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Abstract: Two new A-ring contracted triterpenoids, madengaisu A and madengaisu B, and one unde-
scribed ent-kaurane diterpenoid, madengaisu C, along with 20 known compounds were isolated from
the roots of Potentilla freyniana Bornm. The structures were elucidated using extensive spectroscopic
techniques, including 1D and 2D-NMR, HR-ESI-MS, ECD spectra, IR, and UV analysis. Moreover, all
isolated constituents were evaluated for their anti-proliferative activity against RA-FLS cells and cy-
totoxic activities against the human cancer cell lines Hep-G2, HCT-116, BGC-823, and MCF-7. Ursolic
acid and pomolic acid displayed moderate inhibitory activity in RA-FLS cells with IC50 values of
24.63 ± 1.96 and 25.12 ± 1.97 µM, respectively. Hyptadienic acid and 2α,3β-dihydroxyolean-12-en-28-
oic acid 28-O-β-D-glucopyranoside exhibited good cytotoxicity against Hep-G2 cells with IC50 values
of 25.16 ± 2.55 and 17.66 ± 1.82 µM, respectively. In addition, 2α,3β-dihydroxyolean-13(18)-en-28-oic
acid and alphitolic acid were observed to inhibit HCT-116 cells (13.25 ± 1.65 and 21.62 ± 0.33 µM,
respectively), while madengaisu B and 2α,3β-dihydroxyolean-13(18)-en-28-oic acid showed cytotoxic
activities against BGC-823 cells with IC50 values of 24.76 ± 0.94 and 26.83 ± 2.52 µM, respectively,
which demonstrated that triterpenes from P. freyniana may serve as therapeutic agents for RA and
cancer treatment.

Keywords: Potentilla freyniana Bornm.; A-ring contracted triterpenoids; ent-kaurane diterpenoids;
cytotoxic activities; Dong ethnomedicine

1. Introduction

Potentilla L. is a major genus belonging to the family Rosaceae with more than 200
species in the world, and many of them are widely used as ethnomedicine. Previous
phytochemical research has shown that the genus Potentilla L. contains amounts of bioactive
compounds, such as triterpenoids, flavonoids, and tannins, etc. Pharmacological studies
also reported that Potentilla species possess significant hypoglycemic, anti-inflammatory,
anti-tumor, antioxidative, and antibacterial activities [1].

Potentilla freyniana Bornm. is a perennial herb and is widely distributed in China,
Russia, Japan, and Korea. It is also called “Ma Deng Ai” or “San Zhang ye” in the Dong
ethnomedicine of China. The commonly used medicinal parts of the herb include the roots
and whole grass, which have the effect of clearing heat and detoxifying, dispersing blood
stasis, and stopping bleeding for the treatment of trauma bleeding, enteritis dysentery,
stomatitis, and other diseases [2]. Previous phytochemical studies on P. freyniana afforded
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29 compounds, mainly including flavonoids and triterpenoids, but there have been few
investigations on biological activities [3].

To further investigate the pharmacologically active constituents of P. freyniana, a
phytochemical study on the roots of P. freyniana was conducted, which led to the isolation
of two undescribed A-ring contracted triterpenoids (1 and 2) and one new ent-kaurane
diterpenoid (22) along with 20 known compounds (Figure 1) from the CH2Cl2-soluble
layer. All isolates (1–23) were evaluated for their cytotoxic activities against RA-FLS cells
and human cancer cell lines, including HepG2 (human liver carcinoma), HCT-116 (human
colorectal carcinoma), BGC-823 (human gastric carcinoma), and MCF-7 (human breast
carcinoma), to explore biologically significant metabolites. Herein we deal with the isolation
and structure elucidation of the new compounds (1–2, 22) as well as their anti-proliferative
activity against RA-FLS cells and cytotoxic activities against the human cancer cell lines
Hep-G2, HCT-116, BGC-823, and MCF-7.
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2. Results
2.1. Structural Elucidation

