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Abstract: Three principal factors may influence the final structure of coordination polymers (CPs):
(i) the nature of the ligand, (ii) the type and coordination number of the metal center, and (iii) the
reaction conditions. Further, flexible carboxylate aliphatic ligands have been widely employed as
building blocks for designing and synthesizing CPs, resulting in a diverse array of materials with
exciting architectures, porosities, dimensionalities, and topologies as well as an increasing number of
properties and applications. These ligands show different structural features, such as torsion angles,
carbon backbone number, and coordination modes, which affect the desired products and so enable
the generation of polymorphs or crystalline phases. Additionally, due to their large coordination
numbers, using 4f and 5f metals as coordination centers combined with aliphatic ligands increases
the possibility of obtaining different crystal phases. Additionally, by varying the synthetic conditions,
we may control the production of a specific solid phase by understanding the thermodynamic and
kinetic factors that influence the self-assembly process. This revision highlights the relationship
between the structural variety of CPs based on flexible carboxylate aliphatic ligands and f-elements
(lanthanide and actinides) and their outstanding luminescent properties such as solid-state emissions,
sensing, and photocatalysis. In this sense, we present a structural analysis of the CPs reported with
the oxalate ligand, as the one rigid ligand of the family, and other flexible dicarboxylate linkers with
–CH2– spacers. Additionally, the nature of the luminescence properties of the 4f or 5f -CPs is analyzed,
and finally, we present a novel set of CPs using a glutarate-derived ligand and samarium, with the
formula [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-bipyH][Sm(HFG)2

(2,2′-bipy) (H2O)2] (β-Sm).

Keywords: coordination polymers; f-elements; luminescence

1. Introduction

Coordination polymers are composed of a rational combination of metallic centers
(connectors) and organic ligands, resulting in extended 1D, 2D, or 3D structures [1,2].
Many classifications have been assigned to these materials, depending on their structure,
dimensionality, porosity, catalytic capacity, etc. [1,3,4]. However, in this work, we will focus
on the nature of the aliphatic ligand in combination with 4f and 5f elements to yield a
plethora of crystalline coordination polymers (CPs). These materials have been extensivelt
studied in recent decades due to their multifunctional properties, which are intimately
related to their structural features [5–7]. Properties such as luminescence, catalysis, sensing,
gas storage, and drug delivery were thoroughly investigated, becoming mature areas [8–21].

Moreover, the use of metallic connectors from 4f and 5f metals allows the develop-
ment of materials with unique optical properties derived from their pure color emis-
sion, fine line f-transitions, and variable lifetime values depending on the desirable
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applications [12,15,22,23]. Additionally, the high coordination numbers and the oxophilic
nature of these metallic centers [24,25] allow us to combine these ions with flexible car-
boxylate aliphatic ligands and build a “toolbox” to construct families of novel crystalline
structures [26]. This work discusses some outstanding examples in structural variety of CPs
using ditopic flexible ligands [−OOC-(CH2)n-COO−] and the role of the oxalate ligand as
the first member of the dicarboxylate family, focusing on their luminescent properties, as
well as applications such as dye photocatalysis and chemical and thermal sensing in Ln-CPs
or An-CPs (Ln = lanthanides and An = actinides). Additionally, we present two novel
crystalline phases of CPs obtained from the combination of hexafluorglutaric acid (H2HFG)
and samarium ions.

