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Abstract: Acute kidney injury (AKI) induced by cisplatin (CP), a first-line anticancer drug for
chemotherapy, is common. To date, there is an urgent need to find effective treatments to reduce
the nephrotoxicity caused by CP. Meanwhile, the restoration of mitochondrial dysfunction shows
potential to be used as an adjunct to conventional therapeutic strategies. This study found that
liquiritigenin can ameliorate mitochondrial dysfunction and acute kidney injury induced by CP in
mice. The intraperitoneal injection of 15 mg/kg body weight liquiritigenin for 2 days markedly
protected against CP-induced mitochondrial dysfunction, restored renal tubule and mitochondrial
morphology, decreased blood Scr and BUN levels, and decreased cell apoptosis. Furthermore, the
elevated expression of SIRT3 induced by liquiritigenin, which can be upregulated by NRF2, was
confirmed in vivo and in vitro. The underlying protective mechanisms of liquiritigenin in CP-induced
nephrotoxicity were then investigated. Molecular docking results showed that liquiritigenin has
potent binding activities to KEAP1, GSK-3β and HRD1. Further results showed that liquiritigenin
induced the nuclear translocation of NRF2 and increased the levels of mitochondrial bioenergetics-
related protein such as PGC-1α, and TFAM, which are related to NRF2 activity and mitochondrial
biogenesis. In addition, liquiritigenin was found to possibly reverse the decrease in BCL2/BAX ratio
induced by CP in live cultured renal tubule epithelial cells. Collectively, these results indicated that
liquiritigenin could be used as a potential nephroprotective agent to protect against cisplatin-induced
acute kidney injury in a NRF2-dependent manner by improving mitochondria function.

Keywords: liquiritigenin; NRF2; cisplatin; SIRT3; mitochondrial biogenesis

1. Introduction

Cisplatin (CP), representing first-line anticancer drugs for chemotherapy is widely
used for the treatment of solid tumors such as ovarian cancer, prostate cancer, testicular
cancer, and lung cancer in the clinic [1,2]. However, the side effects of CP, particularly
nephrotoxicity, limit its clinical application. Therefore, there is an urgent need to find
effective treatments to reduce the nephrotoxicity caused by CP. CP compromises cellular
integrity by damaging nuclear DNA to induce cell death, but several lines of evidence indi-
cate that mitochondrial DNA (mRNA) is strongly affected by CP as well [3]. Mitochondria

Molecules 2022, 27, 3823. https://doi.org/10.3390/molecules27123823 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27123823
https://doi.org/10.3390/molecules27123823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27123823
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27123823?type=check_update&version=2


Molecules 2022, 27, 3823 2 of 15

are energy-producing organelles that generate adenosine triphosphate (ATP) and reactive
oxygen species (ROS) in cells [4,5]. Impaired mitochondria induced by CP increase the
generation of ROS. When ROS generation exceeds cellular ROS scavenging capacity or
antioxidant safeguards, oxidative stress occurs and accelerates mitochondrial injury [6,7].
Therefore, reducing oxidative damage to mitochondria by enhancing antioxidative ca-
pability and restoration of mitochondrial dysfunction has been proposed as a potential
therapeutic strategy for acute kidney disease (AKI) induced by CP in model organisms
ranging from mice to humans [8,9].

Nuclear erythroid 2-related factor 2 (NRF2) is an antioxidant transcription factor, that
can combine with the antioxidant response elements (AREs) in the promoters of many
genes. The regulation of NRF2 activity is closely related to Kelch-like-ECH-associated
protein (KEAP1), an adaptor component for the Cullin3-based E3 ubiquitin ligase complex,
which is known as the canonical KEAP1-NRF2 pathway. Under oxidative stress, the cys-
teine residues in KEAP1 are modified to promote the release and nuclear translocation of
NRF2 [10]. NRF2 can also be regulated by GSK-3β [11], which is known as the uncanonical
KEAP1-NRF2 pathway. Activated NRF2 plays an important role in the restoration of mito-
chondrial function by modulating the transcriptional activity of NRF2 over the downstream
targets [12,13]. On one hand, ROS released by damaged mitochondria can promote the
expression of antioxidant enzymes through NRF2 activation to restore redox homeostasis
in mitochondria. On the other hand, NRF2 can mediate the expression of mitochondrial
fusion protein and proteasome genes to inhibit mitochondrial fission with the purpose
of remedying mitochondrial dysfunction [14]. Mitochondrial Sirtuin 3 (SIRT3), which is
essential for maintaining mitochondrial function, is widely expressed in mitochondria-rich
tissues, such as kidney, heart, brain and liver tissues [15,16].