Compound 1 was obtained as a white and amorphous powder, and the molecular
formula was determined to be C30H46O3 by HR-ESI-MS (m/z 477.3342 [M + Na]+, calculated
for C30H46NaO3, 477.3345), indicating eight degrees of unsaturation (Figure S3). The IR
spectrum showed characteristic absorptions (Figure S2) of hydroxyl (3325 cm−1), methyl
(2928, 2865, 1462, and 1381 cm−1), double bond (1605 cm−1), and ester carbonyl groups
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(1694 cm−1). In the 1H-NMR spectrum, seven tertiary methyls at δH 0.87, 0.91, 0.95, 0.96,
1.04, 1.16, and 1.20 (each 3H, s); an oxygen-bearing methylene group at δH 4.16 (dd, J = 14.5,
1.8 Hz, 1H) and 4.09 (dd, J = 14.5, 1.7 Hz, 1H); and two olefinic protons at δH 5.40 (s, 1H)
and 5.25 (t, J = 3.5 Hz, 1H) were observed (Table 1). The 13C-NMR data with the aid of the
DEPT-135◦ spectrum revealed 30 carbons attributed to seven methyls, nine methylenes, five
methines (two olefinic carbons at δC 135.4 and 123.6), and nine quaternary carbons (two
olefinic carbons at δC 156.0 and 145.7, and one carbonyl carbon at δC 181.9). Additionally,
the degree of unsaturation of 1 and the presence of eight terminal carbons indicated a
pentacyclic system containing two double bonds and one carboxyl group with a contracted
A-ring rather than a seco structure. The 1D-NMR signals of 1 (Table 1) were similar to those
of A-ring contracted oleanane sculponeatic acid (5), except that there was no resonance
corresponding to a hydroxyl group on C-19 (δC: 47.0) in 1 [4]. The 1H-1H COSY spectrum
showed the presence of four independent spin systems (H-5/H2–6/H2-7, H-9/H2-11/H-12,
H2-15/H2-16, and H2-21/H2-22), and interpretation of the HMBC of H2-1 with C-2 and
C-3; H-12 with C-11 and C-18; H3-23 with C-24, C-3, C-4, and C-5; H3-24 with C-23, C-4,
and C-5; H3-25 with C-2, C-5, C-9, and C-10; H3-26 with C-7 and C-8; H3-27 with C-13,
C-14, and C-15; and H3-29 with C-19, C-20, C-21, and C-30 finally confirmed the planar
structure of 1 (Figure 2a). To the best of our knowledge, this type of triterpenoid was rarely
reported before.

Table 1. The 1H and 13C-NMR data of 1 and 2 (600/150 MHz, CD3OD, δ in ppm, J in Hz).

Position
1 2

δC δH δC δH

1 61.4 4.16, dd (14.5, 1.8)
4.09, dd (14.5, 1.7) 61.4 4.16, dd (14.5, 1.8)

4.08, dd (14.5, 1.7)
2 156.0 - 156.1 -
3 135.4 5.40, s 135.5 5.39, s
4 43.3 - 43.3 -
5 64.5 1.44, m 64.4 1.41, m
6 18.2 1.52, m 18.2 1.49, m

7 34.9 a 1.56, m
b 1.38, m 35.4 a 1.58, m

b 1.39, m
8 42.1 - 42.3 -
9 44.9 2.15, m 44.8 2.09, m
10 51.8 - 51.7 -

11 27.5 b 2.19, m
a 2.03, m 27.4 b 2.18, m

a 2.07, m
12 123.6 5.25, t (3.5) 126.8 5.22, t (3.5)
13 145.7 - 140.1 -
14 43.2 - 43.5 -

15 29.1 b 1.83, dt (13.8, 4.3)
a 1.09, dt (13.7, 3.4) 29.5 b 1.95, td (13.6, 4.5)

a 1.08, ddd (13.7, 4.3, 2.4)

16 24.0 a 2.05, m
b 1.61, ddt (13.6, 4.2, 2.2) 25.3 a 2.05, m b

b 1.65, m a
17 47.7 - (48.6) * -
18 43.0 2.85, dd (13.9, 4.6) 54.5 2.20, m
19 47.0 a 1.72, m 40.2 1.38.m
20 31.6 - 40.4 0.97, overlapped

