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Abstract: Praseodymium sulfate was obtained by the precipitation method and the crystal structure
was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space
group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, β = 107.9148 (7)◦,
Z = 4, V = 964.48 (3) Å3 (T = 150 ◦C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As
was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a
strong increase of the monoclinic angle β, there is a direction of negative thermal expansion. In the
argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30–870 ◦C. The kinetics of the
thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied
as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform
infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by
ab initio calculations, and it was found that the valence band top is dominated by the p electrons of
oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact
position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a
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correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to
the 3P0 → 3F2 transition at 640 nm.

Keywords: praseodymium sulfate; crystal structure; thermal analysis; thermal expansion anisotropy;
photoluminescence; band structure; vibrational properties

1. Introduction

Rare earth (Ln) containing crystals exhibit exceptional material properties with wide-
ranging technological significance [1–4]. The materials are widely used in solid-state laser
devices, nonlinear optics and electronic and photonic systems because of their unique
electron level configuration and specific chemical properties [5–17]. As to the crystal
chemistry of Ln-containing compounds, it is based on the existence of the element range
from La to Lu with a continuous variation of effective radius of Ln3+ ions that, in many
cases, governs the boundaries of particular structure types [18]. Accordingly, structural,
thermal and optical properties can be tuned by the substitution of Ln3+ ions. A lot of such
inorganic crystal families can be found in the literature for different anion types, and the
crystals with (SO4)2− units are among less studied ones. As may be reasonably assumed,
this state of things was formed due to the known effect of high hygroscopicity of sulfate
compounds, and that greatly complicates their synthesis and use in precise electronic and
optical technologies. Nevertheless, sulfate materials are traditionally applied in building
industry, the extraction of Ln elements from natural and waste sources and catalysis [19–27].

In recent years, sulfate crystals have been actively studied in the general flow of
searching new optical materials transparent in the UV spectral range, and many novel
materials with interesting linear and nonlinear optical properties were discovered [28–42].
Some specific features were found in the coordination of (SO4)2− anions in the crystal
lattice [41]. However, there are no sufficient data on the structure of many known sulfate
compounds for a proper classification and property analysis. In particular, despite the
redundancy of the data on the crystal structures and properties of rare-earth sulfate hydrates
Ln2(SO4)3·xH2O, most of the corresponding anhydrous phases with general composition
Ln2(SO4)3 are not even structurally characterized. To date, only the crystal structures of
two sulfates of light rare-earth elements, namely Nd2(SO4)3 [43] and Eu2(SO4)3 [44], have
been described in detail. It was established that both phases crystallize in the monoclinic
system, space group C2/c. As to sulfates of heavy rare-earth elements, crystal structures
are available for Ln2(SO4)3, Ln = Y [45], Er [46] and Yb [47] compounds. These materials
are predominantly crystallized in the orthorhombic system, space group Pbcn. Moreover,
the noncentrosymmetric trigonal polymorphic modification was reported for Yb2(SO4)3
(space group R3c) [44], and a trigonal structure (space group R-3c) was observed in closely
related sulfate Sc2(SO4)3 [48]. Thus, the crystal chemistry of Ln2(SO4)3 compounds is not
simple, and the appearance of different structure types is possible depending on the Ln
element and formation conditions.

The present study is aimed at the preparation of Pr2(SO4)3 and the evaluation of its structural,
thermal and spectroscopic characteristics. This contribution allows evaluating the composition
boundaries of the existence of monoclinic structure in anhydrous sulfates Ln2(SO4)3. As is known,
praseodymium, due to its peculiar electronic structure, may be in different valence states and
exhibits various coordination environments in the crystal lattice [49–55]. Praseodymium ions are
able to accept an oxygen deficiency in oxide systems, thereby causing the photocatalytic activity
of Pr-containing compounds [55–61]. The systems with the Pr3+ ions could exhibit interesting
spectroscopic properties as promising optical and luminescent materials [62–68]. Accordingly,
the characterization of Pr-containing sulfates is of particular interest. In this work, anhydrous
sulfate Pr2(SO4)3 was synthesized by the chemical precipitation method, and its structural and
thermophysical parameters were determined on the base of X-ray diffraction measurements. The
thermal stability of the sulfate was evaluated by simultaneous DTA/TG measurements. The
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vibrational properties of Pr2(SO4)3 were obtained by IR and Raman spectral analyses. Then,
photoluminescence effects were comparatively evaluated at 77 and 300 K.

2. Methods and Materials

Praseodymium (III) sulfate Pr2(SO4)3 was synthesized by the precipitation from a
solution of Pr(NO3)3. Pr6O11 (99.99%, ultrapure, TDM-96 Ltd., Ekaterinburg, Russia),
concentrated nitric acid solution (C(HNO3) = 14.6 mol/L, ultrapure, Vekton Ltd., St. Peters-
burg, Russia) and concentrated sulfuric acid solution (C(H2SO4) = 17.9 mol/L, ultrapure,
Vekton Ltd., St. Petersburg, Russia) were used as the starting reagents. Weighing the dry
reagents was carried out on an analytical balance of the accuracy of 0.1 mg. Praseodymium
oxide, prior to weighing, was calcined in a muffle furnace at the temperature of 1000 ◦C
for 12 h to remove the gases adsorbed from the air and the products of their interaction
with the Pr6O11 surface. The acid solutions were measured by means of glass measuring
cylinders with an accuracy of 0.1 mL.

