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1 Simulation Details

In this study, the single-walled CNTs have two
types of helicities and three different diameters,
as listed in Table S1. The chiral index (n,m)
defines the wrapping vector or chiral vector of a
CNT, ~Ch = n~a1 +m~a2, where ~a1 and ~a2 vectors
are the basis of graphene Bravais lattice [45].
In the (n,m) notion, n = m for the armchair
CNTs, while n = 0 for the zigzag CNTs [45,53].
Both CNTs helicities were constructed for three
CNT sizes, with diameters of approximately 20,
30 and 40 Å, see Table S1.

The modeled systems first underwent an equi-
libration run in the NPT ensemble at 300K
and 1 atm using a Nosé-Hoover thermostat and
barostat. In order to maintain the structural
integrity of the infinite carbon surfaces in equi-
libration runs containing a CNT, the simula-
tion box was dilated and contracted in the x
and y directions in a coupled manner, so as not
to stretch or shrink the CNTs along its axial
direction. Similarly, in equilibrium runs with
a graphene surface, the simulation box was di-

lated and contracted only along the z direction.
The solvated production runs were performed

in the NVT ensemble using a Nosé-Hoover ther-
mostat at 300K for 7 ns from ten randomly
generated initial configurations. For the sol-
vated simulations with a groove surface, the
NVT production runs were performed for an
additional 7 ns to ensure sufficient data once the
adsorbate localized to the groove. For the vac-
uum simulations, the NVE ensemble was used
and simulations began from ten different equili-
brated configurations gathered from the set-up
runs. Equations of motion were integrated us-
ing a standard velocity-Verlet algorithm with a
time step of 1 fs. Data from the last 5 ns of
all simulated trajectories were recorded in in-
tervals of 100 ps and used in the calculation of
the diffusion coefficients, i.e., nanoseconds 2-7
for graphene and single CNT simulations and
nanoseconds 9-14 for CNT groove simulations.

Details regarding the equilibration process
and the partial charge calculations can be found
in Ref. [18], as can discussions of the effects of
holding the carbon surface fixed and using only

Table S1: CNT structural details. The exact types, helicities, diameters, and lengths of the modeled CNTs are
shown here. CNT diameters were calculated as described in Ref. [52].

Type (n,m)-CNT Helicity Diameter (Å) Length (Å)
(15, 15)-CNT

Armchair
20.311

100.698(22, 22)-CNT 29.790
(29, 29)-CNT 39.269
(0, 26)-CNT

Zigzag
20.326

102.096(0, 38)-CNT 29.708
(0, 51)-CNT 39.871
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a single layer of graphene for the graphene sur-
face.

2 Data Analysis

Projecting adsorbate trajectories onto
the surface. Since all adsorbates in our simu-
lations quickly adsorbed onto the surfaces and
never desorbed, we projected their center-of-
masses (COMs) onto the carbon surface in or-
der to calculate their on-surface, 2D trajecto-
ries.

In order to quantify and compare the surface
motion of diffusing species on the curved CNTs
with their diffusion on the flat graphene sur-
face, the Cartesian coordinates, {x, y, z}, were
transformed to cylindrical coordinates, {r, θ, z},
according to

r =
√

(x− xCNT)2 + (y − yCNT)2,

θ = atan2(
y − yCNT

x− xCNT

),

z = z,

(S1)

where (xCNT, yCNT) denotes the location of the
CNT axis, and atan2 is the two-argument arct-
angent function, which returns a corrected and
unambiguous arctangent angle within the range
[−π, π]. This transformation is illustrated in
Fig. S1. In essence, the cylindrical coordinate
transformation cuts the nanotube surface along
its axis and unrolls it to form a plane consisting
of two dimensions, r and θ.

However, when performing the transforma-
tion shown in Eqn. S1, the unambiguous two-
argument arctangent function, atan2, results in
discontinuities of the azimuthal angle θ near −π
and π. To reflect the continuous motion of the
diffusing adsorbate on the cylindrical nanotube
surface, we used a threshold angular displace-
ment of θthreshold = 0.1π = 18◦ to indicate a
break in the continuous trajectories of θ where
the adsorbate moved across the discontinuous
−π and π positions. Specifically, if the angu-
lar displacement between any two consecutive
frames in time (separated by 0.01 ps) exceeded
θthreshold, the rest of the θ trajectory is shifted by
±360◦ to restore the continuity in the azimuthal