21 35.1 a 1.42, m
b 1.23, m 31.7 1.51, m

1.36, m

22 33.8 b 1.77, m
a 1.55, m 38.1 1.68, m

1.63, m
23 30.3 1.04, s 30.3 1.03, s
24 21.8 0.96, s 21.8 0.95, s
25 19.3 1.16, s 19.3 1.16, s
26 19.2 0.87, s 19.3 0.90, s
27 26.8 1.20, s 24.3 1.15, s
28 181.9 - 181.7 -
29 33.6 0.91, s 17.7 0.90, d (6.6)
30 24.0 0.95, s 21.6 0.96, d (4.8)

a: α-oriented proton. b: β-oriented proton. * Overlapped with the solvent peak.
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The relative configuration of 1 was ascertained through interpretation of its ROESY
spectrum (Figure 2b). Based on the NOE correlations of H-5 with H3-9 and H3-23 and
H-9 with H3-27, these protons were classified as α-oriented; the correlations of H3-25 with
H3-24 and H3-26 and H-18 with H3-30 revealed their β-orientation. To further elucidate its
absolute configuration, the electronic circular dichroism (ECD) spectrum of 1 was recorded
in MeOH, and it showed a good agreement with the calculated ECD data of the (5S, 8R,
9S, 10S, 14S, 17S, 18R) model (Figure 3), which supported that the absolute configuration
of 1 should be identical with 5S, 8R, 9S, 10S, 14S, 17S, 18R. Hence, the structure of 1
was established as 2-hydroxymethyl-1-norolean-2,12-dien-29-oic acid and it was named
madengaisu A.
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Figure 3. Experimental and calculated ECD spectra of 1.

Compound 2 appeared as a white and amorphous powder. The molecular formula
C30H46O3 and eight degrees of unsaturation are the same as those of 1, based on HR-ESI-
MS (m/z 477.3342 [M + Na]+, calculated for C30H46NaO3, 477.3361) and 13C NMR data
(Figure S12). The NMR data (Table 1) of 2 were almost identical with those of compound 1,
except that there was a ursane-type skeleton instead of oleanane; hence, the presence of five
tertiary methyls at δH 0.90, 0.95, 1.03, 1.15, and 1.16 (each 3H, s) and two methyl doublets
at δH 0.96 (d, J = 4.8 Hz, 3H) and 0.90 (d, J = 6.6 Hz, 3H) in the 1H-NMR spectrum was
inferred. Additionally, a H-18/H-19/H-20/H2-21/H2-22 long fragment of the 1H-1H COSY
spectrum and HMBC correlations also supported the planar structure of 2 (Figure 4). Its
stereochemistry is similar to that of 1, and the β-orientation of H3-29 was deduced from the
ROESY cross-peaks between H-18 and H3-29 (Figure 4). In the experimental ECD data, 2
showed a positive cotton effect at 203.4 nm and a negative cotton effect at 222.6 nm, which
was consistent with the calculated ECD data of the (4S, 5S, 8R, 9S, 10R, 14S, 17S, 18R, 19S,
20R) model (Figure 5). Thus, the structure of 2 was established as 2-hydroxymethyl-1-
norursa-2,12-dien-29-oic acid and it was named madengaisu B accordingly.
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Figure 5. Experimental and calculated ECD spectra of 2.