First, the 2.9866 g Pr6O11 charge was placed in a 100 mL glass round-bottomed flask.
Then, 3.6 mL of the concentrated nitric acid solution was added in small portions. The reac-
tion mixture was heated with a continuous stirring until the oxide was completely dissolved.
As a result, the praseodymium (III) nitrate solution was obtained by redox reaction:

Pr6O11 + 18HNO3 → 6Pr(NO3)3 + 9H2O + O2 (1)

After cooling the solution to room temperature, 1.6 mL (an excess of 10%) of the
concentrated sulfuric acid solution was added to the flask in small portions, not allowing
a strong reheating of the reaction mixture. The reaction results in the praseodymium
sulfate precipitation:

2Pr(NO3)3 + 3H2SO4 → Pr2(SO4)3↓ + 6HNO3 (2)

After the precipitation, the mixture was distilled to a dry residue. The praseodymium
sulfate powder was additionally calcined in a tubular furnace at 500 ◦C to remove the
adsorbed acid and then annealed in a muffle furnace at the same temperature for 7 days to
form the final powder product. According to the synthesis steps described above, 4.9672 g
of praseodymium sulfate powder were obtained. The yield of the target product is 99%
of the theoretical level. According to the gravimetric analysis, the content of sulfate ions
in the resulting compound is 50.58%. At the theoretical value of 50.56% for Pr2(SO4)3,
the possible determination error is 0.5%, which corresponds to the relative error for this
analytical method. As seen in the photo shown in Figure S1a, the synthesized powder
of praseodymium sulfate has a light green tint, which is a common characteristic of Pr3+-
containing oxides.

Praseodymium (III) sulfate octahydrate Pr2(SO4)3·8H2O was obtained by the crystal-
lization from an aqueous saturated solution at room temperature in a vacuum desiccator
under reduced pressure. A saturated solution was prepared by dissolving anhydrous
praseodymium (III) sulfate Pr2(SO4)3 (chemically pure) weighing 2.50 g in 100 mL of
deionized water at the temperature of 20 ◦C. The precipitate formed by crystallization
was separated from the mother liquor, squeezed between filter paper sheets and kept at
room temperature on watching glass in a desiccator with calcined silica gel to reach a
constant weight. Thus, light green shiny crystals of praseodymium (III) sulfate octahydrate
Pr2(SO4)3·8H2O were obtained. A photo of this powder product is shown in Figure S1b. As
is evident, the colors of both Pr2(SO4)3 and Pr2(SO4)3·8H2O are in the green color spectrum,
but the tints are different, which could be attributed to the difference in the crystal structure
and the presence of H2O units.

The structural properties of the powder samples were obtained by the X-ray diffraction
analysis with the use of a Bruker D8 ADVANCE powder diffractometer (Cu-Kα radiation)
and linear VANTEC detector. The step size of 2θ was 0.016◦, and the integration time was
3 s per step. First, to evaluate the chemical stability of the Pr2(SO4)3 sample, several XRD
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patterns were collected each 30 min in contact with the laboratory air at room temperature,
normal pressure and humidity (Figure S2). As the X-ray patterns noticeably changed
with the exposure time increase, it was concluded that the sample absorbs water from the
air, leading to the formation of intermediate hydrated phases. Therefore, to exclude the
hydration effects, the powder data for Rietveld analysis were collected at 150 ◦C using
an Anton Parr thermal attachment. Fitting of the profile, searching the crystal structure
and Rietveld refinements were performed by using TOPAS 4.2 [69]. In the determination
of thermophysical parameters, the XRD patterns were recorded using the same Bruker
D8 ADVANCE powder diffractometer (Cu-Kα radiation) and linear VANTEC detector.
The Anton Parr thermal attachment was applied for the temperature control. Nine XRD
patterns were measured in the temperature range of 30–270 ◦C with the 30 ◦C step and
0.4 s exposition time to obtain the thermal dependences of cell parameters.

All first principal calculations were performed using the density functional theory
approach, as implemented in the CASTEP code [70]. The 4f3 5s2 5p6 6s2, 3s23p4 and
2s22p4 valence electron configurations were considered for Pr, S and O atoms, respectively.
The local density approximation plus U (LDA + U) based on the Perdew and Zunger
parametrization [71] of the numerical results of Ceperley and Alder [72] was used for the
calculation. The Hubbard U energy term for the Pr 4f orbital was taken as Uf = 6 eV. The
C19 on-the-fly-generated ultrasoft pseudopotentials were used, and the cutoff energy for
the plane basis was chosen as that equal to 630 eV. The tolerance level for the geometry
optimization was chosen as 5.0 × 10−4 eV/Å for the maximal force and 0.02 GPa for the
maximal stress. The Monkhorst-Pack k-point integration network of the Brillouin zone was
taken as 3 × 3 × 3.