Liquiritigenin (4′,7-dihydroxyflavone) is a major bioactive ingredient extracted from
the root of licorice (Glycyrrhiza uralensis), a medicinal plant used in China. Studies have
shown that liquiritigenin has a variety of biochemical and pharmacological properties,
including hepatoprotection, anti-hyperlipidemic, anti-oxidant, anti-inflammatory and anti-
cancer properties [17,18]. It has been shown that the administration of licorice ameliorates
CP-induced hepatotoxicity and nephrotoxicity through anti-apoptosis, anti-oxidative stress,
anti-inflammation, and accelerated metabolism [19,20]. Likewise, there is convincing
evidence that 18α-glycyrrhetinic acid (GA), which is another major active component of
licorice, and its metabolites might act as chemoprotectants against nephrotoxicity with anti-
oxidant stress and anti-inflammatory activities [21]. Liquiritigenin was found to potentiate
the inhibitory effects of CP on invasion and metastasis via the downregulation of MMP-2/9
and the PI3K/AKT signaling pathway in B16F10 melanoma cells and a mice model [22].
However, the effect and underlying mechanisms of liquiritigenin against CP-induced AKI
have not yet been clarified.

Thus, this study aimed to investigate the protective effect of liquiritigenin on CP-
induced AKI by improving mitochondrial function in tubular epithelial cells and mice, and
to discuss the possible mechanisms. Results showed that, liquiritigenin (i) plays a role in
the protection of nephrotoxicity induced by CP; (ii) has potent binding activities to KEAP1,
GSK-3β and HRD1 and can induce nuclear translocation of NRF2; (iii) reverses CP-induced
decreased expression of SIRT3 and induces up-regulated protein levels of peroxisome
proliferator-activated receptor-γ co-activator-1α (PGC-1α) and mitochondrial transcription
factor A (TFAM), which can improve the mitochondrial bioenergetics and kidney function
post-injury in SIRT3 pathway; and (iv) affects the expression levels of BCL-2/BAX and the
activation of downstream cell apoptotic events. Taken together, these results shed light
on the interaction between liquiritigenin and the NRF2/SIRT3 pathway in CP-induced
nephrotoxicity, suggesting that targeting mitochondrial function by liquiritigenin may
provide unexpected opportunities for the treatment of CP-induced AKI patients.
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2. Results
2.1. Liquiritigenin Protected against CP-Induced AKI in Mice

As shown in Figure 1, 3 days after CP treatment, BALB/c mice displayed several
morphological injuries to the kidney, as evidenced by brush border loss, tubule dilatation,
and cast formation (Figure 1A), and elevated serum creatinine (SCr, Figure 1C) and blood
urea nitrogen (BUN, Figure 1D). HE staining showed that liquiritigenin can obviously
alleviate the change in morphology observed in the model group, with lower tubular
damage scores (Figure 1A,B). Likewise, liquiritigenin significantly reduced serum creatinine
and urea nitrogen levels compared to the model group, demonstrating its significant
improvement effect in renal function against CP (Figure 1C,D).
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Figure 1. The effect of liquiritigenin on AKI induced by CP in mice. (A) Representative micrographs
of HE staining in the kidney from different groups of mice. (B) Quantitative pathological assessment
of tubular damage from different groups of mice. Renal morphology was scored according to the
proportion of damaged renal tubules, such as brush border, tubule dilatation, and cast formation in
the total renal tubules. The scoring criteria were as follows: 0, normal; 1, <10%; 2, 10~25%; 3, 26~50%;
4, 51~75% and 5, >75%. * p < 0.05 vs. control group of mice, # p < 0.05 vs. mice with CP treatment
(n = 9 mice/group). (C) Serum creatinine levels of mice in different groups. * p < 0.05 vs. control
group of mice, # p < 0.05 vs. mice with CP treatment (n = 9 mice/group). (D) Blood urea nitrogen
levels of mice in different groups. * p < 0.05 vs. control group of mice, # p < 0.05 vs. mice with CP
treatment (n = 9 mice/group).