Compound 22 was purified as a white amorphous powder. It gave the molecular
formula C28H38O6, with 10 degrees of unsaturation, based on HR-ESI-MS (m/z 493.2556
[M + Na]+, calculated for C28H38NaO6, 493.2566). The 13C-NMR and DEPT 135◦ spectra of
22 displayed 28 carbon resonances, including three methyls (one methoxyl at δC 56.4), ten
methylenes, seven methines (three olefinic carbons at δC 113.5, 116.0, and 125.0), and eight
quaternary carbons (three olefinic carbons at δC 122.8, 148.8, and 152.9 and two carbonyl
carbons at δC 168.4 and 182.4). In addition, two methyl singlets at δH 0.99 and 1.19 (each
3H, s) were apparent in the 1H-NMR spectrum. The above 1D-NMR signals (Table 2) were
similar to those of an ent-kaurane type diterpenoid, (-)-17-hydroxy-16α-ent-kauran-19-oic
acid [5]. However, one methoxyl singlet at δH 3.90 (3H, s) and three aromatic protons at δH
6.85 (1H, d, J = 8.8 Hz), 7.54 (1H, d, J = 2.0 Hz), and 7.55 (1H, dd, J = 8.7, 2.0 Hz) attributed
to a vanilloyl unit were also observed, suggesting that 22 contains a 1,3,4-trisubstituted
phenyl ring. Furthermore, the spin system of H2-15/H-16/H-17 deduced from the 1H-1H
COSY cross-peaks along with the HMBC correlations from H-2′, H2-17 to C-7′, and H2-17
to C-13 and C-15 illustrated that the hydroxyl at C-17 of the ent-kaurane skeleton was
esterified by a vanilloyl group of 22. Thus, the planar structure of 22 is shown in Figure 6.
The ECD spectrum (Figure 7) of 22 was also recorded using the TDDFT method to give a
result coincident with the experimental spectrum, possessing the absolute configuration of
4R, 5S, 8S, 9R, 10S, 13R, 16R. Therefore, the structure of 22 was identified as 17-(4′-hydroxy-
3′-methoxybenzoate)-kaur-16-en-19-oic acid, and it was given the name madengaisu C.
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Table 2. The 1H and 13C-NMR data of compound 22 (600/150 MHz, CD3OD, δ in ppm, J in Hz).

Position
22

Position
22

δC δH δC δH

1 42.2 1.91, m
0.86, m 15 46.2

1.67,
overlapped

1.08, m

2 20.4 1.92, m
1.30, m 16 41.2 2.26, m

3 39.3
2.13,

overlapped
1.01, m

17 69.9 4.09, d (1.7)
4.08, d (1.7)

4 44.8 - 18 29.6 1.19, s

5 58.3 1.07,
overlapped 19 182.4 -

6 23.7 1.87, m 20 16.3 0.99, s
7 42.9 1.50, m 1′ 122.8 -
8 46.2 - 2′ 113.5 7.54, d (2.0)

9 56.8 1.07,
overlapped 3′ 148.8 -

10 40.8 - 4′ 152.9 -

11 19.8 1.69,
overlapped 5′ 116.0 6.85, d (8.8)

12 32.5 1.60, m
1.48, m 6′ 125.0 7.55, dd (2.0

8.7)
13 40.2 2.16, m 7′ 168.4 -

14 38.3 1.95, m
1.16, m -OCH3 56.4 3.90, s
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The structures of the following twenty known compounds were identified by com-
parison of spectroscopic data with the reported literature and ESI-MS analyses: rosamultic
acid (3) [6], hyptadienic acid (4) [4], sculponeatic acid (5) [4], ursolic acid (6) [7], pomolic
acid (7) [8], euscaphic acid (8) [9], tormentic acid (9) [10], 2-oxo-pomolic acid (10) [11], 3-
Hydroxy-13,28-epoxyurs-11-en-28-one (11) [12], cecropiacic acid (12) [13], potentillanoside
E (13) [14], rosamultin (14) [15], rubuside A (15) [16], 2α,3β-dihydroxyolean-13(18)-en-28-oic
acid (16) [17], camaldulenic acid (17) [18], taraxerol (18) [19], 2α,3β-dihydroxyolean-12-en-
28-oic acid 28-O-β-D-glucopyranoside (19) [20], arjunetin (20) [21], alphitolic acid (21) [22],
and (-)-kaur-16-en-19-oic acid (23) [23].