The particle morphology was observed by Scanning Electron Microscopy (SEM) with
the use of an electron microscope JEOL JSM-6510LV. An X-ray energy-dispersive analyzer
Oxford Instruments X-Max 20 mm2 was applied to determine the constituent element ratio.
The chemical composition measurements were carried out with the use of a pressed tablet.
The accuracy in the element content determination was equal to ±0.2%.

The thermal analysis in an argon flow was carried out by a Simultaneous Thermal
Analysis (DTA/TG) equipment 499 F5 Jupiter NETZSCH (Germany). The powder sample
was inserted into an alumina crucible. The heating rate was 3 ◦C/min. For the enthalpy
determination, the equipment was calibrated with the use of standard substances, such
as In, Sn, Bi, Zn, Al, Ag, Au and Ni. The heat effect characteristics were determined with
the package Proteus 6 [73]. The peak temperatures and areas in parallel experiments were
reproduced with an inaccuracy lower than 3%. The kinetic parameters determination was
based on Kissinger formula [74] in the linearized form:

1
T

=
1
E
·R ln

b
T2 −

R
E

ln
AR
E

where T is the temperature with the maximum reaction rate; b is the heating rate, dps;
E is the activation energy; A is the pre-exponential factor. The examples of the practical
application of this formula to the analysis of topochemical reactions in different complex
systems can be found elsewhere [35,75–77].

The infrared (IR) absorption spectrum was recorded with a Fourier-transform spec-
trometer VERTEX 70 V (Bruker, Billerica, MA, USA) in the spectral range from 400 to
1600 cm−1 with the spectral resolution of 4 cm−1. The spectrum was recorded for a tablet
sample shaped as about 0.4 mm thick tablet of 13 mm in diameter and the weight of 0.1203 g.
The tablet was prepared as follows: 0.0030 g of Pr2(SO4)3 was thoroughly ground with
0.12 g of KBr. The Globar was used as a light source, and it was equipped with a KBr
wide-range beamsplitter (Vilnius, Lithuania) and RT-DLaTGS as a detector.

The Raman experiment with the excitation by a Nd:YAG laser (1064 nm) was carried
out on an IR Raman spectrometer (Bruker Optik GmbH), which consists of a Vertex 85 IR
spectrometer and a Ram II Raman attachment. The laser output radiation power was as
high as 100 mW, and the spectral resolution of the spectrometer was equal to 4 cm−1. The
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Raman measurements with the excitation at 532.1 nm were performed using a Millennia
solid-state laser (Spectra Physics, Milpitas, CA, USA) and a Trivista 777 triple-grating
spectrometer (Princeton Instruments, Trenton, NJ, USA). The Raman spectrum of the
Pr2(SO4)3 powder was recorded at ambient temperature in the backscattering geometry in
the frequency range from 30 to 1400 cm−1 without choosing the polarization. The spectral
resolution was as high as ~1 cm−1.

For measuring photoluminescence properties, solid samples were filled in spectro-
scopically pure quartz glass cuvettes and examined either at room temperature or at 77 K
(for the latter using a special liquid nitrogen-filled Dewar assembly FL-1013, HORIBA,
Singapore). The excitation and emission spectra were recorded with a HORIBA Jobin Yvon
Spex Fluorolog 3 spectrometer equipped with a 450 W Xe short-arc lamp, double-grated
excitation and emission monochromators, and a photomultiplier tube (R928P) using the
FluoroEssence™ software. Both excitation and emission spectra were corrected for the spec-
tral response of the monochromators and the detector using the correction files provided
by the manufacturer. The excitation spectra were additionally corrected for the spectral
distribution of the lamp intensity by the use of a photodiode reference detector.

3. Results and Discussion
3.1. Structural Properties

The XRD pattern recorded for the Pr2(SO4)3 sample is shown in Figure 1a. All reflec-
tions were successfully indexed by the C-centered monoclinic cell (a = 21.586, b = 6.715 and
c = 6.969 Å, β = 107.93◦, GoF = 53.7), and the analysis of reflection extinction showed that
the most probable space groups are C2/c or Cc. It should be noted that, earlier, the Pr2(SO4)3
structure was indexed by the monoclinic unit cell, but with twice bigger asymmetric unit
cell volume (a = 21.71, b = 6.941 and c = 6.722 Å, β = 109.03◦, space group P2/a) [78]. As
far as our unit cell has a higher symmetry and a lower cell volume of asymmetric part,
it was chosen for the structure analysis. Moreover, from two possible space groups C2/c
and Cc, the former was chosen as a starting point. The crystal structure was solved using
a simulated annealing procedure applied to the randomized coordinates of one Pr3+ ion
and two (SO4)2− tetrahedra [79]. The dynamic occupancy correction of the atoms was used
to merge the ions falling in special positions [79,80]. After the calculations, a solution was
found with small R-factors. The crystal structure contains one Pr3+ ion in general position
(8f), one (SO4)2− tetrahedron in special site (4e) and one (SO4)2− tetrahedron in general
site (8f), as shown in Figure 2a. The refinement in this model was stable and given the
low R-factors, as presented in Table 1 and Figure 1a. The atom coordinates and main bond
lengths are given in Tables S1 and S2, respectively. The structural analysis of Pr2(SO4)3 with
the use of program PLATON [81] does not reveal any additional elements of symmetry,
and it proves the selection of space group C2/c.

