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Abstract: Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of
pharmacological action, including anticancer activity. In this work, reversed-phase high-performance
liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity
of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromato-
graphically determined lipophilicity parameters were compared with obtained logP, employing
various computational approaches. Similarities and dissimilarities between experimental and com-
putational logP were studied using principal component analysis, cluster analysis, and the sum of
ranking differences. Furthermore, quantitative structure–retention relationship modeling was ap-
plied to understand the influences of sulfonamide’s molecular properties on lipophilicity and affinity
to phospholipids.

Keywords: sulfonamide derivatives; quantitative structure-retention relationships; lipophilicity

1. Introduction

Due to inadequate pharmacokinetic properties, many drug candidates are rejected
during clinical trials. Under those circumstances, besides biological activity, the physic-
ochemical properties of putative drug molecules must be optimized at the early stage
of drug development. These actions are carried out to achieve the desired in vivo drug
metabolism and pharmacokinetics (DMPK) profile [1]. Among available screening methods,
chromatography has a well-established position [2,3], especially in lipophilicity profiling.

The lipophilicity is a crucial physicochemical parameter of every molecule, affect-
ing toxicity, absorption, distribution, metabolism, and drug elimination [4]. Retention
in reversed-phase high-performance liquid chromatography (RP-HPLC) is governed by
lipophilicity; consequently, retention data can be considered a surrogate of logP. The Inter-
national Union of Pure and Applied Chemistry (IUPAC) and the Organization for Economic
Co-operation and Development (OECD) consider RP-HPLC an equivalent method to the
traditional shake-flask approach for logP estimation. Generally, the chromatographic tech-
nique is low-cost, fast, and requires a small amount of target substances that do not need
to be pure, as their impurities are readily separated during the chromatographic process.
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Furthermore, the chromatographic analyses are repeatable and robust. For these reasons,
the solid–liquid partitioning methods are very convenient in the early steps of the drug
discovery pipeline, when high throughput is more required than accuracy.

Additionally, the current chromatographic approach can be more similar to the biolog-
ical partition process since available stationary phases are covered on even more similar or
similar components of in vivo distribution media. Such an approach is called biomimetic
chromatography. Generally, biomimetic chromatography combines the advantages of high
throughput analysis, which are being user-friendly, rapid, reproducible, and compound
sparing with the ability to reflect physiological conditions [5–7]. An immobilized artificial
membrane (IAM) and protein-covered stationary phases bed can be distinguished among
biomimetic stationary phases. IAM chromatography has been introduced to simulate
membrane barrier passage of complex biological barriers, including gut endothelium, skin,
and the blood–brain barrier [5,8–10].

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum
of pharmacological action [11]. Historically, this class of compounds derives from the
simple sulfanilamide, which was the leading structure for the development of essential
drugs such as antibacterial sulfathiazole [11], antiglaucoma acetazolamide [12], diuretic
furosemide [13], hypoglycemic agent glibenclamide [14], and antiviral amprenavir [15].
For years, scientific reports have indicated that sulfonamide derivatives show in vitro and
in vivo antitumor activity with various mechanisms of action, including carbonic anhydrase
inhibition, cell cycle perturbation in the G1 phase, and inhibition of tubulin polymerization,
or angiogenesis inhibition (inhibition of extracellular matrix metalloproteinases) [16].

Among the anticancer sulfonamides, the arylsulfonamides with clinical importance
in the treatment of severe diseases are pazopanib (malignant neoplasms of the kidneys
and soft tissue sarcoma) [17,18], belinostat (lymphoma from peripheral T cells) [19], and
dabrafenib (unresectable and malignant melanoma) [20]. These compounds have dif-
ferent mechanisms of action and act as tyrosine kinase inhibitors, histone deacetylase
inhibitors, and BRAF inhibitors. At least four N-acylsulfonamides have been clinically in-
vestigated as drug candidates with cytostatic activity against tumors: LY573636-sodium salt
(Tasisulam) [21,22], ABT-737 [23], ABT-263 (Navitoclax) [24,25] and ABT-199 [26]. The last
three drugs are inhibitors of antiapoptotic Bcl-2 family proteins and have found application
in treating leukemia and lung cancer [23–26].