2.2. Liquiritigenin Reduced CP-Induced Apoptosis of Renal Tubule Epithelial Cells

It is well known that apoptosis of renal tubule epithelial cells is a key feature of the
pathogenicity associated with AKI. In this study, cell apoptosis was examined by TdT-
mediated dUTP nick-end labeling (TUNEL) staining in vivo (Figure 2A,C) and by flow
cytometry with Annexin V-FITC and propidium iodide (PI) staining in vitro (Figure 2B,D).
Liquiritigenin was found to substantially decrease the number of apoptotic renal tubule



Molecules 2022, 27, 3823 4 of 15

epithelial cells compared with the CP treatment group. The result was further confirmed
with cell viability rates by MTT cell viability assay (Figure 2E).
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Figure 2. The effect of liquiritigenin on CP-induced apoptosis of renal tubule epithelial cells. (A) TdT-
mediated dUTP nickend labeling (TUNEL) assays were performed to assess renal cell death. Nuclei
were revealed using 4′,6-diamidino-2-phenylindole staining. (B) Representative flow charts showed
that cell apoptosis was determined by flow cytometric analysis in renal tubule epithelial cells with
different treatments. Cells stained with fluorescein isothiocyanate (FITC)-conjugated AnnexinV and
propidiumiodide (PI). (C) Quantitative assessment of the TUNEL+ cells (numbers per high-power field) in
mice kidneys. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs. CP treatment group (n = 6 mice/group).
(D) Quantification of the percentage of apoptotic cells. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs.
CP treatment group. Data were obtained from three independent experiments. (E) 3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to assess cell viability in
renal tubule epithelial cells with different treatments. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs. CP
treatment group. Data were from five independent biological replicates.
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2.3. Liquiritigenin Attenuated CP-Induced Mitochondrial Damage

In vitro, the cellular amount of fragmented mitochondria was found to increase after
CP challenge in renal tubule epithelial cells. In contrast, liquiritigenin was found to reduce
CP-induced mitochondrial abnormalities by maintaining the mitochondrial morphology
and diameter in renal tubule epithelial cells (Figure 3A). Then, Mito-Tracker Green and JC-1
probes were used to further define the mitochondrial damage in the process. Liquiritigenin
treatment significantly inhibited CP-induced mitochondrial fission (Figure 3B). Meanwhile,
liquiritigenin effectively attenuated the CP-induced decline in mitochondrial membrane
potential (MMP, Figure 3C).
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Figure 3. The effect of liquiritigenin on CP-induced mitochondrial damage. (A) Representative
TEM images on the left showing mitochondrial morphology and mitochondria diameter of live
cultured renal tubule epithelial cells with different treatments. Quantitative assessment of the
percentage of altered mitochondria characterized by mitochondria swelling, vacuolization, and cristae
fragmentation. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs. CP treatment group. Data were
obtained from three independent biological replicates. (B) Representative images for MitoTracker
greens staining showing mitochondrial morphology and mitochondria length in live cultured renal
tubule epithelial cells with different treatments. The results were normalized to the mitochondrial
length of the vehicle-control group. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs. CP treatment
group. Data were obtained from three independent biological replicates. (C) Representative images
of renal tubule epithelial cells stained with JC-1 showing changes in fluorescence intensity in live
cultured renal tubule epithelial cells with different treatments. JC-1 fluorescence was normalized to
the red-to-green ratio of the vehicle-control group. * p < 0.05 vs. vehicle-control group, # p < 0.05 vs.
CP treatment group. Data were obtained from three independent biological replicates.
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2.4. Liquiritigenin Was Predicted as an Adjustor in NRF2-Signaling by Molecular Docking Models

In order to determine the detail mechanisms of the protective effect of liquiritigenin,
some receptors in the antioxidant stress pathway as potential binding ligands and the
key proteins in molecular docking models were selected. Interestingly, KEAP1, GSK-3β
and HRD1, which are regulators of NRF2, all showed binding energies with liquiritigenin
(Table 1). As shown in Figure 4, liquiritigenin has potential binding activities to these three
molecules in multiple sites.