The bond valence sum calculated for the Pr3+ ion using values r0 = 2.138 Å and b0 = 0.37 [82]
and taking into account short bond lengths d(Pr–O) in the range of 2.349(5)–2.530(7) Å without
long bond lengths (2.716(7)–2.792(8) Å) gave the value BVS(Pr3+) = 3.11, which is close to the
formal valence state 3+ of the Pr ion. Similar calculations for all S6+ ions were made using
r0 = 1.624 Å, b0 = 0.37 [75] yield BVS(S1) = 5.71 and BVS(S2) = 6.52, which are also in a good
agreement (less than ±10% of average value) with the formal valence state 6+ of S ions. Thus,
accounting for short bond lengths d(Pr–O), one can assume the existence of monocaped trigonal
PrO7 prisms in the structure (Figure 2a). These prisms are joined with SO4

2− tetrahedra by
nodes forming a 3D net. The topological analysis of the net, using the simplification that S1O4,
S2O4 and PrO7 are just nodes, reveals that this is a three-nodal (4-c)(5-c)2(9-c)2 net with the
point symbol (32.42.52)(32.47.5)2(36.414.58.68)2, which is new [83]. Thus, presently, this family
of monoclinic anhydrous sulfates includes three compounds Ln2(SO4)3 (Ln = Pr, Nd, Eu), for
which structural parameters are known [42,43]. However, with a high probability, it can be
assumed that Ln2(SO4)3 (Ln = Pm, Sm) have structures of the same type.
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Table 1. Main parameters of processing and refinement of the Pr2(SO4)3 sample.

Compound Pr2(SO4)3

Space group C2/c
a, Å 21.6052 (4)
b, Å 6.7237 (1)
c, Å 6.9777 (1)
β, ◦ 107.9148 (7)
V, Å3 964.48 (3)
Z 4
2θ-interval, ◦ 7.5–140
Tmeas. 150 ◦C
Number of reflections 922
Number of refined parameters 71
Rwp, % 2.75
Rp, % 2.16
Rexp, % 2.10
χ2 1.31
RB, % 0.69

As seen in Figure 3, heating the Pr2(SO4)3 sample from 30 to 270 ◦C leads to an increase
of all cell parameters (Table S3) with δa~0.23%, δb~0.15% and δc~0.39%, showing the 3D net
expansion in all crystallographic directions accompanied by an increase of the monoclinic
angle β. The continuous variation of the cell parameters (Figure 3) and freedom from the
reflection splitting and/or superstructure reflections in the powder patterns (Figure S3)
indicate the absence of structural phase transitions in the range of 30–270 ◦C. Therefore,
we can suggest that Pr2(SO4)3 at room temperature also adapts the C2/c space group. The
thermal expansion tensor of Pr2(SO4)3 is shown in Figure 4. As is evident, the crystal
expansion is strongly anisotropic. Moreover, there is a direction along which a contraction
appears on heating, mainly due to a monoclinic angle increase.
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The XRD pattern recorded for the Pr2(SO4)3·8H2O sample is shown in Figure 1b. All
peaks of the pattern were indexed according to the known structure of Pr2(SO4)3·8H2O [23],
and, therefore, this structure was used as the initial model. The refinements were stable
and gave low R-factors, as listed in Table 2 and shown in Figure 1b. The atom coordinates
and main bond lengths are in Tables S4 and S5, respectively. Hydrogen atoms were placed
in ideal sites and their coordinates were fixed during a further crystal structure refinement.
The asymmetric part of the unit cell contains one Pr ion, two S ions, six O ions and four H2O
molecules. The Pr3+ ion is coordinated by four O ions and four H2O molecules forming
a PrO4(H2O)4 antisquare prism. Each S ion is coordinated by four O ions forming a SO4
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tetrahedra. The SO4 tetrahedra are linked with PrO4(H2O)4 polyhedra by edges and nodes
forming a 3D net, as displayed in Figure 2b.

Table 2. Main parameters of processing and refinement of the Pr2(SO4)3·8H2O sample.