Broad-spectrum antitumor activity depends on the substituents at the benzene ring of
arylsulfonamide and the moieties attached to the nitrogen atom of the sulfonamide group.
Recently, pro-apoptotic activity of N-(1,2,4-triazin-3-yl)benzenesulfonamides, N-(5-oxo-1,2,4-
triazin-3-yl)benzenesulfonamides and N-(heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides
has been proven for human colon cancer (HCT-116) cell [27–29]. Apoptosis was confirmed
by changes in cell morphology, DNA fragmentation, loss of mitochondrial membrane po-
tential, phosphatidylserine translocation into the outer leaflet of the cell membrane, and
activation of caspases [29]. The anticancer potential against the HCT-116 cell line has also
been demonstrated by N-acylated benzenesulfonamides, which contained at the benzene ring
the 1-naphthylmethylthio substituent and the sulfonamidic nitrogen atom bonded to acetic
acid or cinnamic acid residues [30]. Similarly, fused pyrimidine hybrids of myrrhanone C
and Argentatins A–C showed noticeable anticancer activity against several human cancer
cell lines [31,32]. The main goal of this study was to assess the sulfonamide derivatives
with proven anticancer activities against human colon cancer (HCT-116) using a chromato-
graphic approach. Retention of sulfonamide derivatives was examined on four RP-HPLC
stationary phases, various in terms of chemical modification and IAM-HPLC. Using a chemo-
metric method, experimentally determined chromatographic lipophilicity indices have been
compared with calculated logP. Furthermore, Quantitative Structure–Retention Relationship
(QSRR) models, which allow for predicting the retention or lipophilicity of these chemical
compounds, have been proposed. Finally, we aimed to analyze which type of lipophilicity
indices, computational or chromatographic, provided a better prediction of anticancer activity
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expressed as pIC50. The obtained models were used using the genetic algorithm partial least
squares (GA-PLS) approach.

2. Results and Discussion

It is well established that the computational approaches for lipophilicity estimation
have several advantages over the experimental methods, including short calculation time
and saving chemical reagents. Furthermore, it allows for lipophilicity prediction before
synthesis; therefore, it can be applied to the design of potential drug candidates. These
advantages make computational approaches desirable from economic and environmental
points of view. Nevertheless, it should be emphasized that significant differences between
the calculated logP values for the same molecules using various theoretical approaches are
the computational methods’ crucial limitations [33–36].

Similarly, this is also evident in the calculated logP values for the investigated sul-
fonamides derivatives. As can be observed in Table 1, the calculated logP values are very
diversified within a single substance. On average, within one molecule, the calculated
logP values vary by four LogP units. It is most noticeable for molecule no. 21, where the
difference between WLogP and iLogP states 7.3 clogP units. Indicated differences can
be explained by the varied nature of the algorithms employed in the applied software
programs [37]. The lowest calculated logP values are achieved by the iLogP descriptor
(in 16 cases), and the MLogP descriptor follows it in 10 cases. The iLogP descriptor is
a physics-based algorithm established on free solvation energies, whereas the MLogP
descriptor investigated the hydride algorithm of topological and molecular properties.
Each compound has a logP with a value less than five for both mentioned algorithms and
reached the Lipinski rule of five [38]. On the other hand, in most cases, higher calculated
logP is observed for descriptor WLogP, based on purely atomistic methods.

Table 1. The calculated logP values of the sulfonamides derivatives concerning the computational model.

No. iLogP XLogP3 WLogP MLogP Silicos-IT LogP Consensus LogP LogP KOWWIN

1 2.12 1.22 3.27 0.58 0.97 1.63 1.78

2 2.59 2.15 4.72 2.04 2.02 2.70 4.23

3 2.82 3.48 5.02 2.27 2.53 3.23 4.78

4 2.95 3.51 5.02 2.27 2.53 3.26 4.78

5 2.41 2.71 4.17 1.23 2.11 2.53 3.44

6 2.52 3.79 4.82 2.58 2.20 3.18 3.93

7 2.74 1.36 3.57 0.83 1.47 2.00 2.32

8 2.56 5.82 7.80 3.93 5.83 5.19 7.38

9 2.05 4.53 5.42 3.24 4.72 3.99 6.38

10 2.35 6.19 6.78 4.06 5.74 5.03 7.59

11 2.68 5.31 5.93 3.68 5.62 4.64 7.61

12 2.13 5.14 5.84 2.88 3.49 3.89 5.23

13 3.29 4.81 6.89 3.85 5.01 4.77 5.02

14 3.18 5.15 7.09 3.44 4.85 4.74 5.06

15 3.71 6.69 9.91 4.68 6.53 6.30 6.58

16 4.15 5.78 7.75 3.90 5.50 5.42 5.70

17 3.78 6.43 9.56 4.42 6.42 6.12 6.49

18 4.10 5.52 7.40 3.63 5.39 5.21 5.61

19 4.28 5.46 7.42 3.00 5.57 5.15 5.04

20 3.43 5.12 7.10 3.13 4.94 4.74 5.14



Molecules 2022, 27, 3965 4 of 20

Table 1. Cont.