Figure S1: Schematic of the cylindrical coordi-
nate transformation. This figure illustrates the cross-
section of a CNT and the variables used in the cylindri-
cal coordinate transformation. (x, y, z) are the diffusing
adsorbate’s COM Cartesian coordinates, and (r, θ, z)
are the transformed cylindrical coordinates using the
Eqn. S1. (xCNT, yCNT) denotes the location of the CNT
axis, rCNT is the CNT radius, and 〈r〉 is the ensemble
average radial coordinate of the adsorbate during the
simulation. The red dashed circle is an imaginary cylin-
drical surface onto which the COM of the adsorbate is
projected during the MSD calculation. Note: the simu-
lation box and CNT are not drawn to scale.

coordinate. The raw and corrected, continu-
ous trajectories in the θ variable are shown in
Fig. S2a. Here, the raw blue trajectory com-
puted directly from the two-argument arctan-
gent function (atan2) has several discontinu-
ous points, while the corrected green trajectory
is continuous, reflecting the continuous motion
of the diffusing adsorbate around the cylindri-
cal nanotube’s circumference. The choice of
θthreshold = 18◦ is justified by the distributions of
θ displacements observed between two consec-
utive structural frames (separated by 0.01 ps),
as shown in Fig. S2b.

Calculating Diffusion Coefficients. The
Einstein relation associates the diffusion coeffi-
cient, D, with the slope of the linear regime of
a particle’s MSD by

〈∆R2(t)〉 = 2dDt, (S2)

where 〈∆R2(t)〉 denotes the ensemble average
of the MSD over time, t, and d is the diffu-

2



]

(a)

]

(b)

Figure S2: Azimuthal continuity within CNT tra-
jectories. When performing the cylindrical coordinate
transformation (Eqn. S1), the two-argument arctangent
function, atan2, results in a discontinuity of the az-
imuthal angle, θ, between −π and π. We used a thresh-
old angular displacement of θthreshold = 0.1π = 18◦ to
shift θ at this crossover point to recover the continu-
ous trajectories. (a) A representative 5.0 ns raw (blue)
and continuous (green) azimuthal angle, θ, trajectory is
shown here from a 300K simulation of DA on the inte-
rior of a (15, 15)-CNT nanotube. (b) The distribution of
DA’s angular displacement, ∆θ, between two consecu-
tive frames of recording is plotted here for various CNT
surfaces. Each recording frame is separated by 0.01 ps.
The maximum displacement of the diffusing adsorbate
in between two consecutive frames remains well below
the displacement threshold, θthreshold = 18◦, validating
the approach.

sional dimensionality. From this equation, D
can be calculated in the diffusive regime by lin-
early fitting the MSD after the inertial motion
dissipates.

Eqn. S2 describes the Einstein relation in the
Cartesian coordinates, and Castro-Villarreal et

al. expanded this relation to the Brownian
motion of a free particle on a d-dimensional
Riemannian geometry [54]. The mean-squared
geodesic distance (MSGD, s) of the diffusing
particle as a function of time is related to its
diffusion coefficient, D, by

〈s2(t)〉 = 2dDt− 2

3
Rg(Dt)

2

+
4

45

d− 3

d(d− 1)
R2
g(Dt)

3 +O(t4),
(S3)

where O(t4) includes t4 and higher order terms.
In this equation, the Riemann curvature tensor,
Rg, reflects the surface geometry. Rg > 0 for
spherical curvature, Rg < 0 for hyperboloidal
curvature, and in the special Euclidian geom-
etry case, when Rg = 0, MSGD becomes the
conventional MSD, and Eqn. S3 reduces to the
Einstein relation shown in Eqn. S2. Since the
curved CNT cylindrical surface has an Euclid-
ian geometry where Rg = 0, the diffusion coeffi-
cients are computed from our simulations using

D =
〈∆R2(t)〉

2dt
, (S4)

where 〈∆R2(t)〉 denotes the ensemble average
of the MSD as a function of time, t. We set
the diffusional dimensionality, d = 2, for the
adsorbates moving on flat graphene and CNTs.