2. Discussion
2.1. Coordination Polymers Based on Oxalate Linker

In this highlight, we will analyze the entire family of aliphatic dicarboxylate ligands, from
oxalate to dodecanedioate, used as ligands in the formation of CPs. The analysis on Cambridge
Crystallographic Data Centre (CCDC) during the last two decades shows a small number of
entries with a decreasing number of reported structures as the length of the carbon backbone
increases (Figure 1). This trend is attributed to a higher degree of freedom and flexibility when
chain length increases, which restricts or decreases the chance of crystallization.
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In this sense, it is important to consider the nature of the sp3 covalent bond along the
aliphatic chains, which has the ability to rotate along the C–C bond. This degree of freedom
in the simple bond enables the formation of multiple conformers. The amount of conformers
for a particular aliphatic linker is directly related to the carbon number and carboxylate
coordination modes. The use of ditopic aliphatic ligands in the synthesis of CPs is limited
by the stability of the conformer, the size of the ligand and the architecture of the polymer.
Additionally, it is important to note the high number of reports with short dicarboxylates
(carbon numbers between 2 and 5, Figure 1) forming Ln-CPs or An-CPs (Ln = lanthanides
and An = actinides) [27–30]. The oxalate anion is not a flexible ligand and contributes with
rigidity and stability in the resulting CP. In fact, this molecule has been found in biologic
systems [31], in materials such as electronic and luminescent devices [32,33], drugs [34],
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and minerals [35,36]. Additionally, the use of this ligand in combination with Ln and An
metals as a toolbox to obtain CPs dates back to the 1980s, where Kahwa et al. [37] reported
a family of isostructural 1D structures with the general formula K3[Ln(ox)3(OH2)]·2H2O,
(Ln = Nd, Sm, Eu, Gd, Tb). Additionally, Alexander et al. [38] reported a 2D terbium oxalate
with lanthanide-centered green luminescence at 543 nm by exciting the sample at 369 nm.
The observed signals correspond to the most intense forbidden f–f transition of terbium
ions exhibiting an optical performance without ligand sensitization, comparable to the
commercial green phosphors [38].

The general use of this ligand is extended to mixtures of two or more ligands using
oxalate and auxiliary ligands. The combination of two types of linkers is extensively
used since it allows the presence of a structural ligand and a functional one allowing the
formation of CPs with improved properties such as luminescence or catalysis. Indeed,
approximately 69% of the CCDC entries found in this work (Figure 1) present a combination
of ligands. One example of this trend is the work by Xu et al. [39], where they used a
combination of aromatic ligands as 4-(4-carboxyphenoxy)-isophthalic acid (cphtH3) and
1,10-phenanthroline (phen) as an ancillary to form a highly stable luminescent 3D CPs [39].
These compounds produce green (Tb), white (Sm), blue (Dy) and red (Eu) emissions.
Additionally, based on the excellent luminescence of the Eu-MOF produced, the compound
was tested for quercetin and Fe3+ ion sensing based on quenching processes [39].

Moreover, studies of An-CPs based on uranyl or thorium ions have been explored in
the last decade, mostly due to their potential applications as light emitters for sensing and
photocatalysis, and the variety of novel achieved architectures [22,40–49]. Furthermore,
the rational combination of O-donor with the uranyl cation [UO2]2+ coordination modes
has led to the formation of an important number of new organic–inorganic connectivity
with different dimensionalities and nuclearities of uranyl-centered building units [50–54].
These assemblies are commonly obtained by employing O-donor-chelating agents such
as polycarboxylic acids. In spite of that, the formation of An-CPs is scarce and just 5.9%
of all the structures reported in the CCDC search present the oxalate anion (Figure 2).
The formation of new structures with these components could open a wide research area
of functional compounds derived from the nuclear activity [55,56].
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2.2. Flexible Linkers with –CH2– Spacers

The torsion angle of the most used ligands in the synthesis of CP is shown in Figure 3,
where the oxalate ligand is a planar ligand, whereas malonate and succinate show a
wide range of O–C–C–O torsion angle values. Thus, the degree of freedom around
the sp3 carbon as well as the coordination modes enables the formation of multiple
phases with a slight change in the reactions conditions. Cañadillas-Delgado et al. [58],
Chrysomallidou et al. [59], and Delgado et al. [29] reported that malonate compounds show
different dimensionalities, coordination modes, and carbonyl–carbonyl torsion angles ac-
cording to the synthetic methodology. These findings describe the synthesis of compounds
with a 2D and 3D topology by solvothermal reactions, slow diffusion of the reagents in
metasilacate gel and slow evaporation of the solvent. From a crystal engineering point of
view, it is possible to modify the structural features using different synthetic methodolo-
gies, reaction conditions and use of ancillary ligands [60]. Within the most used synthetic
techniques are (i) hydro or solvothermal synthesis, (ii) slow solvent evaporation, (iii) gel
diffusion, (iv) mechanochemical, and (v) microwave-assisted synthesis [61–67]. It has been
observed that the use of methodologies that involve the application of energy favors the
formation of structures that are more compact, with more complex coordination modes
and high dimensionalities [68]. In the case of methodologies involving low energy, they
generate low-dimensionality structures with simpler coordination modes. On other hand,
the use of guest molecules acting as templates refers to the presence of organic molecules or
solvent molecules giving space for the formation of cavities into the coordination poly-
mer [69]. Guest molecules can be small and isolated species included in the CP structure
and non-coordinated to the metal that allow the formation of cavities [67,70–72].
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Figure 3. Torsion angle values for the entries in the CCDC for oxalate, malonate and succinate ligands.