No. iLogP XLogP3 WLogP MLogP Silicos-IT LogP Consensus LogP LogP KOWWIN

21 3.37 6.48 10.67 4.75 6.79 6.41 6.74

22 4.04 6.06 8.04 4.48 6.02 5.73 6.19

23 3.30 5.93 7.49 3.78 5.67 5.24 6.07

24 3.58 5.70 9.06 4.36 6.11 5.76 5.98

25 3.70 5.57 8.51 3.66 5.76 5.44 5.86

26 2.39 4.92 5.85 3.55 4.61 4.27 4.99

27 3.18 7.00 7.43 4.73 6.31 5.73 6.97

Among tested derivatives, the most hydrophilic substance, according to each algo-
rithm, is compound no. 1. Nevertheless, selecting the most lipophilic substance based
on calculated logP is difficult. According to the descriptors WLogP (atomistic method),
Silicos-IT LogP (hybrid fragmental/topological method), and Consensus LogP (average of
all five predictions), the most lipophilic compound is no. 21. However, compounds 19, 27,
and 11 are the most lipophilic accordingly to the descriptors iLogP, XLogP (atomistic and
knowledge-based method), and KOWWIN LogP (atom-based approach and fragmental
contribution). Additionally, compound no. 27, in the case of the XlogP descriptor, is also
the most lipophilic substance according to the MlogP descriptor.

The obtained contradiction suggested that it is still worth using experimental methods
to assess drug candidates’ lipophilicity. For this reason, the next step of our study concerns
the characterization of investigated sulfonamide derivatives using a chromatographic
approach. Generally, in RP-HPLC, the interactions between solutes and the stationary
phase surface are mainly governed by lipophilicity [36,39,40]. Consequently, RP-HPLC is
the primary tool for assessing the lipophilicity of xenobiotics [41]. Nevertheless, the one
unique protocol for chromatographic lipophilicity measurement, which can be applied
to analyze each chemical group, does not exist. Generally, the chemical character of
target solutes determines interactions between the molecule and the stationary phase that
may occur. Considering the large variety of RP-HPLC beds and differences in specific
surface area, the energy of the sorbent’s intermolecular interactions between solutes and
chemical structures, four different reversed-phase stationary phases and IAM column were
investigated during this study. The lipophilicity index was presented as a logkw value, so
the retention factor was extrapolated to the pure water after calculation using a protocol
based on two gradient measurements and DryLab software [42,43]. In the case of IAM
and C18 chromatography, we applied protocols proposed by Valko and co-workers [44,45]
and subsequently linearly transformed data into logkIAM [46] and CHI log D [47] using the
following formulas:

logkIAM = 0.045 CHIIAM + 0.42 (1)

CHI log D = 0.0525 CHIC18 − 1.467 (2)

Since the biomimetic chromatography experiments are carried out at physiological
pH to compare obtained results, all chromatographic experiments have been carried out at
pH 7.4. Calculated pKa indicates that sulfonamide derivatives molecules are in a charged
state. Consequently, the chromatography lipophilicity indices refer to the distribution
coefficient (logD) values, which better reflect the lipophilicity of ionized substances un-
der physiological conditions. The chromatographically obtained lipophilicity indices of
sulfonamide derivatives are presented in Table 2.
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Table 2. The summarized values of logkw, CHIC18, CHIIAM, pKa, and pIC50 for sulfonamides
derivatives.