Compound Pr2(SO4)3·8H2O

Space group C2/c
a, Å 13.7058 (2)
b, Å 6.8664 (1)
c, Å 18.4702 (3)
β, ◦ 102.816 (1)
V, Å3 1694.91 (5)
Z 4
2θ-interval, ◦ 7–144
Tmeas. 24 ◦C
Number of reflections 1689
Number of refined parameters 48
Rwp, % 6.63
Rp, % 5.08
Rexp, % 2.95
χ2 2.24
RB, % 3.65

The crystallographic data of the crystal structures of Pr2(SO4)3 and Pr2(SO4)3·8H2O
are deposited in Cambridge Crystallographic Data Centre (CSD #2167673-2167674). The
data can be down loaded from the site (www.ccdc.cam.ac.uk/data/request/cif, accessed
on 20 April 2022).

3.2. Electronic Properties

The Brillouin zone (BZ) image and the calculated electronic band structure of Pr2(SO4)3
are shown in Figures 5 and S4, respectively. The paths along high symmetry points of the
BZ are selected as follows: Γ–C, C2–Y2–Γ–M2–D, D2–A–Γ, L2–Γ–V and the coordinates
of these points are: Γ(0,0,0), C(−0.277, 0.277,0), C2(−0.723, −0.277, 0), Y2(−0.5, −0.5, 0),
M2(−0.5, −0.5, 0.5), D(−0.749, −0.251, 0.5), D2(−0.251, 0.251, 0.5), A(0, 0, 0.5), L2(−0.5, 0,
0.5), V2(−0.5, 0, 0). As praseodymium is related to lanthanides, the spin up and spin down
band structures were calculated. According to the results shown in Figure 5, Pr2(SO4)3 is
a direct band gap compound. The valence band maximum (VBM) and conduction band
minimum (CBM) are located in the center of BZ. The calculated spin up band gap is equal
to 5.47 eV, while the spin down band gap is as high as 5.69 eV. It should be noted that flat
narrow electronic branches are observed at 2.78–3.01 eV in a spin up band structure and at
4.89–5.42 eV in a spin down band structure. To understand the nature of these branches
and the nature of band gap, the partial density of electronic states is presented in Figure 6.
From the curve observation, it can be concluded that the flat branches pointed above are
formed by the f electronic states of Pr. The valence band top is dominated by the p electrons
of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions.

3.3. Vibrational Properties

There are 34 atoms in the primitive cell of Pr2(SO4)3 and the symmetry analysis leads to
the following distribution of the 102 phonon modes between the irreducible representations
at the center of Brillouin zone: Γvibr = 25Ag + 25Au + 26Bg + 26Bu where acoustic modes
are Γacoustic = Au + 2Bu, and the remaining modes are optical. The g-labeled modes are
Raman active, while the u-labeled modes are infrared active [84]. The vibrational spectra
obtained for powder Pr2(SO4)3 are presented in Figure 7. The comparison of the Raman
spectra recorded with the use of 1064 and 532.1 nm laser wavelengths is shown in Figure S5
and excellent relation of the spectra is evident. Thus, the luminescence lines do not appear
under the excitation at 1064 and 532.1 nm and both wavelengths can be used for precise
measurements of the Raman spectra of Pr3+-containing crystals. In the Pr2(SO4)3 structure,

www.ccdc.cam.ac.uk/data/request/cif
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the SO4 tetrahedra occupy two crystallographically independent positions, namely, C1
and C2. As is known, free [SO4]2− units have the Td symmetry, and the characteristic
wavenumbers of normal vibrations of this ion group were listed in [85]. The correlation
between internal vibrations of the free SO4 tetrahedra with the Td symmetry, sites symmetry
and factor group symmetry of the unit cell is shown in Table 3. Herein, the mode ν1 (A1) is
symmetric stretching vibration, ν3 (F2) is antisymmetric stretching vibration and ν2 (E) and
ν4 (F2) are symmetric and antisymmetric bending vibrations. The shapes of the vibrational
spectra of Pr2(SO4)3 and Eu2(SO4)3 [43] powders are quite similar. This can be explained
by the fact that the structures of these compounds are described in the same space groups
and have the same number of SO4 tetrahedra in the same positions. However, due the
differences in [SO4]2− bond lengths, there is a slight shift in the spectral peaks, which is
especially clear in the range of ν1 vibrations, as shown in Figure S6.
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Table 3. Correlation scheme for the SO4
2− ion placed into the C1 and C2 symmetry positions of the

unit cell having C2h symmetry.