Once DA is adsorbed, the radial component
of its MSD is negligible, and a 2D MSD can be
calculated by considering its component in the
directions axial to the CNT tube (MSD‖) and
its component in the azimuthal direction, which
is around the CNT circumference and perpen-
dicular to the CNT axis (MSD⊥). To calculate
these MSDs on the surface, we projected the ad-
sorbate COM, (r, θ, z), onto an imaginary cylin-
drical surface which is coaxial with the CNT
and has a radius equal to the ensemble aver-
age of the radial coordinate of the adsorbate,
(〈r〉, θ, z), where 〈·〉 denotes the ensemble aver-
age, as illustrated in Fig. S1. The displacement
along the ⊥-direction is then 〈r〉 · (θ − θ0), and
the displacement along the ‖-direction is z−z0,
where (〈r〉, θ0, z0) are the reference cylindrical
COM coordinates at the beginning of each 10
ps trajectory segment. From there, the MSDs
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Figure S3: The MSDs of Adatom(DA) and DA on (15, 15)-CNTs of varying lengths. The MSDs on the
exterior and the interior of a (15, 15)-CNT are shown in the left and right columns, respectively. The MSDs of
adatom(DA) are shown in dashed curves, and the MSDs of DA are shown in solid curves. The top row shows
the MSDs along the perpendicular (⊥) direction, while the bottom row shows the MSDs along the parallel (‖)
direction. In the legend, (15, 15)-CNT-25 to (15, 15)-CNT-100, represent four armchair CNTs with lengths ranging
from 25− 100Å (precise lengths are listed in Table S2).

were computed from the projected cylindrical
coordinates of the adsorbate in the ⊥- and ‖-
directions, according to:

MSD⊥ = 〈r〉2 · 〈(θ − θ0)2〉,
MSD‖ = 〈(z − z0)2〉,
MSD = MSD⊥ + MSD‖.

(S5)

Additional Data Analysis Details. All
presented results were obtained from ten inde-
pendent 5 ns trajectories at 300K with record-
ing intervals of 0.01 ps. Diffusion coefficients
were computed from linearly fit MSD curves
using the Einstein relation, Eqn. S4, from 4-
10 ps, and their standard deviations are re-
ported across the MSD curves from the ten in-
dependent runs.

On the flat graphene surface, the x-direction
is zigzag and the y-direction is armchair.
On the armchair CNT ((15, 15)-CNT), the ‖-
direction is zigzag and the ⊥-direction is arm-
chair; on the zigzag CNT ((0, 26)-CNT), the ⊥-
direction is zigzag and the ‖-direction is arm-
chair. Therefore, in Figure 5, graphene Dx is
compared with (15, 15)-CNT D‖ and (0, 26)-
CNT D⊥, and graphene Dy is compared with

(15, 15)-CNT D⊥ and (0, 26)-CNT D‖.

3 Finite Size Effects

Finite system size effects are a known issue
when calculating diffusion constants within MD
simulations, since the periodic boundary con-
ditions needed to approximate the bulk sys-
tem introduce unphysical hydrodynamic ef-
fects [37,38]. The dependence of this effect on
simulation box size and shape is complex [46],
and there is no precise correction that has been
worked out for diffusion on the types of surfaces
examined in this work. However, an approxi-
mate extrapolation to the infinite size system
can be made using

DPBC = D∞ −
α

L
, (S6)

where DPBC is the diffusion coefficient com-
puted from MD simulations in a finite simu-
lation box under PBCs, D∞ is the diffusion co-
efficient for the infinite system, L is the length
of the cubic simulation box, and α is a system-
specific constant that is independent of the sys-
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Table S2: Diffusion coefficients on (15, 15)-CNTs of varying lengths. The listed CNTs have identical diameters
and helicities, however their lengths in the axial, z-direction, are varied from 25 Å to 100 Å. The sizes of the periodic
cuboid simulation boxes are determined by the CNT lengths in the z direction and extend for 15 Å in the (x, y)
dimensions away from the CNT. D values reported here are the 2D diffusion coefficients fit from the MSD curves
using the Einstein relation, Eqn. S4, from 4-10 ps.

Sides Surfaces z (Å)
Adatom(DA) DA

D (×10−5 cm2/s) R2 D (×10−5 cm2/s) R2

Exterior

(15, 15)-CNT-25 24.56 3.29± 0.18 0.9999 1.74± 0.10 0.9992
(15, 15)-CNT-50 49.12 3.08± 0.48 0.9998 1.38± 0.11 0.9997
(15, 15)-CNT-75 73.68 2.97± 0.15 0.9998 1.31± 0.05 0.9999
(15, 15)-CNT-100 100.698 3.03± 0.15 1.0 1.30± 0.04 0.9999

Interior

(15, 15)-CNT-25 24.56 9.35± 0.83 0.9958 5.97± 0.63 0.9923
(15, 15)-CNT-50 49.12 7.22± 0.43 0.9980 4.19± 0.34 0.9948
(15, 15)-CNT-75 73.68 6.62± 0.50 0.9988 3.61± 0.22 0.9966
(15, 15)-CNT-100 100.698 6.61± 0.52 0.9989 3.34± 0.26 0.9973

tem size [39]. A more comprehensive discussion
of this equation and its applicability to our sys-
tem can be found in Ref. [18].

