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Abstract: This work suggested that Cu2+ ion coordinated by the peptide with a histidine (His or H)
residue in the first position from the free N-terminal reveals oxidase-mimicking activity. A biotiny-
lated polymer was prepared by modifying His residues on the side chain amino groups of lysine
residues (denoted as KH) to chelate multiple Cu2+ ions. The resulting biotin-poly-(KH-Cu)20 polymer
with multiple catalytic sites was employed as the signal label for immunoassay. Prostate specific anti-
gen (PSA) was determined as the model target. The captured biotin-poly-(KH-Cu)20 polymer could
catalyze the oxidation of O-phenylenediamine (OPD) to produce fluorescent 2,3-diaminophenazine
(OPDox). The signal was proportional to PSA concentration from 0.01 to 2 ng/mL, and the detec-
tion limit was found to be eight pg/mL. The high sensitivity of the method enabled the assays of
PSA in real serum samples. The work should be valuable for the design of novel biosensors for
clinical diagnosis.

Keywords: fluorescent immunoassay; peptide; copper; O-phenylenediamine; prostate specific antigen

1. Introduction

Enzymes have been widely utilized as efficient signal labels in the construction of
biosensors, including horseradish peroxidase (HRP), glucose oxidase (GOx) and alka-
line phosphatase (ALP) [1,2]. However, the enzymatic signal amplification confronts low
sensitivity because of the limited number of enzymes involved in the recognition event
(generally one enzyme molecule in each event). The utilization of polymeric conjugates
and nanomaterials for loading of numerous enzymes has proven to be an effective strategy
to enhance the sensitivity [3,4]. However, some disadvantages, such as complicated prepa-
ration procedure, high cost, low stability and strict storage condition, seriously hamper the
applications of enzyme labels [5]. Moreover, modification of enzymes on a solid surface
may decrease the catalytic activity, and the large size of enzyme may cause the steric
inhibition of antibody-antigen reaction. To resolve these shortcomings, the design and
exploration of artificial enzyme mimics have aroused intensive interest in the field of bioas-
says. Recently, a series of nanomaterials defined as nanozymes such as peroxidase, catalase,
superoxide dismutase, oxidase and so forth have been reported to possess unexpected and
inherent enzyme-like catalytic abilities [5,6]. Despite the low price, high stability and easy
preparation, nanozymes still suffer from some shortages such as low reproducibility, less
specificity toward substrate, and plausible catalytic mechanism.

As a 3d transition metal, copper ion can accelerate a variety of reactions through a one-
or two-electron pathway because of its wide range of accessible oxidation state (Cu0, CuI,
CuII, and CuIII) [7,8]. Copper ion plays a critical role in biological systems such as metabolic
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reactions and enzyme catalysis. It has been reported that copper ion is accommodated
in many metalloproteins (e.g., laccase, ceruloplasmin and ascorbate oxidase) and mainly
acts as the active catalytic center to promote many redox reactions [9–11]. Mimicking
the redox-active center of natural enzyme can greatly improve the catalytic ability and
specificity of nanozymes based on the structure-activity relationship. Inspired by this phe-
nomenon, many copper-functionalized metal, metal oxide and metal organic frameworks
(MOFs)-based nanozymes have been synthesized through the coordination interaction
and utilized to develop various biosensors. For example, Willner et al. suggested that
Cu2+-modified carbon nitride nanoparticles, carbon dots, graphene oxide nanoparticles
and MOFs possess HRP-mimicking activity and can be used as heterogeneous catalysts to
promote the generation of chemiluminescence in the presence of luminole/H2O2 [12–14].
Meng et al. demonstrated that the Cu2+-containing carbon dots show laccase-like activity
to catalyzing the oxidation of p-phenylenediamine [15]. Besides, some Cu2+-consisted
nanomaterials show peroxidase-mimicking activity. For instance, MOF-818 with trin-
uclear copper centers was reported to exhibit catechol oxidase activity with excellent
specificity [16]. Liu et al. found that MOFs formed by the coordination interaction be-
tween Cu2+ ions and guanosine monophosphates could be used as multicopper laccase
mimicking nanozymes [10]. Zhao et al. suggested that copper hexacyanoferrate (Cu-HCF)
nanozymes with single-site copper exhibit glutathione oxidase and peroxidase activities,
which can initiate the cascade enzymatic reaction in tumor microenvironment [17]. These
works suggest that copper ion can be used to design various catalysts or nanozymes with
shape/size heterogeneity and high catalytic ability.