Wavenumber, cm−1

[81]

Td
Free Molecule

Symmetry

C1
Site Symmetry

C2h
Unit Cell Symmetry

983 A1 (ν1) A Ag + Au + Bg + Bu
450 E (ν2) 2A 2Ag + 2Au + 2Bg + 2Bu

1105 F2 (ν3) 3A 3Ag + 3Au + 3Bg + 3Bu
611 F2 (ν4) 3A 3Ag + 3Au + 3Bg + 3Bu

Td
Free molecule

symmetry

C2
Site symmetry

C2h
Unit cell symmetry

983 A1 (ν1) A Ag + Au
450 E (ν2) 2A 2Ag + 2Au

1105 F2 (ν3) A + 2B Ag + Au + 2Bg + 2Bu
611 F2 (ν4) A + 2B Ag + Au + 2Bg + 2Bu

According to Table 3, the high wavenumber part (above 950 cm−1) of Raman and
infrared spectra of Pr2(SO4)3 powder is correspondent to the stretching vibrations of SO4

2−

ions. The spectral bands related to each symmetric stretching vibration of SO4 are clearly
seen in the Raman spectrum at 1010, 1020 and 1054 cm−1, as seen in Figures 7 and S7. The
remaining Raman bands in this region are attributed to antisymmetric stretching vibrations.
The broad band observed at 1010 cm−1 in the infrared spectrum should consist of three
overlapped bands corresponding to ν1 vibrational modes, and the bands above 1030 cm−1

are related to antisymmetric stretching vibrations. The ν4 vibrations are located in the
range of 595–670 and 575–675 cm−1 in Raman and infrared spectra, respectively (Figures 7
and S8). The ν2 modes are observed in the Raman spectrum between 380 and 520 cm−1.
Other Raman bands revealed below 250 cm−1 attributed to the rotation of SO4

2− and
translational vibrations of the structural units. Thus, we can say that positions of spectral
bands and their number are in agreement with group-theoretical analysis data for the
Pr2(SO4)3 XRD-solved structure.

The calculated partial phonon density of states is shown in Figure 8 and the presented
data can be summarized as follows: the vibrations of SO4 tetrahedra dominated in the
Raman and infrared spectra at wavenumbers above 250 cm−1, while the low wavenumber
region is characterized by vibrations of all kinds of ions.

3.4. Thermal Properties

The known problem with sulfates is their increased hygroscopicity. Upon obtaining
functional materials based on lanthanide sulfates, important issues are the processes occur-
ring during the dehydration of the corresponding salts. Pyrohydrolysis, often proceeding
during the dehydration of salts, can significantly affect the properties of sulfate materials.
In this relation, the TG/DTA data of praseodymium sulfate octahydrate were recorded
on heating in the temperature range of 25–1400 ◦C in the argon atmosphere, as shown in
Figure 9. According to the TG data in the temperature range of 73–210 ◦C, the mass loss is
20.2%, which allows us to draw up the process equation:

Pr2(SO4)3 × 8H2O→ Pr2(SO4)3 + 8H2O (3)

The dehydration proceeds in one stage despite the crystallo-chemical inequality of
water molecules entering the structure [86]. In the interval of 350–370 ◦C, in all recorded
DTA curves, a low-intensity peak of heat release was detected. To identify the source of
this effect, isothermal treatments of praseodymium sulfate octahydrate were carried out
at 250 ◦C and 350 ◦C. In both cases, the mass loss corresponds to the full dehydration of
the samples. According to the X-ray phase analysis and electron microscopy, the starting
octahydrate is represented by highly faceted crystals ranging in size from 5 to 20 µm
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(Figure 10a). Heating the Pr2(SO4)3 × 8H2O sample to 250 ◦C results in the formation of an
X-ray amorphous product obtained by the dehydration process (Figure 10b). Obviously, the
water vapor moving to the surface results in the particle destruction. The sample heating
to 350 ◦C results in a polycrystalline powder of anhydrous Pr2(SO4)3 (Figure 10c), which
was obviously formed via the recrystallization of the amorphous powder obtained at the
initial stage of dehydration. Therefore, the presence of the heat release peak on the DTA
curve is caused by the crystallization of the amorphous phase of Pr2(SO4)3.
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Further decomposition of Pr2(SO4)3 on heating occurs in two steps. In the first step, in
the temperature range of 850–970 ◦C, two sulfate groups undergo decomposition, resulting
in the formation of praseodymium oxysulfate (Figure 10d):

Pr2(SO4)3 → Pr2O2SO4 + 2SO2 + O2 (4)
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In the second step, in the temperature range 1100–1250 ◦C, the remaining sulfate
groups were decomposed. According to the X-ray phase analysis, a mixed praseodymium
oxide Pr6O11 is formed (Figure 10e) as the final product of the reaction:

6Pr2O2SO4 → 2Pr6O11 + 6SO2 + O2 (5)

The formation of intermediate oxide Pr6O11 is characteristic of the decomposition of
oxygen-containing praseodymium compounds, just as the formation of CeO2 is typical of
the corresponding cerium compounds [87] and Tb4O7 for terbium [88]. 4f -electron shell
structures enhance the effect on the thermodynamic characteristics of compounds while
simplifying the chemical composition.