No. CHIIAM logkIAM CHIC18 CHI logD logkwC8 logkwCN logkwPh pKa pIC50

1 19.20 1.28 56.70 1.51 2.98 1.58 2.62 6.6 4.34

2 45.00 2.45 97.50 3.65 4.68 4.04 6.22 7.3 6.00

3 42.00 2.31 94.80 3.51 4.59 2.97 5.56 7.4 4.72

4 45.90 2.49 104.80 4.04 4.90 3.63 7.39 7.3 5.05

5 31.40 1.83 82.90 2.89 4.06 2.30 4.08 6.5 4.64

6 45.40 2.46 94.70 3.50 4.61 2.89 5.39 7.8 4.15

7 24.30 1.51 63.80 1.88 3.30 1.78 2.81 6.9 4.16

8 36.70 2.07 82.80 2.88 4.21 2.01 4.49 5.5 4.10

9 31.40 1.83 72.30 2.33 3.69 1.85 2.88 5.4 4.07

10 39.10 2.18 84.30 2.96 4.21 2.25 4.19 5.5 4.05

11 35.50 2.02 80.30 2.75 4.07 2.13 3.82 5.5 4.06

12 35.20 2.00 79.30 2.70 4.07 2.16 3.90 5.4 4.06

13 37.10 2.09 77.90 2.62 4.03 2.04 3.53 5.7 4.12

14 35.80 2.03 78.90 2.68 4.13 2.02 4.31 5.1 4.11

15 43.40 2.37 92.50 3.39 4.53 2.64 5.07 5.1 4.19

16 39.80 2.21 85.90 3.04 4.38 2.47 4.48 5.1 4.12

17 41.40 2.28 89.90 3.25 4.49 2.54 4.54 5.1 4.15

18 37.50 2.11 82.80 2.88 4.28 2.36 4.23 5.1 4.12

19 33.60 1.93 79.70 2.72 4.07 2.22 3.97 5.0 4.12

20 34.90 1.99 77.20 2.59 4.02 2.21 3.79 5.1 4.14

21 41.30 2.28 91.60 3.34 4.44 2.11 4.48 5.7 4.29

22 42.20 2.32 84.60 2.97 4.28 2.36 4.25 5.7 4.31

23 41.10 2.27 86.10 3.05 4.12 2.48 4.40 5.8 4.42

24 38.30 2.14 87.50 3.13 4.26 2.28 4.09 5.7 4.17

25 37.20 2.09 84.40 2.96 4.26 2.33 3.89 5.7 4.17

26 30.60 1.80 84.10 2.95 3.66 1.76 2.87 5.2 4.85

27 39.60 2.20 73.10 2.37 4.28 2.31 4.46 4.6 4.11

As might be expected, the obtained chromatographic indexes are generally highly
correlated (Figure 1). A high correlation was noticed between IAM, C18, and C8 columns
(r < 0.91). On the contrary, significantly lower correlation coefficients were achieved for the
Ph and CN columns and the above-mentioned stationary phase (0.76 < r < 0.89), indicating
a significant difference in the sulfonamide retention mechanism using these beds.

Based on the experimental data, compound no. 1 turned out to be the least lipophilic
substance. The calculation methods provided the same conclusion as experimental meth-
ods in selecting the least lipophilic drug candidate from tested sulfonamide derivatives.
Contrarily, the most lipophilic properties are in compound no. 4, taking only the chromato-
graphic experiments. However, none of the calculation algorithms selected this molecule
as a highly lipophilic substance. Surprisingly, according to the calculation methods, it is
one of the least lipophilic derivatives. These data indicate that experimental methods are
still necessary for the drug development pipeline.
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Figure 1. The correlation plot of experimentally determined lipophilicity indexes.

Considering the proportion of lipophilicity and anticancer activity, the assumption
that the compound should be characterized by the lowest lipophilicity while maintaining
pharmacological action for further tested molecules, 1–4 and 26, can be recommended.
Assessing the overall lipophilicity of the tested compounds, it can be said that it is at a
reasonably high level. Compounds containing the 1-naphthyl substituent are especially
more lipophilic. To obtain a lower, more desirable lipophilicity, the phenyl substituent
should be more desirable because the analyzed compounds which comprise it, as a rule,
had significantly lower lipophilicity.

Next, we aimed to analyze similarities and dissimilarities between chromatographic
and computational lipophilicity indexes of the target molecules; therefore, the principal
component analysis (PCA), cluster analysis (CA), and the sum of ranking differences (SRD)
were performed.

The CA analysis results are presented in Figure 2 as a heatmap. Two main groups
of lipophilicity indexes, the computational and the chromatographical, are very clearly
marked. One of the obvious explanations for the grouping results obtained may be that
the calculation methods did not show the ionization of the compounds that took place
during the chromatographic experiments. Additionally, the heatmap of HCA provided
information about grouping in the space of the compounds under study. Here, we can
easily separate two groups; one included only pirolo derivatives (molecules no 1–7) and
the second one where other derivatives are grouped. Our strategy also allows us to
compare the similarity of anticancer activity expressed as pC50 concerning computational
and experimental methods, determining lipophilicity. Interestingly, pIC50 is a group close
to chromatographic that determines lipophilicity. Therefore, we cautiously conclude that
chromatographic indices can be more effective for predicting anticancer activity than
computational lipophilicity indices.
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Figure 2. Results according to Ward’s agglomeration rule and the Euclidian distance measure results
of CA analysis.

Similar results are observed on the PCA (Figure 3), where the first two PCs distinguish
the parameters of computational and experimental lipophilicity. A normalized loadings
plot (Figure 3) indicated that PC1 affected computational indices, whereas on PC2 it mainly
affected the mainly chromatographic parameters, except IAM chromatography. Interest-
ingly, the IAM stationary phase has a significant impact on both PCs. The surface of IAM is
mostly zwitterionic at pH 7.4, and positively charged choline moieties are located in the
outer part of the IAM layer. In contrast, the phosphate groups are negatively charged at the
same pH and present in the phase’s inner part. This distinguishes the IAM phase from the
rest tested RP-HPLC beds.
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The next step of our investigation concerned the application of SRD analysis to select
the best and the worst approaches for lipophilicity measurement. The limitations of
unsupervised chemometric tools such as PCA and CA are that these methods do not
provide any information about statistical figures of performed analysis. Consequently, the
SRD analysis was used to complete the data analysis and support the selection of the best
lipophilicity indices.