Previous reports have shown that an A-ring contracted skeleton was found in ursane-,
oleanane-, and dammarane-type triterpenes. In general, the O-containing groups at the C-2
or C-3 position of the six-membered A-ring go through oxidation reactions, which leads to
selective C(2)-C(3) bond cleavage and further recyclization to form an A-pentacycle triter-
pene [24]. In our study, compounds 2–4 belong to A-ring contracted type triterpenes, which
may derive from ursolic acid (6) and corresponding derivatives, and their intermediate
products include compounds 7–12. The plausible biosynthetic pathway of compounds 2–4
and 6–12 is shown in Figure 8, and the oleanane-type triterpenes (1, 5, and 16) also have a
similar pathway. Meanwhile, aglycones are easily glycosylated at C-28 to form relevant
triterpenoid saponins (13, 14, 19, and 20) [25].
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2.2. Biological Activities

The cytotoxic activities of all compounds (1–23) against RA-FLS cells and human
cancer cell lines (Hep-G2, HCT-116, BGC-823, and MCF-7) were evaluated in vitro using
the MTT method. As shown in Table 3, 6 and 7 showed good bioactivities against RA-FLS
cells with IC50 values of 24.63 ± 1.96 and 25.12 ± 1.97 µM, respectively. Among the tested
triterpenes, 4 and 19 exhibited a moderate cytotoxic effect on Hep-G2 cells (25.16 ± 2.55
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and 17.66 ± 1.82 µM, respectively), and 16 and 21 were observed to inhibit HCT-116 cells
(13.25 ± 1.65 and 21.62 ± 0.33 µM, respectively). Furthermore, 2 and 16 showed cytotoxic
activities against BGC-823 with IC50 values of 24.76± 0.94 and 26.83± 2.52 µM, respectively.
Except for the compounds mentioned above, other compounds with IC50 values higher
than 30 µM were considered to be inactive against RA-FLS cells and human cancer cell
lines.

Table 3. Cytotoxic effects of tested compounds on RA-FLS and human cancer cell lines.

Compound

IC50 (µM) a

Anti-RA-FLS Activity Anti-Tumor Activity

RA-FLS Hep-G2 HCT-116 BGC-823 MCF-7

2 >30 b >30 >30 24.76 ± 0.94 >30
4 >30 25.16 ± 2.55 >30 >30 >30
6 24.63 ± 1.96 >30 >30 >30 >30
7 25.12 ± 1.97 >30 >30 >30 >30

16 >30 >30 13.25 ± 1.65 26.83 ± 2.52 >30
19 >30 17.66 ± 1.82 >30 >30 >30
21 >30 >30 21.62 ± 0.33 >30 >30

Methotrexate c 5.09 ± 0.60 - - - -
Taxol (nM) c - 13.82 ± 0.78 15.79 ± 0.91 9.12 ± 1.23 -

a IC50, the half maximal inhibitory concentration. Values represent the mean ± SD of three independent experi-
ments. b Compounds exhibiting IC50 values > 30 µM were considered to be inactive. c Methotrexate as positive
control for anti-RA-FLS activity test and taxol for anti-tumor activity test.

3. Materials and Methods
3.1. General Information

Recording of 1D-NMR and 2D-NMR spectra was performed on a Bruker AV-600
spectrometer (Bruker, Billerica, MA, USA) with a single NMR probe at 600 MHz for 1H and
150 MHz for 13C in CD3OD. HR-ESI-MS experiments were performed using an Agilent
6200 series TOF/6500 series (Agilent, Santa Clara, CA, USA). A PerkinElmer Frontier MIR
spectrometer (PerkinElmer, Waltham, MA, USA) was used to determine IR spectra. UV
spectra were recorded on a PerkinElmer Lambda 650 (PerkinElmer, Waltham, MA, USA)
in methanol. Optical rotations of compounds were determined by a Rudolph Research
Analytical Autopol IV automatic polarimeter (Rudolph, Hackettstown, NJ, USA). An
Applied Photophysics Chirascan plus CD spectrometer was used to determine ECD spectra.
Semi-preparative RP-HPLC (Agilent, Palo Alto, CA, USA) was carried out on an Agilent
1100 system with an Agilent Eclipse XDB-C18 column (5 µm, 4.6 × 250 mm, Agilent,
Palo Alto, CA, USA). Sephadex LH-20 for column chromatography was obtained from
Pharmacia Fine Chemical Company, Ltd. (Uppsala, Sweden). Column chromatographic
silica gel (80-100 and 200-300 mesh) and TLC plates (GF254) were purchased from Qingdao
Marine Chemical Inc. (Qingdao, China). Acetonitrile and methanol (HPLC-grade) were
obtained from Merck KGaA (Darmstadt, Germany). The other solvents were purchased
from Shanghai Titan Scientific Co., Ltd. (Shanghai, China).