In our group, we have carried out studies involving the formation of four different
phases of Ln-succinate compounds by solvothermal reaction conditions [73], using the
template effect or guest molecule acting as a template of aromatic solvents as toluene, and aro-
matic organic molecules as 5-sulfosalicylate (5-SSA3−). These guest molecules are directly
involved in the formation of CPs with large pores or cavities, unlike using conventional
protic or organic solvents. Additionally, interesting reviews dedicated to the formation of
CPs based on succinate ligands with 2D and 3D structures involving different topologies
and applications, show the use of these type of ligands in the design of multifunctional
CPs [74]. The use of aliphatic linkers such as 2-methylsuccinates and 2-phenysuccinates
can efficiently separate the lanthanide ions in order to avoid concentration quenching and
giving rise lanthanide-centered emissions upon direct excitation into the 4f levels. The
fine lanthanide emissions were enough to use the materials as solid-state emitters, thermal
sensors and chemical sensors for small molecules [42,75]. Additionally, it is important
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to highlight the variety of coordination modes found reports employing flexible ditopic
ligands [55,76,77], as shown in Figure 4.
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2.3. The Luminescent Properties of 4f-5f Compounds

According to the vast literature on luminescent materials, their properties can be
explored by the following studies [78]: (1) excitation and emission spectra; (2) quantum
yield (QYs) determinations, and (3) experimental or observed lifetime (τ) of emission.
Additionally, the attenuation of luminescence experienced by certain materials is known as
quenching of luminescence and can be derived from structural features as well as from external
parameters. The contributions of non-radiative pathways mainly include electron transfer
quenching, back-energy transfer to the sensitizer as well as quenching by organic vibrations
from the linkers (C-H, O-H, N-H) [79]. Among lanthanide ions, Sm3+, Eu3+, Gd3+, Tb3+

and Dy3+ are preferred ions for optical device implementation and optoelectronics due to
their intense, long-lived and fine emissions into the visible region [12,32,80]. Additionally,
Er3+, Ho3+, Yb3+ and Tm3+ ions are suitable ions for up-conversion emissions into visible
and near-infrared regions [81,82].

The complete review by Bernini and colleagues highlights the contributions of diverse
lanthanide-succinate-derived structures with applications in solid-state lighting, sensing,
and catalysis [74]. In this report, the authors mention the impact of aryl and alkyl substitute
succinate ligands on the final dimension of the crystalline structure and also on the final
property. On the other hand, the improved performance can be assessed by a correct
selection of building blocks that allows a correct energy gap between the lanthanide ions
and the exited states (singlet or triplet) from the linkers.

In general, materials constructed by aryl-derivate linkers or by incorporating auxiliary
aromatic ligands (i.e., 1,10-phenanthroline, 2,2′-bipyridine, etc.) show better emission
efficiency than the solely ditopic-based materials [53]. One example is phthalate ligand
sensitization to improve Eu/Tb luminescence and metal-to-metal energy transfer in mixed
[Ln(adipate)0.5(phth)(H2O)2] compounds, being used as thermometers in the 303–423 K
range [83].