For a great majority of copper ion-containing proteins, histidine (His) residue located
in different positions of peptide sequence has an important effect on the coordination
of copper ion [18]. For example, peptides with a His residue in the first, second, or
third position of N-terminal show different affinity capability and coordination mode
towards copper ion [19–24]. We have reported that the peptide with a histidine (His)
residue in the third position of N-terminal (denoted as ATCUN peptide) can limit the
peroxidase and oxidase-like catalytic ability of copper ion, but the ATCUN peptide-copper
complexes exhibit excellent activity for electrocatalytic water oxidation [25–27]. In this
paper, we investigated the redox activity of copper ion coordinated by the peptide with a
His residue in the first or second position from the N-terminus such as His-Ala (HA) and
Ala-His (AH) (Scheme 1). It was found that the HA-Cu2+ complexes could accelerate the
electrochemical reduction of O2 and catalyze the chemical oxidation of ascorbic acid (AA)
and o-phenylenediamine (OPD) by O2, but the AH peptide suppressed the electrochemical
and catalytic activity of Cu2+. For this fact, His was modified on the side chain amino
group of biotinylated polymeric lysine (denoted as KH) to obtain a biotin-poly-(KH)20
polymer. The polymer can be employed as a ligand to coordinate twenty copper ions for the
formation of biotin-poly-(KH-Cu)20. The designed metal polymer was used as an artificial
enzyme with multiple catalytic sites for the construction of biosensors. To demonstrate
the analytical performances, prostate specific antigen (PSA), one of the most accurate
and most extensively studied indicators of prostate cancer [28], was determined with the
metal polymer as the signal label (Scheme 2). Biotinylated secondary antibody (Ab2) was
conjugated with the biotin-poly-(KH-Cu2+)20 polymer by using tetrameric streptavidin
protein as the linker. The biotin-poly-(KH-Cu2+)20 polymer can catalyze the oxidation of
OPD by O2 to produce fluorescent 2,3-diaminophenazine (OPDox) for signal readout.
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Scheme 2. Schematic illustration of fluorescent immunoassay of PSA by the biotin-poly-(KH-Cu)20

polymer-catalyzed oxidation of OPD.

2. Experimental
2.1. Chemicals and Reagents

Peptides were obtained from ChinaPeptides. Co., Ltd. (Shanghai, China). PSA and
biotinylated secondary antibody (bio-Ab2) were provided by Linc-Bio Science Co. Ltd.
(Shanghai, China). Immunoglobulin G (IgG), alpha-fetoprotein (AFP), human serum albu-
min (HSA) and enzyme-linked immunosorbent assay (ELISA) kits for PSA were purchased
from Sigma-Aldrich. Thrombin was provided by Shanghai Yuanye Bio-Technology Co.,
Ltd. (Shanghai, China). Tris(hydroxymethyl)aminomethane (Tris) hydrochloride and OPD
were obtained from Aladdin Corporation (Shanghai, China). Streptavidin and ascorbic
acid (AA) were provided by Sangon biotech. Co., Ltd. (Shanghai, China). Human serum
samples were obtained from the medical center of Anyang Normal University.

2.2. Voltammetric Characterization of Peptide-Cu2+

The redox behaviors of peptide-Cu2+ complexes in 50 mM pH 7.0 Tris buffer were
characterized by cyclic voltammetry on a CHI 660E electrochemical workstation (CH in-
strument, Shanghai, China). Glass carbon electrode, platinum wire and Ag/AgCl electrode
were used as the working, auxiliary and reference electrodes, respectively.