Table 1. Docking energies for optimal conformation of liquiritigenin to KEAP1, GSK-3β and HRD1.

Receptors Binding Sites CDocker Energy (kcal/mol)

KEAP1 ARG-326, VAL-514 −6.46
HRD1 PRO-3, ALA-24 −5.78

GSK3β LYS-297, GLN-295, LEU-88,
PHE-67, LYS-122 −6.45
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Figure 4. Structure charts of molecular docking models. Docking simulation for the interaction
between liquiritigenin with KEAP1 (A), HRD1 (B), and GSK-3β (C) in a general overview, a local
overview and 2D overview.

2.5. Liquiritigenin Promoted the Nuclear Translocation of NRF2

In the cytoplasm, KEAP1, GSK-3β and HRD1 mediate the retrotranslocation and ubiq-
uitination of NRF2. The nuclear translocation of NRF2 is closely related to its activity. Based
on the results of molecular docking simulation, fluorescence staining of NRF2 (red) in the
live cultured renal tubule epithelial cells was performed to examine whether liquiritigenin
can affect the nuclear translocation of NRF2. As shown in Figure 5, liquiritigenin at a
concentration of 50 µM could significantly promote nuclear translocation in live cultured
renal tubule epithelial cells (Figure 5).
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Figure 5. The effect of liquiritigenin on the nuclear translocation of NRF2. (A) Subcellular location of
NRF2 determined by immunofluorescence microscopy in live cultured renal tubule epithelial cells
with liquiritigenin treatment. Nuclei were revealed using 4′,6-diamidino-2-phenylindole staining
(DAPI). (B) Quantification of nucleus NRF2 fluorescence density. The results were normalized to
the ratio of the nucleus NRF2 of vehicle-control. # p < 0.05 vs. the vehicle-control group. Data were
obtained from three independent biological replicates.

2.6. Liquiritigenin Positively Regulated SIRT3 Signaling

Finally, to confirm the effects and mechanisms of liquiritigenin in recovering mitochon-
drial injury after AKI, the role of liquiritigenin in mitochondrial biogenesis and apoptosis
was investigated by detecting expression levels of related proteins in NRF2/SIRT3 signal-
ing. IHC staining revealed that the expression of protein SIRT3 was significantly reduced
in the kidneys of mice after CP treatment, particularly in damaged renal tubule cells, while
the decreased expression could be restored by liquiritigenin (Figure 6A). Western blot assay
further confirmed that liquiritigenin reversed the decreased protein level of SIRT3, which
was induced by CP, both in the kidneys of mice (Figure 6B) and in live cultured renal
tubule epithelial cells (Figure 6C). The protein levels of PGC1α (Figure 6D), which is the
master regulator of mitochondrial biogenesis, and TFAM (Figure 6D), which is involved
in mitochondrial DNA replication/translation, were both enhanced by liquiritigenin. In
addition, liquiritigenin was found to increase the expression of BCL-2 and reduced protein
BAX levels (Figure 6E) in live cultured renal tubule epithelial cells compared to CP treat-
ment, indicating the down-regulation of enhanced cell apoptosis. Together, these results
indicated that SIRT3 signaling is essential for liquiritigenin treatment and plays a role in
renal protection and mitochondrial dysfunction restoration after AKI.
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3. Discussion