From 2018, we can mention remarkable contributions employing lanthanide-succinate
compounds by Professor Narda’s group. They report the synthesis of a bidimensional
mixed structure Tb3+@Y-succ-sal (succ = succinate, sal = salycilate) with the particularity of
producing reactive oxygen species upon UV excitation in aqueous suspensions, allowing
the photodynamic inactivation of Candida albicans culture by intersystem crossing mecha-
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nisms [84]. In 2022, the same group reported the use of doped Yb3+/Er3+/Gd3+@Y-succ-sal
systems as sacrificial materials to obtain Yb3+/Er3+/Gd3+@Y2O3 and finally deposit them
onto glass substrates for thin film implementation (Figure 5) [85]. The red emissions derived
from up-conversion processes by exciting into the near-infrared region yielded τ values
ranging from 144 to 300 µs.
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Further, uranyl emission is originated from a ligand to metal charge transfer (LMCT) by
exciting an electron from non-bonding 5fδ, 5fϕ uranyl orbitals to uranyl–oxygen bonding
orbitals (σu, σg, πu, πg) [86], which is further coupled to “yl” vibrational (S11 → S01 and
S10 → S0ν [ν = 0–4]) states of the U=O axial bond [87]. Its phosphorescence is often
characterized by green emission, which manifests as four to six vibronically coupled peaks
(up to 12) in the 400–650 nm range.

As shown in lanthanide-flexible compounds, uranyl versions can be explored in
interesting applications such as photocatalysis and sensing. This is achievable due to its
high water stability, repeatability, and bright emission into the visible region, showing a
bright future for uranyl-CPs.

In this case, we can highlight the UNSL-1 (Universidad Nacional de San Luis) com-
pound, [(UO2)2(phen)(succ)0.5(OH) (µ3-O)(H2O)]·H2O, which corresponds to a 1D co-
ordination polymer formed by tetramer units of uranyl ions, decorated by coordinated
1,10-phenanthroline molecules and connected by succinate ligands into the [–1 0 1] di-
rection [22]. The phen plays the role of a suitable antenna molecule to store UV energy
and then transfer it to the uranyl ions, yielding a bright green emission into the visible
region (see Figure 6). For these optical features, UNSL-1 material was employed as a
photocatalyst for methylene blue degradation upon sunlight excitation. Additionally, the
material was used as a sensor toward metallic ions in aqueous media, exhibiting sensitivity
under Fe2+ ions.

Molecules 2022, 27, 3830 7 of 15 
 

 

Further, uranyl emission is originated from a ligand to metal charge transfer (LMCT) 
by exciting an electron from non-bonding 5fδ, 5fφ uranyl orbitals to uranyl–oxygen bond-
ing orbitals (σu, σg, πu, πg) [86], which is further coupled to “yl” vibrational (S11 → S01 and 
S10 → S0ν [ν = 0–4]) states of the U=O axial bond [87]. Its phosphorescence is often charac-
terized by green emission, which manifests as four to six vibronically coupled peaks (up 
to 12) in the 400–650 nm range. 

As shown in lanthanide-flexible compounds, uranyl versions can be explored in in-
teresting applications such as photocatalysis and sensing. This is achievable due to its high 
water stability, repeatability, and bright emission into the visible region, showing a bright 
future for uranyl-CPs. 

In this case, we can highlight the UNSL-1 (Universidad Nacional de San Luis) com-
pound, [(UO2)2(phen)(succ)0.5(OH) (μ3-O)(H2O)]·H2O, which corresponds to a 1D coordination 
polymer formed by tetramer units of uranyl ions, decorated by coordinated 1,10-phenanthro-
line molecules and connected by succinate ligands into the [–1 0 1] direction [22]. The phen 
plays the role of a suitable antenna molecule to store UV energy and then transfer it to the 
uranyl ions, yielding a bright green emission into the visible region (see Figure 6). For these 
optical features, UNSL-1 material was employed as a photocatalyst for methylene blue deg-
radation upon sunlight excitation. Additionally, the material was used as a sensor toward me-
tallic ions in aqueous media, exhibiting sensitivity under Fe2+ ions. 

 
Figure 6. View of the infinite chains along the [−1, 0, 1] direction. CIE x, y chromaticity of UNSL-1 
compound in the suspension and solid states (77 and 298 K), Adapted from Ref. [18]. 

2.4. Sm-Hexafluoroglutarato CPs 
Glutaric acid is a long, flexible carboxylic ligand with –CH2– spacers (polymethylene 

groups) with a size chain of approximately 7 Å. Similarly, the glutarate presents a wide 
range of C–C–C–O torsion angles as well as different configurations around the methylene 
scaffold [88–90]. According to Kumar et al. [30], it is interesting to differentiate between 
two types of compounds: (i) those without ancillary co-ligands and (ii) those with ancil-
lary co-ligand [30]. Further, there is one report of complexes formed with H2HFG ligand 
[91], with Eu3+ and Tb3+ ions giving rise to dimeric assemblies with the formula 
[Ln2(HFG)2(phen)4(H2O)6]. · HFG · 2H2O (where Ln = Eu or Tb). In the mentioned work, 
the phen molecule locks the coordination positions in the metal ions, limiting the dimen-
sionality of the final product.  