The results of the SRD analysis are presented in Figure 4. The scaled SRD values
are plotted on the x-axis and left y-axis, while the right y-axis gives the cumulated rel-
ative frequencies for random ranking (black curve). The presented graph indicates the
following facts: the Consensus LogP descriptor is placed closest to the reference ranking
and can be considered the right choice for lipophilicity estimation of the studied series of
compounds; the parameters logkwCN, CHI logDC18 and logkwPh are places furthest from
the reference ranking and therefore are depicted as the least suitable lipophilicity descrip-
tors of sulfonamide derivatives; specific groupings of the parameters can be observed;
WlogP, Silicos-IT LogP and XLogP3 have very close SRD values and the same stands for
logkIAM and LogP KOWWIN descriptors as well as for logkwCN, CHI logDC18 and logkwPh
parameters; looking globally, there are two clearly visible gaps (gray zones in Figure 4)
dividing the lipophilicity parameters into three main groups regarding the SRD values;
the group consisting of in silico descriptors including Consensus LogP, WLogP, Silicos-IT
LogP, XLogP3 and MLogP is closest to the reference ranking, while all the experimentally
determined lipophilicity measures are placed far from the reference ranking.
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Figure 4. The lipophilicity parameters of sulfonamide derivatives are ranked by the sum of ranking
differences and comparison of ranks by random numbers with row average as a reference ranking.
The SRD values are normalized between 0 and 100 compared to the random ranking depicted by the
black cumulative distribution function. The statistical characteristics of Gaussian fit are the following:
first icosaile (5%), XX1 = 192; first quartile, Q1 = 220; median, Mediana (Med) = 242; last quartile,
Q3 = 262; last icosaile (95%), XX19 = 292.



Molecules 2022, 27, 3965 9 of 20

The SRD procedure was validated by 7-fold cross-validation. The results are presented
in two ways in Figures 5 and 6. The clustering of the experimental and in silico lipophilicity
descriptors of sulfonamide derivatives in the space of the normalized SRD values (SRD%)
obtained by 7-fold cross-validation is presented in the form of a dendrogram in Figure 7.
Two main clusters are observable: cluster #1 contains two sub-clusters, 1a sub-cluster (CHI
logDC18, logkwPh and logkwCN) and 1b (logkwC8, logkIAM, LogP KOWWIN, iLogP); cluster
#2 contains MLogP, XLogP3, Silicos-IT LogP, WLogP and Consensus LogP parameters.
The groupings of the parameters suggested in the SRD graph and the dendrogram comply
with each other.
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Additionally, the results of the 7-fold cross-validation of the SRD procedure are pre-
sented in Figure 6 in the box and whisker plot; the parameters are arranged in the same
order as in the SRD graph. The Consensus LogP parameter has the lowest median of the
SRD data and is definitely depicted as the best lipophilicity parameter among the other
calculated and experimentally determined parameters. There is a significant difference
between the lipophilicity parameters separated by vertical dotted lines at the 5% level
according to the Wilcoxon matched-pair test, which agrees with the separation of the
parameters suggested in the SRD graph (Figure 5) and on the dendrogram (Figure 6). The
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highest median can be observed for CHI logDC18, logkwPh, and logkwCN parameters as the
parameters with the highest SRD values. To conclude, the chromatographically determined
lipophilicity measures do not outperform the computationally estimated lipophilicity
parameters. Nevertheless, among the chromatographic lipophilicity parameters of the
analyzed sulfonamide derivatives, logkIAM can be considered the best choice.

The next step of our study focuses on QSRR modeling. This methodology, proposed
by Kaliszan, presents the relationship between retention and analyte structures [48]. On the
one hand, obtained QSRR models allow insights into the molecular mechanism of retention.
Therefore, they help us understand what molecular properties govern the chromatographi-
cally determined lipophilicity. On the other hand, the established QSRR model supports
lipophilicity prediction in similar structures. The selection of theoretical descriptors which
influence the retention factors employed GA-PLS. Briefly, GA is a stochastic approach that
helps solve the variable selection problem. Therefore, the integration of GA with PLS may
be helpful for the development of highly predictive and precise QSPR models. We chose
the partial least squares (PLS) as regression mode since it can be used to analyze highly
correlated data, which is frequently observed in the case of molecular descriptors.

Finally, five models of GA-PLS QSRR, each describing retention in studied chromato-
graphic systems, were calculated. Statistical figures of obtained models are summarized
in Table 3, whereas in Figure 7 the contribution of the descriptors to the individual LVs
is presented. The values of theoretical descriptors and their description are listed in
Tables S7 and S8, respectively.

Table 3. The calculated statistical figures of the obtained GA-PLS QSRR and QSAR models.

R2 Q2loo RMSEcv RMSEext Q2
F1 Q2

F2 Q2
F3 CCC

logkIAM 0.946 0.860 0.070 0.075 0.877 0.860 0.938 0.927
CHI logD 0.941 0.810 0.136 0.173 0.828 0.810 0.904 0.884
logkwC8 0.966 0.918 0.081 0.084 0.927 0.918 0.963 0.964
logkwCN 0.973 0.877 0.086 0.181 0.881 0.877 0.879 0.937
logkwPh 0.937 0.861 0.264 0.337 0.865 0.861 0.898 0.924

pIC50 0.976 0.858 0.070 0.120 0.858 0.858 0.933 0.929

The interpretation of established models can be challenging since many applied de-
scriptors are based on a complex matrix and weighted by different functions. Nevertheless,
such holistic descriptors guarantee the coverage of the molecular structure space more
efficiently than if limited to only a few mechanical descriptors. Holistic descriptors consider
not only the presence of some chemical groups and pharmacophore fragments but also the
relative position [49]. Several descriptors of well-recognized molecular properties, which
govern retention in reserved phase chromatography, can be found. Great examples are
descriptors weighted by polarizability, such as R5p+, R6p+, and SpMin2_Bh(p), or coded
lipophilic pharmacophore (SHED_LL).