On the base of reliable data on the phase composition of the compounds formed
by thermal transformations, as well as the established values of the enthalpies of these
transformations, we can write the thermochemical equations of the processes related to the
Pr2(SO4)3·8H2O decomposition on heating:

Pr2(SO4)3·8H2O (monocl)→ Pr2(SO4)3 (monocl) + 8H2O (gas); ∆H◦ = 108.9 kJ/mol (6)

Pr2(SO4)3 (monocl)→ Pr2O2SO4 (monocl) + 2SO2(gas) + O2 (gas); ∆H◦ = 499.8 kJ/mol (7)

6Pr2O2SO4 (monocl)→ 2Pr6O11 (cub) + 6SO2(gas) + O2 (gas); ∆H◦ = 245.5 kJ/mol (8)

Using the data on the formation enthalpies of binary compounds Pr6O11 [89], SO2 [90]
and H2O [91], the enthalpies of praseodymium sulfates formation (Table 4) were succes-
sively calculated: Pr2O2SO4 (according to reaction (8)), Pr2(SO4)3 (according to reaction (7))
and Pr2(SO4)3·8H2O (according to reaction (6)).

Table 4. Standard enthalpies of praseodymium sulfate formation.

Compound ∆H◦f, kJ/mol

Pr2(SO4)3·8H2O −5361.2

Pr2(SO4)3 −3317.9

Pr2O2SO4 −2224.3

To study the kinetics of the thermal decomposition processes of Pr2(SO4)3·8H2O, the
sample thermal analysis was carried out at different heating rates: 3, 5, 10 and 15 ◦C/min.
Based on the DTA data obtained at different heating rates (Figures S9 and S10), the kinetic
parameters of the processes were calculated (Table 5). As can be seen, the increase in the
activation energy during the transition from the dehydration process to the processes of
sulfate decomposition is somewhat compensated by the increase in the pre-exponential
factor value, which actually reflects the increase in the favorable steric factor. In general, in
accordance with a significant expansion of the peaks in the DTA curves and, accordingly,
with a significant increase in the activation energy of high-temperature processes for the
decomposition of sulfate Pr2(SO4)3 and oxysulfate Pr2O2SO4, we can note their significant
kinetic complexity, compared with the dehydration of crystalline hydrate Pr2(SO4)3·8H2O.

Table 5. Kinetic parameters of the decomposition of praseodymium sulfates.

Number of Reaction Chemical Equation A Ea, kJ/mol

1 Pr2(SO4)3·8H2O→ Pr2(SO4)3 + 8H2O 6 × 106 77

2 Pr2(SO4)3 → Pr2O2SO4 + 2SO2 + O2 1 × 1010 303

3 6Pr2O2SO4 → 2Pr6O11 + 6SO2 + O2 2 × 108 323

A comparison of the thermal decomposition of praseodymium sulfate octahydrate
with the corresponding crystalline hydrate of europium sulfate Pr2(SO4)3·8H2O indicates a
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greater kinetic stability of Pr2(SO4)3·8H2O and Pr2(SO4)3, compared with the corresponding
europium compounds, and a reduced stability of Pr2O2SO4 compared to Eu2O2SO4 [92].
This fact has, obviously, energetic reasons and is in a good agreement with the enthalpies
of compound formation.

3.5. Luminescent Properties

Under the excitation at 450 nm, Pr2(SO4)3 exhibits modest luminescence in the red
well seen through the filter, with the intensity typical of concentrated rare-earth-containing
nonabsorbing materials. The photoluminescence emission spectra excited at the 3P2← 3H6
transition at 440 nm recorded at room temperature (blue line) and at 77 K (red line), are
presented in Figure 11. Both emission spectra are dominated by the 3P0 → 3F2 transition
with a maximum at 640 nm. The Pr3+ ion luminescence in the visible spectral range is
expected to include the contributions mainly from 3P0 and 1D2 excited states, since 3P2,
commonly, nonradiatively relaxes to 3P0, and in the hosts with a large phonon cutoff
frequency, a considerable probability of nonradiative population of 1D2 level is assumed.
Despite only two luminescent energetic states, the emission spectra of the Pr3+ ion are
featured by overlapping bands terminating at different low-lying excited states. Another
feature is the variability of the intensity distribution over the luminescence bands via the
change of crystal field acting onto the Pr3+ ion in different hosts, or more specifically, by
the change of oscillator strengths and energies of both starting and terminating levels. For
example, either 1D2 → 3H4 or 3P0 → 3H6 or 3P0 → 3F2 could be a maximal in different
hosts under the excitation via 3PJ. Therefore, the assignment of the Pr3+ luminescence
bands must be made very carefully in contrast to Eu3+, for instance. Figure 12 shows the
77 K excitation spectrum of Pr2(SO4)3 monitored at 640 nm (magenta) and the neighboring
part of emission spectrum (blue). Peak at 480 nm (20,833 cm−1) must be associated with
the zero phonon line (ZPL) of the 3P0 ← 3H4 transition, and the weak sideband at longer
wavelengths then must be a contribution of thermally distributed phonons corresponding
to 77 K. The corresponding peak in the emission spectrum is shifted to longer wavelengths
by the ZPL width that can be explained by the reabsorption of emitted radiation within
the ZPL width. The longer-wavelength spectral structure in the emission spectrum (in the
range 484–500 nm) then must be assigned to the phonon sideband that, in contrast to the
excitation process, must not obey the thermal distribution of phonons and is limited by
the vibrational spectrum of the local environment of praseodymium ion. Peculiarly, the
reabsorption effect for the spectral distribution of luminescence in Pr2(SO4)3 is weaker
than that in another self-activated crystal PrAlGe2O7 [93], where the disappearance of
3P0 → 3H4 and 1D2 → 3H4 spectral features, with respect to the Pr-doped LaAlGe2O7
crystal, was observed. One more peculiarity is the absence of the 3P0 → 3F3 line that is
completely unobservable at the background of the 3P1→ 3F4 band. This latter effect cannot
be related to the reabsorption; however, it must be associated with a certain dependence of
the intensity of this line on the crystal field, like it has been recently observed in [94].