Here, we present a novel set of CPs using a glutarate-derived ligand and samarium, 
with the formulae [2,2’-bipyH][Sm(HFG)2 (2,2’-bipy) (H2O)2]•(2,2’-bipy) (α-Sm) and [2,2’-
bipyH][Sm(HFG)2 (2,2’-bipy) (H2O)2] (β-Sm). The ORTEP diagrams of the asymmetric 
units of both compounds are shown in Figure 7, and the crystallographic and refinement 
data are shown in Table 1. 

Figure 6. View of the infinite chains along the [−1, 0, 1] direction. CIE x, y chromaticity of UNSL-1
compound in the suspension and solid states (77 and 298 K), Adapted from Ref. [18].



Molecules 2022, 27, 3830 7 of 14

2.4. Sm-Hexafluoroglutarato CPs

Glutaric acid is a long, flexible carboxylic ligand with –CH2– spacers (polymethy-
lene groups) with a size chain of approximately 7 Å. Similarly, the glutarate presents a
wide range of C–C–C–O torsion angles as well as different configurations around the
methylene scaffold [88–90]. According to Kumar et al. [30], it is interesting to differentiate
between two types of compounds: (i) those without ancillary co-ligands and (ii) those with
ancillary co-ligand [30]. Further, there is one report of complexes formed with H2HFG
ligand [91], with Eu3+ and Tb3+ ions giving rise to dimeric assemblies with the formula
[Ln2(HFG)2(phen)4(H2O)6]. · HFG · 2H2O (where Ln = Eu or Tb). In the mentioned
work, the phen molecule locks the coordination positions in the metal ions, limiting the
dimensionality of the final product.

Here, we present a novel set of CPs using a glutarate-derived ligand and samarium,
with the formulae [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-
bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2] (β-Sm). The ORTEP diagrams of the asymmetric
units of both compounds are shown in Figure 7, and the crystallographic and refinement
data are shown in Table 1.
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Table 1. Crystallographic data and refinement parameters for α-Sm and β-Sm compounds.

α-Sm β-Sm

Empirical formula C35H24F12N5O10Sm C30H21F12N4O10Sm
Formula weight (g/mol) 1052.94 975.86

Crystal system triclinic triclinic
Space group Pı̄ Pı̄

a/Å 10.5754(4) 10.7751(10)
b/Å 12.8624(5) 13.3601(15)
c/Å 15.5452(7) 14.5413(17)
α(◦) 70.371(4) 105.535(5)
β(◦) 77.786(3) 98.863(5)
γ(◦) 76.070(3) 114.104(5)

Volume/Å3 1913.23(13) 1756.4(3)
Z 2 2

ρcalc mg/mm3 1.828 1.845
µ/mm−1 1.658 1.797

F(000) 1038 958
2θ range for data collection/◦ 5.04 to 69.18 6.31 to 51

Reflections collected 49,281 11,855
Independent reflections 15,269 6533

Data/restraints/parameters 15,269/12/570 6533/676/561
Goodness of fit on F2 1.161 0.969

Final R index [I>2σ(I)] 0.0550 0.0522
Largest diff. Peak/hole/e.Å−3 1.75/−1.66 1.13/−1.00
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In both cases, α-Sm and β-Sm are formed by one crystallographically independent
nine-coordinated Sm(III) center surrounded by two nitrogen atoms from a 2,2′-bipy, and
seven oxygen atoms belonging to two HFG ligands and two water molecules to form a
distorted trigonal prism, square-face tricapped polyhedron. In the first case, it is possible
to observe one free 2,2′-bipy and a half protonated 2,2′-bipy (2,2′-bipyH) in the asymmetric
unit, while just one protonated (2,2′-bipyH) molecule is presented in β-Sm. However, in
both cases, the HFG ligand acts as a bridge between metallic centers through the µ2κ