Deterioration of renal function can be triggered by the nephrotoxicity of many ther-
apeutic drugs, including CP, an important drug that causes AKI. In the progression of
CP-induced AKI, the events of impaired mitochondrial function and excessive reactive
oxygen species (ROS) production occur, which in turn can disrupt the intracellular redox
balance and induce much more serious oxidative stress and mitochondrial dysfunction [23].
Given these mechanisms, the discovery of antioxidants against CP-induced AKI has become
significant for the development of treatment strategies. Recent studies have reported that
liquiritigenin is a natural antioxidant in arsenic trioxide-induced liver injury and against
natural or chemical toxicities [24], and that it attenuates high-glucose-induced mesangial
matrix accumulation, and inflammatory and oxidative stress [25]. The current study veri-
fied that liquiritigenin could reduce SCr and BUN levels in a CP-induced AKI mice model.
In an animal model, the restoration of tubule necrosis, dilatation and damage scores were
clearly seen after liquiritigenin treatment. It is well-known that CP easily accumulates in
renal tubule epithelial cells of the kidney. Therefore, in this study, renal tubule epithelial
cells were chosen as research tools. TUNEL staining, FCM and MTT detection provided
clear evidence that liquiritigenin could reduce the apoptosis of renal tubule cells in vitro
and in vivo. It was shown that, in renal tubule epithelial cells, liquiritigenin can reduce
CP-induced mitochondrial abnormalities by maintaining mitochondrial morphology and
mitochondrial membrane potential (MMP). The above results show a significant protective
effect of liquiritigenin against CP in AKI.

A recent study found that NRF2-knockout mice are more sensitive to CP and more
likely to suffer severe kidney damage than other mice [26]. Furthermore, based on the close
association of oxidative stress and mitochondrial dysfunction, this study hypothesized
that the protective effect of liquiritigenin depends on the classic antioxidant signaling-
NRF2 pathway. Molecular docking models were used to predict the binding activities
of liquiritigenin to KEAP1, GSK-3β and HRD1, which are responsible for regulating the
activity of NRF2. Results showed that liquiritigenin has potential binding activities to these
three proteins in multiple sites. Then, the increased transportation to the nucleus of NRF2
was observed in renal tubule epithelial cells, which implies increased antioxidant activity.
Although the present study did not provide conclusive evidence whether NRF2 activation
is mediated by the direct inhibition of KEAP1-dependent and non-KEAP1-dependent
pathways with liquiritigenin treatment, it can also confirm the role of liquiritigenin in the
positive induction of NRF2 activity. Further studies will be planned to investigate the
explicit regulation mechanisms underlying NRF2 activation.

As reported previously, NRF2 plays an important role in regulating mitochondrial
homeostasis and maintaining mitochondrial function [27]. Some protein levels related to
mitochondrial function in mice and cell models were subsequently detected in the current
study. NRF2 has been proven to be a direct regulator of SIRT3 against reticulum stress
in liver injury [28]. SIRT3, a mitochondrial histone deacetylation enzyme, is primarily
localized in mitochondria. It can directly deacetylate and activate the major mitochondrial
antioxidant enzymes and mitochondrial metabolic enzymes downstream [29], as well as
apoptosis-related proteins [30]. Burgeoning studies have reported that SIRT3 can alleviate
CP-induced renal tubule epithelial cell injury by maintaining mitochondrial integrity,
further suggesting that improving mitochondrial dynamics by increasing SIRT3 expression
has become a potential therapeutic strategy to alleviate CP-induced renal injury [31]. In
CP-induced AKI mice and cell models, protein levels of SIRT3 were found to be increased
significantly with liquiritigenin treatment, indicating the regulatory ability of liquiritigenin
in mitochondrial biogenesis through the NRF2/SIRT3 pathway against CP-induced AKI.
To clarify the mechanisms in detail, the expression changes of up- and down-stream
proteins of SIRT3, including PGC-1α and TFAM, were detected. PGC-1α is a nuclear-
encoded transcription coactivator that regulates the expression of a variety of nuclear-
encoded mitochondrial proteins, including mitochondrial antioxidant genes and biogenic
genes [32]. TFAM is a member of the high mobility group protein superfamily with the