Next, we aimed to analyze which type of lipophilicity indices, computational or chro-
matographic, provided a better prediction of anticancer activity expressed as pIC50. The
obtained PLS model confirmed findings, which can be concluded after analysis of CA since
logkCN is one of the most important descriptors. This finding suggested that experimentally
determined lipophilicity exceeds that obtained computationally in the screening of biolog-
ical activity of the tested sulfonamides. As expected, the obtained models also included
other types of molecular descriptors. Generally, lipophilicity gives information related to
the drug membrane permeability. The steric and electrostatic properties are fundamental to
the interaction between molecules and receptors. This statement is also supported by the
proposed model where descriptors related to molecule charge (RPCG), polarizability (G2p),
and geometrical properties (WHALES00_IR) significantly affect the anticancer activity of
this class of chemicals. Nevertheless, comprehensive research is needed on a larger group
of compounds to generalize this statement.
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The statistical figures of the training and testing set indicated that obtained models
are well fitted (R2,Q2, and RMSECV) and show suitable predictive parameters (RMSEP).
Additionally, the applicability domain assessment (AD) and the y-randomization tests were
performed for each model.

The applicability domain of predictive models was assessed using a leverage approach
(Figure S1 in Supplementary Materials), where the leverages (x-axis) are plotted against
standardized residuals (y-axis) on a so-called William’s plot. The leverages are calculated
from the descriptor matrix and then compared to a critical h* value, represented by a
vertical dashed line. Additionally, values of 3 (±σ) standardized residual units (horizontal
dashed lines) define the cut-off value for acceptable predictions. The study revealed that in
three models (B, C, D in Figure S1), one compound from each validation set (6, 26, and 4,
respectively) had a higher leverage value than the critical value (h*), indicating that their
structure differs significantly. However, these compounds did not exceed the cut-off value
for acceptable predictions (±3σ), resulting in very low residuals. Therefore, the developed
models will provide correct predictions, even when extrapolated, for compounds that differ
significantly in structure.

Each developed model was additionally subjected to a y-randomization test to confirm
their robustness and that the linear relationships are not derived by chance (Figure S1 in
Supplementary Materials). The performance of the original model is tested by permuting the
response variable (y) and then building the model on the primary dataset of descriptors (X).
We performed 200 permutations (random models) in the presented study for each developed
model. All tests confirmed that in every case, the original model was robust and not derived
by chance (the randomly generated models had significantly lower R2 and Q2 values).

3. Materials and Methods
3.1. Chemical Reagents
3.1.1. Sulfonamides Derivatives

The chemical names and SMILES notation of the target sulfonamide derivatives are
presented in Table S1, whereas the 2D structures are shown in Figure 8. Their synthesis
and characterization were described in the literature [27–30]. The 1H NMR and 13 C NMR
spectra of target molecules are displayed in the Supplementary Materials. All samples
were dissolved in DMSO (1 mg/mL). Each stock solution of analytes was stored at 2–8 ◦C
between analyses. During this study, four chemical classes of sulfonamide derivatives
were tested, including 1H-pyrrole derivatives, 5-oxo-1,2,4-triazine derivatives, 1,2,4-triazine
derivatives, and N-acylbenzenesulfonamides. All sulfonamide derivatives have confirmed
in vitro anticancer activities against human colon cancer (HCT-116) expressed as pIC50 and
shown in Table 2.

3.1.2. The Analytical Standards

The model substances were utilized to obtain the chromatographic hydrophobicity
index of IAM (CHIIAM) and C18 (CHIC18). The analytical standards of acetaminophen,
acetophenone, benzimidazole, colchicine, indole, and theophylline were purchased from
Sigma-Aldrich (Steinheim, Germany). Octanonophenone, butyrophenone, and acetanilide
were obtained from Alfa Aesar (Haverhill, MA, USA). Heptanophenone, hexanophe-
none, valerophenone, propiophenone, and acetophenone were bought from Acros Organic
(Massachusetts, MA, USA).
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3.1.3. Reagents

The water (18.2 MΩ × cm−1) was purified and deionized in our laboratory via a
Millipore Direct-Q 3 UV Water Purification System (Millipore Corporation, Bedford, MA,
USA) to prepare the mobile phase. Ammonium acetate, disodium phosphate (Na2HPO4),
and monosodium phosphate (NaH2PO4) were purchased from POCH (Gliwice, Poland).
Dimethyl sulfoxide (DMSO), used as a solvent, was from Merck (Darmstadt, Germany).
Acetonitrile and 2-propanol (LiChrosolv®) gradient grade for liquid chromatography was
purchased from Sigma-Aldrich (Steinheim, Germany).