2.3. Absorption Measurement of AA

AA was diluted by Tris buffer containing a given concentration of Cu2+ or its com-
plexes. The peptide concentration is slightly higher than that of Cu2+, ensuring that the
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free Cu2+ is negligible. The time-resolved UV-vis absorption was recorded with a fixed
wavelength of 265 nm.

2.4. Absorption Measurement of AA

To evaluate the ability of free Cu2+ and peptide-Cu2+ complexes on the oxidation of
OPD, a Cu2+-containing solution was mixed with the freshly prepared OPD solution at
room temperature for 2 h. The mixture was then measured on a fluorescence spectrometer
(Hitachi F-4600, Hitachi High-Tech, Japan).

2.5. PSA Detection

The Ab2-biotin-poly-(KH-Cu)20 conjugate was prepared by mixing streptavidin with
equivalent bio-Ab2 at the concentration of 0.5 µM, followed by the addition of 1 µM biotin-
poly-(KH)20. The fluorescent immunoassays of PSA were performed in a commercialized
96-well plate. A 100 µL PSA sample at a desired concentration was added to the plate well
for 30-min incubation. After that, the well was washed with phosphate buffer, followed
by the addition of 100 µL of Ab2-biotin-poly-(KH-Cu)20. After the formation of sandwich
immunocomplex, the well was rinsed thoroughly with water and then 100 µL of Tris buffer
containing 1 mM OPD was added to the well. After incubation for 1 h, the fluorescent
signal was collected on the fluorescence spectrometer.

For the real sample assays, the serum samples were diluted ten times and the other pro-
cedures were the same as those for the standard sample detection. The concentrations were
determined by three replicate measurements and deduced by the standard curve method.

3. Results and Discussion

3.1. Redox Behaviors of Cu2+ Complexes

The catalytic ability of copper complexes is greatly dependent upon the ligand nature
and coordination mode. His residues in peptide play an important role in coordination
of cooper ions. The peptide with a His residue in the first three N-terminal positions
(His1, His2 and His3) shows unique Cu2+-binding property. Our group has investigated
the redox property of Cu2+ coordinated by the ATCUN peptides with a His3 motif in
the N-terminal position [25–27]. Such ATCUN-Cu2+ complexes exhibit the ability for
electrocatalytic water oxidation with a potential at around 0.8 V. Herein, we investigated
the redox activity of Cu2+ coordinated by the peptide with a His residue in the first or
second position from the N-terminus. As shown in Figure 1A, the cyclic voltammogram
(CV) of free Cu2+ exhibits a redox wave with a midpoint potential (E1/2) at around 0.05 V,
which is attributed to the redox reaction of Cu2+/Cu+. The sharp anodic peak at −0.05 V
is originated from the stripping of Cu0 [29]. The high background at the potential below
−0.3 V can be attributed to the electrochemical reduction of O2 in solution [29]. For the
HA-Cu2+ complex, an irreversible redox peak was observed in air-saturated solution. The
redox peak became reversible when the solution was saturated by N2 (Figure 1B). The
midpoint potential (−0.012 V) is more negative than that of free Cu2+. The results indicate
that the electrogenerated HA-Cu+ can be rapidly oxidized into HA-Cu2+ by O2 in solution.
No redox waves were observed for AH-Cu2+, indicating that the complex is redox inactive
in the potential between 1.0 V and −0.4 V. A similar result was obtained for KH-Cu2+

(Figure 1C). However, when the His residue was modified on the side chain amino group
of lysine, a couple of redox waves similar to that of HA-Cu2+ were observed. The redox
waves become more irreversible at a lower scan rate (the inset in panel C), demonstrating
that the generated KH-Cu+ can be immediately oxidized into KH-Cu2+ by oxygen. Similar
CVs were observed for the Cu2+ complex formed with the biotin-poly-(KH)20 polymer
(Figure 1D). The results suggest that Cu2+ coordinated by the peptide with a His residue in
the first N-terminal position can facilitate the catalytic reduction of O2.
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peptide and Cu2+ were 100 µM.