Molecules 2022, 27, 3823 10 of 15

function of stabilizing and maintaining mitochondrial DNA. Meanwhile, protein expression
levels of BCL-2 and BAX were detected in the current study, which can be regulated by
SIRT3 as the ratio of BCL-2/Bax was decreased in SIRT3 deficiency groups [33]. BAX
was found to be a proapoptotic BCL-2 family protein that induces mitochondrial Ca2+

overload and the subsequent activation of downstream cell apoptotic events [34]. The
inhibition or modulation of BAX, which can block both mitochondrial dysfunction and cell
apoptosis, was shown to be important in drug toxicity therapy [34,35]. This study showed
that protein levels of SIRT3, TFAM, PGC-1α and BCL-2 were all upregulated while BAX
expression was inhibited with liquiritigenin treatment in a CP-induced AKI model. The
results described above indicate that the protective effects of liquiritigenin, including the
promotion of mitochondrial biogenesis and the inhibition of apoptosis, are related to SIRT3
activity against CP-induced AKI. One recent study has shown that NRF2 could reverse
ER stress injury by directly binding to the SIRT3 ARE site [28]. The other study verified
that SIRT3 can also play an anti-oxidative stress role by activating the NRF2-signaling
pathway [36]. Therefore, it should be noted that the regulation of SIRT3/NRF2 in terms
of the mitochondrial function may be a complex feedback regulation and therefore is not
monolithic. Even so, based on the current study, it is known for sure that liquiritigenin can
affect the mitochondrial function and dysfunction in the NRF2/SIRT3 pathway.

4. Materials and Methods
4.1. Reagents and Materials

Standard liquiritigenin of purity >98% was purchased from Aladdin Holdings Group Co.,
Ltd. (Shanghai, China). CP of over 98.5% purity (by HPLC) and the TUNEL kit were purchased
from Beyotime Biotechnology (Shanghai, China). Annexin V-FITC/PI double staining apoptosis
detection kit were obtained from BestBio (Shanghai, China). The antibodies used for Western
blot analysis were as follows: anti-PGC-1α (Mouse, 1:1000, Catalog No.66369-1-Ig), anti-TFAM
(Rabbit, 1:1000, Catalog No.22586-1-AP), anti-BCL-2 (Rabbit, 1:1000, Catalog No.26593-1-AP),
anti-BAX (Mouse, 1:1000, Catalog No.60267-1-Ig), anti-β-actin (Mouse, 1:6000, Catalog No.66009-
1-Ig), purchased from Protein Tech Group (Chicago, IL, USA), and anti-SIRT3 (Rabbit, 1:1000,
Catalog No.ab189860), purchased from Abcam (Abcam, Cambridge, UK). Reagents related to
cell culture such as culture medium, fetal bovine serum, and streptomycin and penicillin were
purchased from Gibco (Shanghai, China).

4.2. Experimental Animals

Male BALB/c mice 6~8 weeks, weighing 18~22 g, were obtained from Jinan Pengyue
Experimental Animal Breeding Co., Ltd. (Jinan, China), and were housed in cages, with
5 mice in each cage, with free access to food and water in a room with controlled tempera-
ture of 20~24 ◦C and a 12 h light/dark cycle. All animal experiments were conducted in
accordance with the Guide for the Care and Use of Laboratory Animals as adopted and
promulgated by the U.S. National Institutes for Health, and were approved by the Institu-
tional Animal Care and Use Committee Shandong University (No.ECSBMSSDU2019-2-024).
After an adaptive phase of 5 days, mice were randomized into four groups administered
with control solvent (0.5% DMSO in 0.9% NaCl injection), CP solution (20 mg/kg body
weight/day), liquiritigenin solution (15 mg/kg body weight/day) and liquiritigenin and
CP solution by intraperitoneal injection. Liquiritigenin was prepared into stocking solu-
tion (200×, 300 mg/mL) with DMSO and then diluted to the concentration 1.5 mg/mL
with 0.9% NaCl injection. CP was administrated once on the first day. Liquiritigenin was
administrated to CP-induced AKI mice model once/day for a continuous 2 days, and
the first injection was at 30 min prior to CP treatment. The injection dose of all solutions
was 0.1 mL/10 g. Then, mice were humanitarian executed after 72 h post-injection of CP
solution. Blood samples were taken for monitoring renal function and kidney tissues were
fixed with formalin [23,37–40].
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4.3. Hamatoxylin and Eosin (H&E) Staining

Four-micrometer mice kidney tissue sections were stained with an H&E reagent after
dewaxing and rehydrating in the program as described [41]. Pathological section images
were obtained using a Ti2-A fluorescence microscope (NIKON, Tokyo, Japan).