3.2. Chromatographic Systems

All HPLC experiments were carried out using a Prominence-1 LC-2030C 3D HPLC
system (Shimadzu, Japan) equipped with a DAD detector and controlled by the LabSolution
system (version 5.90 Shimadzu, Japan). The stock solutions of solutes were diluted to
obtain 100 µg/mL concentrations, and the injected volume was 10 µL. During this study,
six different columns in terms of chemical modification of stationary phases were used.
Retention times (tR) of investigated sulfonamides were collected, and their detection in all
systems was performed at the wavelength characteristic for each compound, summarized
in Table S1. For all chromatography systems, analysis was carried out at 40 ◦C, except for
IAM chromatography, in which oven temperature was set to 30 ◦C. The CHIIAM and CHI18
indices of the target sulfonamides derivatives were obtained using the protocol proposed
by Valko and co-workers [50]. C18 chromatography was performed on a Waters-C18 column
(150 mm × 3.9 mm; 5.0 µm; Symmetry; USA), with a 1.5 mL/min flow rate. The mobile
phase was ammonium acetate buffer (50 mM) at pH 7.4 and acetonitrile as an organic
modifier. The linear gradient from 2 to 98% ACN was applied from 0 to 30 min. IAM
chromatography was executed on an IAM.PC.DD2 column (100 cm × 4.6 mm; 10.0 µm;
Regis Technologies, Morton Grove, IL, USA) additionally equipped with an IAM guard
column with the same flow rate of 1.5 mL/min. The mobile phase was sodium phosphate
buffer (10 mM) at pH 7.4 and acetonitrile as the organic phase. The linear gradient from
0 to 85% was applied within 5.25 min.

For C8, cyanopropyl, and phenyl chromatography, according to the assumption pro-
posed by Snyder and co-workers [42,43], appropriate logkw values (i.e., the retention factor
logk extrapolated to 0% organic modifier, as an alternative to logP) were obtained. Two
retention times for each system in two different gradients (short and long) were collected,
and these data, as input, were introduced into DryLab 6.0 software (Molnar Institute, Berlin,
Germany). Dwell volume for these HPLC systems was measured at 0.780 mL, whereas
the obtained dead times for used HPLC columns were equal to 1.530 min, 1.252 min, and
2.335 min for C8, SB-CN, and UK-Phenyl, respectively. The mobile phase was ammonium
acetate buffer (50 mM) at pH 7.4 and acetonitrile as an organic modifier in each system.
C8 chromatography was performed on Unison UK-C8 column (150 × 2 mm; 3.0 µm. Im-
takt; USA) with 0.3 mL/min flow rate. Analyses were carried out in linear gradient from
30 to 100% within 15 min in short gradient and 30 min in long gradient. The Agilent SB-CN
column (150 × 4.6 mm; 3.5 µm; Zorbax; USA) was used for the cyanopropyl chromatog-
raphy. The CN chromatography analyses were carried out in linear gradient from 20 to
100%, which was applied from 0 to 20 min in short gradient, and from 0 to 40 min in long
gradient. The flow rate was 1.5 mL/min. The column Unison UK-Phenyl (150 × 2 mm;
3.0 µm; Imtakt; USA) was used to perform phenyl chromatography. The flow rate was set
to 0.2 mL/min. The phenyl analyses were carried out in linear gradient from 40 to 100%,
which was applied from 0 to 20 min in short gradient, and from 0 to 40 min in long gradient.
Each HPLC analysis was run in triplicate; in Tables S2–S6, obtained retention times are
listed, whereas representative chromatograms are shown in Figure 9.
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Figure 9. Representative chromatograms for molecule 1 achieved in investigated HPLC systems:
(A) C8, (B) CN, (C) IAM, (D) Ph (long gradient), (E) Ph (short gradient), (F) C18. The detailed
experimental conditions are reported in Section 3.2.

3.3. In Silico Calculation
3.3.1. Theoretical Descriptors

The theoretical descriptors were calculated applying alvaDesc software [51] and based
on geometries optimization using universal force field (UFF) via OpenBabel software [52].
Before QSRR analysis, constant and near-constant were removed. MolGpka was applied for
the calculation of pKa (https://xundrug.cn/molgpka, accessed on 1 March 2022). Finally,
3352 descriptors belonging to 31 classes were calculated.

3.3.2. In Silico Calculation of Lipophilicity

SwissADME software (http://www.swissadme.ch, accessed on 1 March 2022) and
KOWWIN v. 1.68 software (EPI Suite package v.4.2, U.S. EPA) were used for lipophilicity
calculations based on the SMLIE notation. Calculated lipophilicity indexes are summarized
in Table 1.