3.2. Catalytic Activity of Cu2+ Complexes

The redox potential of HA-Cu2+ and KH-Cu2+ complexes is higher than that of AA
(−0.145 V) but lower than that of O2 [29]. From the thermodynamic viewpoint, the Cu2+

complex can be reduced by AA and the resulting Cu+ complex can be oxidized by O2,
thus initiating the redox cycling between AA and O2. This process can be monitored
by the absorbance change at 265 nm. As shown in Figure 2A, no significant change
in the absorption intensity was observed for AA alone (curve 1), indicating that AA is
stable at neutral pH. In the presence of a catalytic amount of free Cu2+ (curve 2), HA-
Cu2+ (curve 3), KH-Cu2+ (curve 4), and biotin-poly-(KH-Cu2+)20 (curve 5), the absorption
intensity decreased remarkably with time, indicating that these Cu2+ species can catalyze
the oxidation of AA. The addition of AH-Cu2+ (curve 6) or KH-Cu2+ (curve 7) to the AA
solution did not cause a significant decrease in the absorption intensity. Cu2+ can catalyze
the oxidation of OPD to produce a yellow fluorescent product OPDox. Coordination of Cu2+

by some ligands such as quinolone, pyrophosphate, glyphosate, bleomycin, penicillamine
and EDTA can inhibit the reaction between Cu2+ and OPD [30–35]. For this consideration,
we investigated the reaction between the peptide-Cu2+ complexes and OPD. It was found
that the peptides with a His residue in the second N-terminal position (AH and KH) depress
the catalytic activity of Cu2+. Interestingly, the peptides with a His residue in the first
N-terminal position such as HA, KH and biotin-poly-(KH)20 promote the catalytic activity
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of Cu2+. These results indicate the Cu2+ complexes coordinated by the peptides with a His
residue in the first N-terminal position exhibit oxidase-like activity for the oxidation of AA
and OPD.
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Figure 2. (A) Time-dependence of AA absorbance and (B) fluorescence spectra of OPD in the absence
and presence of different Cu2+-containing species. The concentrations of AA, OPD, Cu2+, peptides,
and biotin-poly-(KH)20 polymer were 100 µM, 2 µM, 2.5 µM and 0.1 µM, respectively.

3.3. Sensitivity of Immunoassays

The detection of protein biomarkers is of great importance for early diagnosis and
treatment of many diseases. Sandwich ELISA is the most commonly used method for
protein detection in clinics. PSA is a well-known biomarker for prostate patients. To
demonstrate the sensitivity of our strategy, PSA was determined by using biotin-poly-
(KH-Cu2+)20 polymer as the label for signal amplification. As shown in Scheme 2, the
anti-PSA monoclonal antibody coated on the ELISA plate was used to capture PSA. The
Ab2-biotin-poly-(KH-Cu2+)20 conjugate formed with biotinylated anti-PSA, SA and biotin-
poly-(KH-Cu2+)20 polymer was employed for the signal readout. As shown in Figure 3A,
the fluorescence intensity was gradually intensified with the increase of PSA concentra-
tion, indicating that a higher PSA concentration could lead to the capture of more PSA
molecules and signal labels on the plate. Figure 3B depicts the relationship between the
fluorescence intensity and PSA concentration. The relative standard deviations (RSDs)
deduced from three replicate measurements for each concentration are all lower than 9%,
which is indicative of acceptable repeatability and accuracy of this method. A linear fitting
curve was obtained in the concentration of 0.01 and 2 ng/mL. The linear equation can
be expressed as F = 245[PSA] (ng/mL) + 86. The detection limit was attained as low as
8 pg/mL, which is lower than that achieved by the ELISA kit with the enzyme-catalyzed
signal amplification. Moreover, the sensitivity is comparable to those of the fluorescent
immunoassays by the signal amplification of nanoenzymes or enzyme-loaded nanoma-
terials (Table 1). The high sensitivity can be attributed to the low background signal of
the sandwich-like assay and the excellent catalytic ability of the Cu2+ polymer for OPD
oxidation. The biotin-poly-(KH-Cu)20 polymer can be readily modified on the surface of
nanomaterials through the avidin-biotin interaction. We believe that the sensitivity could
be further improved by increasing the length of the polymer or by using nanomaterials to
load large numbers of polymers.
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Table 1. Analytical performances of different strategies for fluorescent immunoassays of PSA.