After determining the 3P0 ZPL position, the assignment of most bands shown in
Figure 11 is rather straightforward and becomes consistent with the consideration by
Srivastava [95]. Both room temperature and 77K emission spectra are dominated by the
luminescence at the 3P0 → 3F2 transition peaking at 640 nm. The spectral region in the
vicinity of 600 nm contains contributions from two possible channels, namely, from 3P0 →
3H6 and 1D2 → 3H4. The band peaking at 525 nm is very weak at 77 K and gains more
intensity at room temperature; therefore, it must be ascribed to the emission from the
thermally populated 3P1 level to 3H5. The same behavior reveals the origin of the bands at
675 and 700 nm that are the emissive transitions 3P1 → 3F3,4.
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4. Conclusions

In the present study, the structural and spectroscopic properties, and the thermal
stability of Pr2(SO4)3 have been explored for the first time. Anhydrous Pr2(SO4)3 was syn-
thesized by chemical precipitation in hard acids. It was found that Pr2(SO4)3 is hydroscopic
at room temperature, leading to the formation of octahydrate Pr2(SO4)3·8H2O. Pr2(SO4)3
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crystallizes in the monoclinic structure with space group C2/c, which is typical of sulfates
and molybdates of the cerium subgroup. The compound Pr2(SO4)3·8H2O is decomposed
at temperatures 25–1400 ◦C in the argon atmosphere and does not undergo pyrohydrolysis
or oxidation. The final decomposition product of Pr2(SO4)3·8H2O is the intermediate oxide
Pr6O11 being characteristic for the decomposition of oxygen-containing praseodymium
compounds. The comparison of the emission spectra recorded at room temperature and at
77 K allowed determining the ZPL position of Pr3+ in Pr2(SO4)3 at the 3P0→ 3H6 transition
and the accurate assignment of the rest of luminescent bands.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27133966/s1, Figure S1: The digital image of (a) Pr2(SO4)3
and (b) Pr2(SO4)3·8H2O powder under the Sun day illumination; Figure S2: Four XRD patterns
measured for the Pr2(SO4)3 sample with 30 min intervals on keeping in the laboratory air at ambient
conditions; Figure S3: Difference Rietveld plots of Pr2(SO4)3 at different temperatures: (a) T = 30 ◦C;
(b) T = 60 ◦C; (c) T = 90 ◦C; (d) T = 120 ◦C; (e) T = 150 ◦C; (f) T = 180 ◦C; (g) T = 210 ◦C; (h)
T = 240 ◦C; (i) T = 270 ◦C; Figure S4: Brillouin zone of Pr2(SO4)3; Figure S5: Raman spectra for
Pr2(SO4)3 recorded at 1064 and 532.1 nm excitation wavelengths; Figure S6: Comparison of the
high-frequency part of Raman spectra for Eu2(SO4)3 and Pr2(SO4)3; Figure S7: Decomposition of
the high-frequency part of Pr2(SO4)3 Raman spectra; Figure S8: Decomposition of Raman spectra of
Pr2(SO4)3 in the range of ν4 vibrations; Figure S9: Heat effect showing up in dependence of heating
rate for processes: (a) Pr2(SO4)38H2O→ Pr2(SO4)3 + 8H2O; (b) Pr2(SO4)3 → Pr2O2SO4 + 2SO2 + O2;
(c) 6 Pr2O2SO4→ 2Pr6O11 + 6SO2 + O2(heating rate: I-3 ◦C/min, II-5 ◦C/min, III-10 ◦C/min, IV-15
◦C/min); Figure S10: Linearity in the manifestation of the maxima of thermal effects depending on
the heating rate Table S1: Fractional atomic coordinates and isotropic displacement parameters (Å2)
in Pr2(SO4)3; Table S2: Main bond lengths (Å) in Pr2(SO4)3; Table S3: Main parameters of processing
and refinement of the Pr2(SO4)3 sample at T = 30–270 ◦C; Table S4: Fractional atomic coordinates (Å)
and occupancies of Pr2(SO4)3·8H2O; Table S5: Main bond lengths (Å) in Pr2(SO4)3·8H2O.
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