3.4. Data Analysis
3.4.1. Cluster Analysis (CA) and Principal Component Analysis (PCA)

CA and PCA were performed on databases that included chromatographic data
and in-silico-calculated lipophilicity indices. In order to eliminate the impact of various
lipophilicity scales, data were standardized before analysis. Using Ward’s agglomeration
rule and the Euclidian distance measure, CA has presented results as clustered heat maps.
Both PCA and CA analysis and visualization were performed using Python scripts.

https://xundrug.cn/molgpka
http://www.swissadme.ch
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3.4.2. Sum of Ranking Differences (SRD) Analysis

The SRD analysis, introduced by Héberger [53–55], was carried out on the standard-
ized lipophilicity data to rank, group, and select the most suitable lipophilicity measures
of the studied series of sulfonamide derivatives obtained by in silico and experimental
(chromatographic) approaches. The analysis was performed by using a data matrix in
which the lipophilicity measures are organized in the columns while the compounds are
listed in the rows. The last column contained average row values used as a reference
ranking. This so-called “consensus approach” measures the differences from the center as a
non-parametric measure of similarities and dissimilarities [55]. The results of the ranking
are interpreted based on the SRD values. The best objects (models, descriptors, molecules,
etc.) are the ones that have the SRD values equal to or closer to zero (the objects closest to
the reference ranking, i.e., “golden standard”) [55]. The validation of the SRD procedure
was done by comparison of rank by random numbers (CRRN) and 7-fold cross-validation
based on omitting about 1/7 of objects and carrying out the ranking on the rest of the
objects [54,55]. The normalized SRD values (SRD%) were used to compare results from
different SRD analyses.

3.4.3. QSRR Analysis

Descriptors selection was supported by a genetic algorithm (GA), whereas multiple
linear regression (PLS) was employed as a regression method. The QSRR models were
built using the retention data and the calculated descriptors as dependent and independent
variables, respectively. The set of parameters applied to control GA was the size of the
population (500) and the mutation rate (0.1). The models were built using three LVs and
five structural descriptors in each variable. The optimization of the models was carried
out based on R2. Before calculating GA-PLS for each modeled endpoint, the target solutes
were randomly divided into the training group (n = 18) and the testing group (n = 9). The
training set always contains the molecule with the highest and lowest value of the modeled
endpoint. The information on the belonging of each compound to a training or testing set
is included in Figure S1.

The following statistical figures were used for assessment of model fitting and predic-
tive abilities: the coefficient of determination (R2), external validation coefficients (QF1

2,
QF2

2, QF3
2), root-mean-squared error of cross-validation (RMSECV), root-mean-square error

in prediction (RMSEP) and concordance correlation coefficient (CCC). Applied statistics
were calculated using the following formulas:
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2 ∑nEXT

i=1

(
yi

obs − yobs
EXT

)(
yi

pred − ypred
EXT

)
∑nEXT

i=1

(
yi

obs − yobs
EXT

)2
+ ∑nEXT

i=1

(
yi

pred − ypred
EXT

)2
+ nEXT

(
yobs

EXT − ypred
EXT

)2 (8)

The same procedures were used to calculate the quantitative structure–activity rela-
tionship model, where the pIC50 was used as the independent variable, and the dependent
variables were lipophilicity parameters, both computational and chromatographic, and the
remaining structural descriptors obtained.

4. Conclusions

Both PCA and CA showed significant differences between the chromatographically
determined lipophilicity and calculated ones. Although the grouping results can be ex-
plained by ionization, since the calculation methods do not include information about
the ionization of the compounds all the time, significant differences between the values
calculated by different algorithms affect the credibility of the results obtained through the
computational approach. SRD indicated that among the chromatographic lipophilicity
parameters of the analyzed sulfonamide derivatives, logkIAM could be considered the best
choice. Consequently, IAM-HPLC can be recommended as the most sustainable method for
the lipophilicity characterization of this class of chemical compounds. From the practical
point of view, considering the ratio between lipophilicity and anticancer activity, according
to the assumption that the compound should be characterized by the lowest lipophilicity
while maintaining pharmacological action for different tested molecules, compounds 1–4
and 26 can be recommended.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27133965/s1, Table S1. The SMILES of the studied sulfonamide
derivatives and their chemical class of substituents and IC50 values; Table S2. The obtained retention
times together with CHIIAM for the target sulfonamides derivatives in IAM chromatography; Table S3.
The obtained retention times and CHIC18 for the target sulfonamide derivatives in C18 chromatography;
Table S4. The obtained retention times and logkw for the target sulfonamide derivatives in C8 chro-
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Chojnacki, J. Novel 5-substituted 2-(aylmethylthio)-4-chloro-N-(5-aryl-1,2,4-triazin-3-yl)benzenesulfonamides: Synthesis, molecu-
lar structure, anticancer activity, apoptosis-inducing activity and metabolic stability. Molecules 2016, 21, 808. [CrossRef]
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