3.2. Plant Material

The dried roots of P. freyniana were collected at Huaihua of Hunan Province, China,
in October 2019 and authenticated by Zai-Qi Zhang, a senior professor at Hunan Uni-
versity of Medicine. A voucher specimen (201910PF) was deposited at the TCM and
Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy,
Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China.

3.3. Extraction and Isolation

The air-dried and pulverized roots of P. freyniana (10 kg) were extracted with 95%
EtOH (10 L × 3, each 7 d). After concentration under reduced pressure, 600 g of crude



Molecules 2022, 27, 3665 9 of 12

EtOH extract was obtained. The EtOH extract was suspended in H2O and successively
partitioned with PE (petroleum ether), CH2Cl2, EtOAc, and n-BuOH. Among them, the
CH2Cl2-soluble fraction (41.5 g) was subjected to silica gel column chromatography (CC)
eluted with PE/EtOAc (1:0–0:1) gradients to afford fourteen major fractions (C1–C14).
Fraction C5 (587.4 mg) was fractioned on a Sephadex LH-20 column (CH3Cl/CH3OH,
1:1, v/v) to give three subfractions (C5.1–C5.3); then, subfraction C5.1 (387.4 mg) was
isolated and purified by silica gel CC (gradient system, PE/EtOAc, 1:0–20:1, v/v) to ob-
tain 18 (2.3 mg). Fraction C7 (1.2 g) was separated by a Sephadex LH-20 column with
eluent (CH3Cl/CH3OH, 1:1, v/v) to give four subfractions (C7.1–C7.4). Subfraction C7.4
(38.8 mg) was chromatographed on a silica gel column (PE/EtOAc, 50:1–20:1, v/v) to give
23 (13.0 mg). Fraction C10 (1.2 g) was subjected to silica gel CC (PE/EtOAc, 20:1–8:1, v/v)
after being separated on a Sephadex LH-20 column eluted with CH3Cl/CH3OH (1:1, v/v)
to give nine subfractions (C10.1–C10.9). Subfraction C10.6 (99.6 mg) was purified by semi-
preparative HPLC (CH3CN/CH3OH/H2O, 90:8:2) to obtain 1 (2.3 mg, tR 9.8 min), 2 (8.3 mg,
tR 10.5 min), and 6 (36.0 mg, tR 13.5 min). Subfraction C10.8 (140.5 mg) was purified by
semi-preparative HPLC with the mobile phase (CH3CN/H2O, 87:13) after being separated
with silica gel CC eluted with PE/EtOAc (20:1–8:1, v/v) gradients to yield 11 (1.0 mg, tR
16.8 min). Fraction C11 (1.8 g) was chromatographed with a silica gel column (PE/EtOAc,
1:0–0:1, v/v) to give twelve subfractions (C11.1–C11.12), and subfraction C11.8.3 (233.6 mg)
was purified by semi-preparative HPLC using CH3OH/CH3CN/H2O (40:40:20–45:45:10)
as a gradient eluent to provide 5 (21.5 mg, tR 14.7 min). Similarly, C11.10 (135.5 mg) was
isolated by semi-preparative HPLC (CH3OH/H2O, 80:20–100:0) to give four further sub-
fractions (C11.10.1–C11.10.4), and 7 (42.8 mg, tR 11.6 min) was yielded by semi-preparative
HPLC, eluting with the gradient mobile phase CH3OH/CH3CN/H2O (41:41:18–42:42:16)
from subfraction C11.10.3 (38.1 mg). Then, the purification of 22 (2.9 mg, tR 7.9 min) was
