the thermal separation probe (TSP,
Agilent Technologies). The TSP was then inserted into a multimode inlet on an Agilent
7890 A GC interfaced to a 5975 C MS. During analysis the inlet temperature was ramped
from 50 °C to 250 °C, at a rate of 900 °C /min and held for approximately 38—40 min.
Then, at this point in each run the inlet was cleaned by heating to 450 °C, at a rate of
900 °C /min, and held for 3 min before cooling once again to 250 °C. This built-in pyrolytic
cleaning cycle at the end of each run helps to mitigate any sample carry-over from the
inlet and produces a chromatographic feature that appears to be a short rise and fall in the
baseline and can be seen in Figure 4b,c. For the GC separation, a Phenomenex ZB-5MSi
fused silica column (30 m x 0.25 mm i.d., 0.25 pm film thickness with 5 m guard column;
Phenomenex Inc., Torrance, CA, USA) was used. Ultra-high purity helium carrier gas was
used with a constant flow of 1.2 mL/min. The oven was programmed from 40 °C to 200 °C
(at 10 °C/min), and then from 200 °C to 310 °C (at 6 °C/min) with a final hold time of
20 min (54.33 min run time). A solvent delay of 10 min was employed. The MS transfer
line temperature was held at 280 °C; the MS ion source was 230 °C and the MS quadrupole
was 150 °C. The MS was run in scan mode from 45-550 amu (TMAH) (10-25 min),
50-750 amu (25-30 min) and 50-800 amu (30 min—end of run). Agilent ChemStation
software, v.E.02.02.2.5 and AMDIS v. 2.71 software were used for data processing.

3.7. Pyrolysis-Gas Chromatography-Mass Spectrometry
3.7.1. Whole Threads and Hot Water Extractions

Py-GC-MS analysis was performed both on samples of whole threads from the pleated
cloths and on the hot aqueous extracts of the threads. For the whole threads a few linen
fibres (approximately 2-3 mm in length) were tweezed from a thread and placed in a glass
micro-vial in the thermal separation probe (TSP, Agilent Technologies, Inc., Palo Alto, CA).
The samples were then each derivatized using 2 pL tetramethylammonium hydroxide
(TMAH, Supelco, Bellafonte, PA, USA) (2.5% in methanol) and analysed in split mode (10:1
or 15:1 split depending on sample size).

For the hot water extractions, approximately 1 cm in total length of threads from each
cloth was placed in 100 pL of deionised water in a glass GC vial. The vials were capped
and heated for 1 h at 75 °C, then centrifuged for 1 min at 1500 rpm. The water extracts were
carefully pipetted into the wells of a spot plate and allowed to dry, then the dried surfaces
were gently brushed with a fine sable hair paint brush to remove extraneous fibres. The
extracts were sampled under a stereomicroscope using the tip of a scalpel. Scrapings of a
few micrograms in total were required for each analysis. The scrapings were placed in glass
micro-vials and run in splitless mode once using TMAH derivatisation (2 uL) and once
using hexamethyldisilazane (HMDS, Supelco, Bellafonte, PA, USA) (2 uL) derivatisation.

3.7.2. Instrumental Conditions

Pyrolysis was carried out using Direct Inlet pyrolysis-gas chromatography-mass spec-
trometry (DIP-GC-MS) [81]. For each analysis, a solid sample (either whole thread fragments
or hot water extraction residues) was placed in a glass micro-vial in a TSP with derivatizing
reagent. The probe was then inserted into a multimode inlet on an Agilent 7890A GC
interfaced to a 5975C MS. The inlet temperature was ramped from 50 °C to 450 °C, at a
rate of 900 °C/min. The final temperature was held constant for three minutes and then
decreased to 250 °C at a rate of 50 °C/min and held for the duration of the run. For the
GC separation, a Phenomenex ZB-5MSi fused silica column (30 m x 0.25 mm i.d., 0.25 pm
film thickness with 5 m guard column; Phenomenex Inc., Torrance, CA, USA) was used.
Ultra-high purity helium carrier gas was used with a constant flow of 1.2 mL/min. The
oven was programmed from 40 °C to 200 °C (at 10 °C/min), and then from 200 °C to 310°C
(at 6 °C/ min) with a final hold time of 20 min (54.33 min run time). A solvent delay of
5.1 min was employed. The MS transfer line temperature was held at 280 °C; the MS
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ion source was 230 °C and the MS quadrupole was 150 °C. The MS was operated in elec-
tron impact (EI) positive ion mode (70 eV). Scans were run from 45-550 amu (5-25 min),
50-750 amu (25-30 min) and 50-800 amu (30 min—end run). Agilent ChemStation software,
v.E.02.02.2.5 and AMDIS v. 2.71 software were used for data processing.

4. Conclusions

Over one hundred years has passed since the accessioning of a group of linen frag-
ments into the Egyptian collections of the ROM, acquired by Charles T. Currelly, most likely
during his excavations at Deir el-Bahri’s temple and tomb complex. The analysis of seven
of these pleated linen cloths rediscovered in the ROM’s Egyptian collections by a combined
methodology identified mixtures of organic materials indicative of daily and ritual life
in Ancient Egypt. Three were coated with embalming mixtures containing Pinaceae resin,
mastic resin, and a conifer oil likely made primarily from a juniper species tree or shrub.
It is conceivable that these three cloth fragments were cut from clothing and re-purposed
as bandages for mummified remains. Apart from the embalming resins, the cloths are
remarkably similar both in appearance and composition. All were made in an uneven
weave resulting in either warp-faced or weft-faced finished goods. The presence of traces
of tannins and humic substances on the threads was so consistent in relative abundance
on the seven cloths that we postulate that these substances may result from a common
processing treatment, such as retting the flax plants in slow moving water.

Threads from each of the cloth fragments contained traces of gelatinised starch and
plant gum, confirming suspicions from past and current scholars that these types of cloths
were treated with a substance to reinforce the pleats and lightly stiffen the textiles. Through
multiple complementary Py-GC-MS analyses, mixed carbohydrate coatings were distin-
guished from the carbohydrate linen substrates based on the identification of pyrolysate
markers arising from both TMAH and HMDS derivatisation. The relative complexities
in identifying the use of starch and plant gum to coat and/or size linen cloth provides
a unique insight into the lives of Ancient Egyptians, and a glimpse into a cyclical textile
economy of linen consolidation, weaving, fabric preparation, textile use and re-use.

The ROM’s Egyptian collections hold other textile treasures acquired by Currelly
during his excavations in Deir el-Bahri, including non-pleated fragments of linen cloth and
painted linen votive offerings. Based on the findings of this present study, future work with
these textiles will include determining whether they too contain polysaccharide applica-
tions. This may provide more information on not only the processing and manufacture of
these fine cloths, but also their use in ritual aspects of Ancient Egyptian life and after-life.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/molecules27134103/s1, Figure S1: Photomicrographs of threads from each cloth before and
after staining, and Figure S2: Extracted ion chromatograms highlighting tannin and humic substances
present on the cloths.
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