In our previous work [18], we found that a
good fit to this equation could be obtained from
simulations spanning a range of system sizes,
enabling the extrapolation of D∞ values. We
follow the same approach here for adatom(DA)
and DA on both the interiors and exteriors of
(15, 15)-CNTs of varying lengths, ranging from
25-100 Å. The resulting MSD plots are shown in
Figure S3, and the diffusion constants, D, from
these differently-sized simulations are shown in
Table S2.

Figure S4 displays a series of plots from the
data in Table 1, where the diffusion constants,
D, from the finite systems are plotted against
the inverse length of the CNT, L−1, and a linear
fit is obtained to enable the extrapolation of the
diffusion constants on an infinite CNT surface,
D∞. As expected, we find that the system size
dependence is stronger for an adsorbate on the
CNT’s interior.

The standard errors of D∞ in Table 1 and
Figure 13a were computed using

sα̂ =

√√√√√√√ 1

n× (n− 2)
×

n∑
(yi − ŷi)2

n∑
(xi − x̂i)2

, (S7)

where the sα̂ is the standard error of the esti-
mated intercept (α̂), n is the number of obser-
vations. For the results listed in Table 1, n = 40

for the CNT observations and n = 50 for the
graphene observations. (xi, yi) and (x̂i, ŷi) are
the ith observed and regressed (L−1, D) data
pairs, respectively. This standard error ap-
proach assumed the residuals are normally dis-
tributed.

4 Additional Results.

Figure S5 displays the number density of water
next to the different CNT and graphene sur-
faces. This plot was also used as the basis of
the choice of 5 Å as the cutoff value when assess-
ing the number of waters in the first solvation
shell around DA in Fig. 11.

Figure S6 displays the tilt angle, φ, and the
alignment with the CNT axis, measured by θ,
for DOQ at different carbon:vacuum interfaces,
showing that the trends observed for DA in
Fig. 9d and Fig. 10d also hold for DOQ.

Finally, Figure S7 shows the frequency of
jumps from one side of the CNT groove to the
other for several trajectories of DA at both the
solvated (Fig. S7a) and vacuum (Fig. S7b) in-
terfaces.
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Figure S4: Diffusion coefficients of Adatom(DA) and DA on CNTs and CNT grooves of varying lengths.
The diffusion coefficients on the exterior (left column) and interior (middle column) of the (15, 15)-CNT, and on the
CNT groove (right column), are plotted against the inverse length of the simulation box, characterized by the length
of the CNT, (LCNT). The dashed lines are linear fits to the D values calculated from simulations of different sizes.
The y-intercepts indicate the extrapolated diffusion coefficients on an infinite surface, D∞.
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Figure S5: Number density of water near differently-curved carbon surfaces. The number density of
water, ρN (water), is computed vs. the distance from the carbon surface using the location of the oxygen atoms.
The horizontal red dashed line marks the reference density of 33 nm−3, which is the number density of bulk water
at 300K. The results are collected from ten 5 ns NVT trajectories at 300K at a recording interval of 5 ps.

]
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[] ]

(b)

[]

Figure S6: Tilt and orientational angle distributions of DOQ at the carbon:vacuum interface. Distri-
butions for (a) the tilt angle, φ, and (b) the orientational axial alignment angle, θ, of DOQ at the carbon:vacuum
interface are plotted for differently-curved surfaces.

]
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[]

Figure S7: Trajectories of DA jumping across the CNT groove. Each of the ten differently colored lines
indicates the jumps observed from one CNT surface to the other within a single trajectory. In all cases, DA remains
in the groove after the jump. The high and low levels in these trajectories represent DA on the two different sides
of the groove – its location was determined by calculating which CNT axis was closer to the center of the aromatic
ring. Results are shown (a) for the solvated groove and (b) for the groove in a vacuum. The sampling frequency is
5 ps.
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