Supporter Signal Reporter Linear Range (ng/mL) Detection Limit
(ng/mL) Refs.

Microplate Fe-MOFs/ALP/TMB 1~20 0.18 [36]
Microplate CsPbBr3 NCs/TMB 1 × 10−2~80 8.1 × 10−2 [37]
Microplate ALP/F@CNPs 0.1~50 4 × 10−2 [38]
Microplate ALP/Si CNPs 2 × 10−2~28 9.6 × 10−3 [39]
Microplate ZnS NCs 1 × 10−5~1 × 103 5 × 10−6 [40]
Microplate CuS/OPD 5 × 10−4~50 1 × 10−4 [41]

Magnetic bead CdTe@SiO2 1 × 10−2~5 3 × 10−3 [42]
Magnetic bead QDs 1 × 10−2~40 2.5 × 10−5 [43]
Magnetic bead GQDs@Ag 1 × 10−3~20 3 × 10−4 [44]

Microplate biotin-poly-(KH-Cu)20 1 × 10−2~2 8 × 10−3 This work

Abbreviations: Fe(III)-containing metal–organic frameworks, Fe-MOFs; alkaline phosphatase, ALP; nanocrystals,
NCs; coordination nanoparticles loaded with fluorescein (F@CNPs); silicon-containing nanoparticles, Si CNPs;
CuS nanoparticles, CuS NPs; graphene oxide quantum dots@silver, GQDs@Ag.

3.4. Selectivity and Real Sample Assays

Selectivity is the basic requirement for the practical reliability of biosensors. The
biosensor was challenged by determining low concentration of PSA and high concentration
of interfering proteins. As depicted in Figure 4, no significant signals were observed for the
tested interfering proteins, which is indicative of the excellent selectivity of the method.
This can be attributed to the specific antigen-antibody interaction and the low non-specific
adsorption of the polymer label. Female serum contains a negligible content of PSA. To
demonstrate the anti-interference, female serum was spiked with PSA for assay. The result
obtained in the female serum was consistent with that found in the buffer, indicating
that the detection in the serum was interference-free. Encouraged by the result, PSA in
three male serum samples was determined by this method and the commercialized ELISA
kit (Table 2). The samples were diluted 10 times to ensure that the PSA concentration
was in the linear range of the standard curve. The results obtained by our method are
well coincident with those achieved by the commercial ELISA kit, demonstrating that the
polymer label can be used to replace the enzyme label in clinical diagnosis. In contrast to
the enzyme label, the polymer label shows the advantages of low manufacturing cost and
ease of adjustability. Moreover, the RSDs deduced from three replicate measurements by
this method are lower than those obtained by the ELISA, and no decrease in the signal was
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observed when the biotin-poly-(KH)20 polymer was kept at room temperature for at least
five months, indicating the high thermodynamic stability of the polymer label.
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Table 2. Results for the assays of PSA in serum samples.

Sample No. Found (ng/mL) ELISA (ng/mL)

1 0.182 ± 0.012 0.171 ± 0.018
2 0.087 ± 0.007 0.094 ± 0.011
3 0.154 ± 0.013 0.132 ± 0.015

4. Conclusions

In summary, we have investigated the electrochemical and catalytic activities of dif-
ferent peptide-Cu2+ complexes and designed a metal polymer for the development of
immunoassays. The resulting biotin-poly-(KH)20 polymer was successfully used as an arti-
ficial enzyme label for PSA detection. Benefiting from the excellent analytical performances,
the immunoassays achieved a low detection limit. The method was successfully used to
detect PSA in real serum samples. The results are in agreement with those achieved by the
commercial ELISA kit, indicating the great potential applications of the method for clinical
assays of different biomarkers. Moreover, the polymer label exhibits the advantages of low
cost and high stability and could be readily modified on the surface of nanomaterials to
improve the sensitivity of immunoassays. We believe that this strategy can pave a new way
to develop different sensing platforms for biomarker detection.
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