4.4. Tubular Damage Scores

Under a high-power microscope, 10 fields of renal cortex and outer medulla were
randomly selected for observation. Renal morphology was scored as described [38,42].

4.5. Immunofluorescence Staining

Renal tubule epithelial cells were treated with liquiritigenin (50 µM) for 6 h, and
then washed with phosphate-buffered saline (PBS, pH = 7.2). Immunofluorescent staining
was performed as described [41]. The images were visualized under a Ti2-A fluorescence
microscope (NIKON, Tokyo, Japan). The antibody used for immunofluorescence staining
was anti-NRF2 antibody (1:100, Proteintech, Chicago, IL, USA). Quantitative data from at
least 30 cells were counted per group from representative triplicate experiments.

4.6. Transmission Electron Microscopy (TEM)

The freshly harvested renal tubule epithelial cell samples were obtained through low-
speed centrifugation, and then the supernatant was removed and fixed with glutaraldehyde
at 4 °C. The sample handling and detection were performed by the electron microscopic core
Lab of Shandong University as described [43]. Three independent samples were selected
from each group and 10 electron micrographs were taken in each sample to analyze the
ratio of abnormal mitochondria in the cultured renal tubule epithelial cells.

4.7. TUNEL Assay

Sectioning of the paraffin-embedded kidney tissue after dewaxing and rehydrating as
shown above were performed with a TUNEL assay following the manufacturer’s protocols
(Roche Diagnostics, Mannheim, Germany) as described [41]. The images were visualized
under a Ti2-A fluorescence microscope (NIKON, Tokyo, Japan).

4.8. Cell Culture and Treatment

Renal tubule epithelial cells (HK-2) were obtained from National Collection of Au-
thenticated Cell Cultures (Shanghai, China) and cultured in complete DMEM-F12 medium
with 10% fetal bovine serum and 1% streptomycin and penicillin, at 37 ◦C with 5% CO2
in a humidified incubator [44]. Cells were subcultured every 2~3 days when 80%~90%
confluence was reached.

4.9. Cell Viability Assay (MTT)

A 200 µL solution of renal tubule epithelial cells was seeded in 96-well plates with a
density of 5 × 104 cells per milliliter. After 18 h, cells were co-incubated with CP (20 µM)
and liquiritigenin (25 µM) or incubated with CP (20 µM), liquiritigenin (25 µM) separately,
for 24 h. The control solvent was complete DMEM-F12 medium with 0.1% DMSO. After
incubation, cell viability was measured by MTT assay as described [45]. The OD values of
the microplate were measured by a microplate reader (Molecular Devices, CA, USA).

4.10. Cell Apoptosis Detection

A 2 µL solution of renal tubule epithelial cells was seeded in a six-well plate with
a density of 5 × 104 cells per milliliter. After 18 h, cells were co-incubated with CP
(20 µM) and liquiritigenin (25 µM) or incubated with CP (20 µM) and liquiritigenin (25 µM)
separately, for 24 h. The control solvent was complete DMEM-F12 medium with 0.1%
DMSO. Subsequently, cells were collected and detected by Annexin V-FITC/PI double
staining apoptosis detection kit according to the reference manual. Subsequently, 400 µL
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of binding buffer was added to each sample and then examined using a flow cytometer
(Beckman Coulter, Brea, CA, USA).

4.11. MitoTracker Green Staining

Renal tubule epithelial cells were incubated with the Mito-Tracker Green (Invitro-
gen/Molecular Probes, Eugene, OR, USA) according to the manufacturer’s instructions and
then detected by a LSM780 laser scanning confocal microscope (ZEISS, Jena, Germany) [43].