conducted by semi-preparative HPLC (CH3CN/H2O, 90:10) from C11.10.4 (4.9 mg). Fur-
thermore, subfraction C11.11 (485.7 mg) was isolated with silica gel CC (PE/EtOAc, 50:3,
v/v) before being purified by semi-preparative HPLC using CH3CN/H2O (70:30–100:0)
as the mobile phase to obtain 10 (0.9 mg, tR 7.4 min). Fraction C12 (7.9 g) was subjected
to silica gel CC using 2% dichloromethane in methanol as an isocratic eluent to afford
five subfractions (C12.1–C12.5), and compound 12 (6.2 mg, tR 6.4 min) was purified by
semi-preparative HPLC (CH3OH/H2O, 82:18) from subfraction C12.4 (179.1 mg). C12.2
(3.0 g) was fractioned with silica gel CC (CH2Cl2/CH3OH, 49:1, v/v) to afford five sub-
fractions (C12.2.1–C12.2.5). Among them, subfraction C12.2.3 (618.6 mg) was separated
using silica gel CC (CH2Cl2/CH3OH, 99:1, v/v) and then by semi-preparative HPLC using
83% CH3OH in H2O as an isocratic eluent to yield 4 (34.1 mg, tR 12.6 min). Subfrac-
tion C12.2.4 (408.3 mg) was further subjected to a Sephadex LH-20 column with eluent
(CH3Cl/CH3OH,1:1, v/v) before being isolated by semi-preparative HPLC (CH3OH/H2O,
80:20–90:10) to give 8 (8.8 mg, tR 8.6 min), 17 (3.0 mg, tR 15.2 min), and two more subfrac-
tions (C12.2.4.1–C12.2.4.2). In addition, compounds 21 (5.0 mg, tR 6.7 min) and 16 (4.5 mg,
tR 7.4 min) were obtained by semi-preparative HPLC (CH3CN/H2O, 98:2) from subfraction
C12.2.4.2 (15.1 mg). Fraction C14 (11.2 g) was chromatographed with a silica gel column
(CH2Cl2/CH3OH, 10:1, v/v) to afford three subfractions (C14.1–C14.3). Subfraction C14-1
(5.7 g) was further subjected to silica gel CC to obtain five subfractions (C11.14.1–C11.14.5),
and C14.1.4 (871.5 mg) was purified by silica gel CC eluted with CH2Cl2/CH3OH (10:1,
v/v) to yield 3 (261.4 mg). Then, C14.1.5 (207.3 mg) was isolated by semi-preparative HPLC
(CH3CN/H2O 35:65–60:40) after being separated by silica gel CC (CH2Cl2/CH3OH, 47:3,
v/v) to provide 20 (2.6 mg, tR 7.3 min) and two further subfractions (C14.1.5.1-C14.1.5.2).
C14.1.5.2 (5.0 mg) was isolated by semi-preparative HPLC using 28% CH3OH in H2O
to yield 19 (2.5 mg, tR 21.2 min) and 15 (1.8 mg, tR 23.9 min). Similarly, compounds 9
(157.3 mg) and 14 (49.3 mg) were obtained by silica gel CC (CH2Cl2/CH3OH, 20:1, v/v)
from subfraction C14.3 (1.5 g).
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3.4. Characterization

2-hydroxymethyl-1-norolean-2,12-dien-29-oic acid (1): White amorphous powder;
[α]25

D = +40.0 (c 0.1, MeOH); ECD (MeOH) ∆ε (nm): +26.2 (210) and -28.9 (220); IR (KBr)
υmax: 3325, 2928, 2865, 1694, 1605, 1462, 1381, and 667 cm−1; for 1H- and 13C-NMR data,
see Table 1; HR-ESI-MS (Pos.) m/z 477.3342 [M + Na]+ (calcd for C30H46NaO3, 477.3345).