3 and
µ2κ

2 coordination modes, giving raise to 1D CPs. In α-Sm, chains grow along the [0 0 1]
direction, whereas chains in β-Sm grow along the [1 1 1] direction (Figure 8). The presence
of 2,2′-bipy and 2,2′-bipyH is observed in the inter-chain space, where they play role of
counter ions as well as in the stabilization of the crystal packing.
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As was previously mentioned, the synthesis conditions as well as the flexibility of
the ligand and coordination modes determine the presence of different crystalline phases.
In this case, the reaction conditions allow the formation of two crystalline phases, where
there are clearly observed structural differences around the HFG ligand. Both structures
have two HFG ligands coordinated to the metal center, but the carboxylate torsion angle
with respect to the C–C scaffold significantly changes, as it is presented in Figure 9.
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3. Materials and Methods

A Cambridge Structural Database (CSD) search was performed in CSD 2021.2 (Novem-
ber 2021) using Conquest software (version 2021.20). To compute Ln and An complexes
with ditopic ligands, we used the formula [M(ditopic)] as a query in the general search.

3.1. Synthesis of [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]•(2,2-bipy) and
[2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2]

Both compounds were synthesized by mixing Sm(NO3)3.6H2O, H2HFG and 2,2′-
bipyridine in a 0.1:0.15:0.2 millimolar ratio in 4 mL of water. After that, a white suspension
was achieved and one drop of concentrated nitric acid (65%) was added in order to obtain
a transparent solution. Then, the mixture was left to stand at room temperature for slow
solvent evaporation. After three months, the crystalline product was washed with distilled
water and dried at room temperature (yield: 45 mg).

3.2. Single-Crystal X-ray Diffraction (SCXRD) for Structure Determination

SCXRD data for α-Sm were collected at room temperature (293(2) K) using MoKα
radiation (0.71073 Å) monochromated by graphite on a Rigaku XTALAB-MINI diffrac-
tometer. The unit cell determination as well as the final cell parameters were obtained
on all reflections using CrysAlisPro software [92]. Data collection strategy, integration
and scaling were performed using CrysAlisPro software [92]. B-Sm was collected at room
temperature (293(2) K) using MoKα radiation (0.71073 Å) monochromated by graphite on
an Enraf–Nonius Kappa-CCD diffractometer. The initial cell refinements were performed
using the software Collect [93] and Scalepack [94], and the final cell parameters were
obtained on all reflections. Data reduction was carried out using the software Denzo-SMN
and Scalepack [94].
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The structures were solved and refined with SHELXT [95], and SHELXL [96], soft-
ware, respectively, including in Olex2 [97]. In all cases, non-hydrogen atoms were clearly
resolved and full-matrix least-squares refinement with anisotropic thermal parameters
was performed. In addition, hydrogen atoms were stereochemically positioned and re-
fined using the riding model in all cases [98]. The Mercury [99] program was used for
the preparation of artwork. The structures were deposited in the CCDC database un-
der the codes 2159499-2159500. Copies of the data can be obtained, free of charge, via
www.ccdc.cam.ac.uk (accessed on 16 May 2022).

4. Conclusions

Although considerable research has been conducted on the design of new CPs, the
use of flexible ditopic aliphatic ligands as structural support or even as a sensitizer for
luminescence remains a viable strategy to developing a new generation of optically efficient
Ln-CP- and An-CP-based materials. Combining aliphatic and aromatic auxiliary ligands or
space holders seems to be a promising route for developing novel materials with lumines-
cent properties. Additionally, the synthesis conditions as well as the diverse methodology
approaches determine the variations in the promotion of ligand motion, which may result
in the formation of different crystal structures and dimensionalities. One example of the use
of a flexible ditopic ligand is shown in this work, where two CPs obtained at room tempera-
ture employ a hexafluoroglutarate ligand and samarium, [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy)
(H2O)2]•(2,2′-bipy) (α-Sm) and [2,2′-bipyH][Sm(HFG)2 (2,2′-bipy) (H2O)2] (β-Sm), and
are reported for the first time herein. Although the chemistry of flexible ligand-based CPs
is in constant growth, few studies on their incorporation into composites have been re-
ported. As such, the future of Ln- and An-CPs is bright in terms of mesmerizing crystalline
structures and exciting applications over the next decades.
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