4.12. Mitochondrial Potential Detection

Probe JC-1 staining was used to measure the mitochondrial membrane potential in
renal tubule epithelial cells. Post-treatment, medium/JC-1 working solution (1:1) was
added to the cell slides in the plate and incubated for 20 min. The staining solution was
removed, and then the cells were gently washed twice with JC-1 staining buffer. The
pictures were captured by a Ti2-A fluorescence microscope (NIKON, Tokyo, Japan) [43].

4.13. Molecular Docking Simulation

The molecular docking study of liquiritigenin was performed by AutodockTools 1.5.6,
and the crystal structures of docking molecules were obtained from the Protein Data Bank
(https://www.rcsb.org/ (access on 14 October 2021)). The docking results were optimized
using Pymol software. The values of CDocker energy were used as evaluation criteria.

4.14. Western Blotting

Collected cells or renal tissues were lysed with RIPA lysis buffer (Beyotime Biotechnol-
ogy, Shanghai, China) on ice. The cell or tissue lysing reagents were collected, centrifuged
at 14,000× g for 10 min at 4 ◦C, and mixed with 5 × SDS-PAGE Sample Loading Buffer
(Beyotime Biotechnology, Shanghai, China). Proteins were separated by 10~15% SDS-
PAGE and then transferred to polyvinylidene fluoride (PVDF) microporous membranes as
described [43]. Membranes were subsequently developed with ECL reagent, and chemilu-
minescent signals were acquired using Tanon 5200 ChemiDoc imager (Shanghai Tianeng
Technology Co., Ltd., Shanghai, China).

4.15. Immunohistochemical Staining

Immunohistochemical staining was performed as described [43]. Paraffin-embedded
kidney tissue sections were stained with anti-SIRT3 antibody (1:100, Abcam, Cambridge,
UK) at 4 ◦C overnight. Graphs were obtained by using a Ti2-A fluorescence microscope
(NIKON, Tokyo, Japan).

4.16. Statistical Analysis

All data were expressed as the mean ± SD. All results were reported from at least
three independent experimental replicates (biological replicates). GraphPad Prism 8.0
software (GraphPad Software Inc., San Diego, CA, USA) and SPSS 19.0 (SPSS Software Inc.,
San Diego, CA, USA) were used to analyze the data. The significance of the differences
in mean values between and within multiple groups was examined by one-way ANOVA
with Dunnett’s multiple comparisons tests. The differences were considered statistically
significant at p < 0.05.

5. Conclusions

The current study not only showed that liquiritigenin protects against CP-induced
AKI by improving mitochondrial function in live cultured renal tubule epithelial cells and
BALB/c mice, but also proposed a possible mechanism of liquiritigenin as a potential
detoxification drug of CP (Figure 7). This study confirmed that liquiritigenin could be ex-
erted as a nephroprotective agent to protect against CP-induced AKI in a NRF2-dependent
manner by improving mitochondria function. The present results provide insights into

https://www.rcsb.org/
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the underlying molecular mechanisms and will contribute to the development of potential
therapeutic natural medicine for CP toxicity.
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chondria dysfunction, which contributes to the impaired renal tubule epithelial cells and kidney 
injury. Firstly, liquiritigenin activates NRF2 by binding to KEAP1, GSK-3β, and HRD1, which can 
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Figure 7. Schematic representation showing the possible mechanisms underlying the protective effect
of liquiritigenin against CP-induced AKI. Under pathological conditions, CP leads to mitochondria
dysfunction, which contributes to the impaired renal tubule epithelial cells and kidney injury. Firstly,
liquiritigenin activates NRF2 by binding to KEAP1, GSK-3β, and HRD1, which can directly inhibit
the nuclear translocation and promote the degradation of NRF2 in multiple ways. Subsequently,
NRF2 promotes the transcription of SIRT3. In the cytoplasm, SIRT3 deacetylates Ku70, inhibiting the
mitochondrial translocation of BAX. Meanwhile, SIRT3 mediates the increased protein level of BCL2.
Furthermore, liquiritigenin increases the expression of PGC-1α, which upregulates the SIRT3/TFAM
pathway. Eventually, mitochondrial biogenesis is promoted and cell apoptosis is inhibited.
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