2-hydroxymethyl-1-norursa-2,12-dien-29-oic acid (2): White amorphous powder;
[α]25

D = +50.0 (c 0.1, MeOH); ECD (MeOH) ∆ε (nm): +66.3 (203) and −11.7 (223); IR (KBr)
υmax: 3362, 2964, 2860, 1687, 1585, 1459, 1380, and 1023 cm−1; for 1H- and 13C-NMR data,
see Table 1; HR-ESI-MS (Pos.) m/z 477.3361 [M + Na]+ (calcd for C30H46NaO3, 477.3345).

17-(4′-hydroxy-3′-methoxybenzoate)-kaur-16-en-19-oic acid (22): White amorphous
powder; [α]25

D = −80.0 (c 0.1, MeOH); UV (MeOH) λmax(log ε) = 199 (4.5) nm; ECD (MeOH)
∆ε (nm): +19.6 (209) and −27.2 (223); IR (KBr) υmax: 3406, 2921, 1698, 1280, and 1030 cm−1;
for 1H- and 13C-NMR data, see Table 2; HR-ESI-MS (Pos.) m/z 493.2556 [M + Na]+ (calcd
for C28H38NaO6493.2566).

3.5. Cell Culture

The human RA-FLS cell line and human cancer cell lines (Hep-G2, HCT-116, BGC-
823, and MCF-7) were purchased from Shanghai Fu-Heng Biological Technology Co., Ltd.
(Shanghai, China). RA-FLS cells were cultured in DMEM/F-12 with 10% fetal bovine
serum (FBS); the Hep-G2, BGC-823, and MCF-7 cell lines in DMEM with 10% FBS; and the
HCT-116 cell line in McCoy’s 5A with 10% FBS. Cell cultures were maintained at 37 ◦C in a
humidified, 5% CO2 atmosphere [26].

3.6. Cytotoxicity Assessment

The cytotoxicity activities were evaluated by the MTT assay [26]. Firstly, the tested
compounds (1–23) were diluted in corresponding media from freshly made solutions in
DMSO (50 mM) to working concentrations (0–40 µM). The cells were seeded in 96-well
plates. After 24 h incubation, the cells were exposed to the test compounds at the indicated
concentrations for 24 h under 5% CO2 at 37 ◦C. Then, 100 µL of MTT (0.5 mg/mL) was
added to each well and incubated for 4 h. Subsequently, the supernatant was removed from
the formazan crystals, and 100 µL DMSO was added to each well. Finally, the absorbance
was measured by a microplate reader using a wavelength of 492 nm to determine cell
viability rate.

4. Conclusions

As a common Dong ethnomedicine in China, the roots of P. freyniana have been widely
used for heat clearing and detoxifying. Moreover, ursane-type triterpenes are some of the
most common pentacyclic triterpenes in ethnic medicine, with various pharmacological
activities and low toxicity [27]. In this work, twenty-three compounds, comprising two
unusual A-ring contracted triterpenoids named madengaisu A and B (1 and 2) and one
new ent-kaurane diterpenoid named madengaisu C (22) along with 20 known compounds,
were isolated and identified, thirteen of which were classified as ursane-type triterpenoids.
In addition, this article is the first to report the diterpenoid constituents from the genus
Potentilla L. Compounds 5, 11, 15, 16, 19, 22, and 23 were isolated from the genus Potentilla L.
for the first time, and compounds 4, 6, 7, 10, and 20 were isolated from this plant for the first
time, which enriched the chemical metabolite diversity of diterpenoids and triterpenoids in
this plant. Additionally, compounds 2, 4, 6, 7, 16, 19, and 21 showed good anti-RA and/or
anti-tumor activities, which demonstrated that triterpenes from P. freyniana may serve as
therapeutic agents for RA and cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27123665/s1, Figures S1–S26: UV, IR, HR ESIMS and
NMR spectra of compound 1–2 and 22.; Tables S1–S6: ECD calculations results of compound 1–2 and
22. Refs. [28–30] are cited in Supplementary Materials.
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