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Abstract: 2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPMT) pincer ligand was
used to synthesize the new [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2] (2) complexes by a reac-
tion with Zn(NO3)2·6H2O in the presence of either KSCN or KBr, respectively. The structure of
complex 1 has been exclusively confirmed using single crystal X-ray diffraction. In this neutral
heteroleptic complex, the BPMT is a pincer chelate coordinating the Zn(II) ion via three interactions
with the two pyrazole moieties and the s-triazine core. Hence, BPMT is a tridentate NNN-chelate.
The coordination environment of Zn(II) is completed by two strong interactions with two terminal
SCN− ions via the N-atom. Hence, the Zn(II) is penta-coordinated with a distorted square pyramidal
coordination geometry. Hirshfeld analysis indicated the predominance of H . . . H, H . . . C and
N . . . H intermolecular interactions. Additionally, the S . . . H, S . . . C and S . . . N contacts are the
most significant. The free ligand has no or weak antimicrobial, antioxidant and anticancer activities
while the studied Zn(II) complexes showed interesting biological activity. Complex 1 has excellent an-
tibacterial activity against B. subtilis (2.4 µg/mL) and P. vulgaris (4.8 µg/mL) compared to Gentamycin
(4.8 µg/mL). Additionally, complex 1 (78.09 ± 4.23 µg/mL) has better antioxidant activity than
2 (365.60 ± 20.89 µg/mL). In addition, complex 1 (43.86 ± 3.12 µg/mL) and 2 (30.23 ± 1.26 µg/mL)
have 8 and 12 times the anticancer activity of the free BPMT ligand (372.79 ± 13.64 µg/mL).

Keywords: Zn(II); pincer; s-triazine based ligand; Hirshfeld; anticancer; antimicrobial

1. Introduction

Triazines are known lead compounds which have a diverse range of pharmaceuti-
cal applications [1]. These heterocyclic compounds have interesting biological activities
as antimicrobial [2], anticancer [3,4], anti-HIV [5,6], and anti-inflammatory activities [1].
Among the different types of triazines, 1,3,5-triazine (s-triazine) is a highly symmetrical
molecule. In this regard, the self-assembly of such highly symmetrical ligands with metal
salts is a simple way to build interesting supramolecular architectures for different applica-
tions, such as gas storage, catalysis, magnetism, nonlinear optics, and luminescence [7–10].
s-Triazine pincer ligands are an interesting class of polydentate ligands as they form stable
complexes with different metal ions [11]. The bis-pyrazolyl-s-triazine ligand shown in
Figure 1 attracted our attention due to its simple route of preparation and its interesting
coordination chemistry with different metal ions [12–15].
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Figure 1. Structure of the ligand [11,12].

Metal ions have an essential role in biological systems due to their interactions with
many biomolecules, such as enzymes, serum albumin and amino acids [16]. For ex-
ample, Zn(II) complexes have many applications as antidiabetic insulin mimetics [17],
antimicrobial [18], and anticancer agents [19]. Additionally, these complexes attracted
renewed attention due to their applications as tumor photosensitizers [20], radioprotective
agents [21], and antidandruff agents [22]. Recently, the coordination chemistry of the pincer
ligand, 2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT; Figure 1),
was extensively studied by our research group [11–15,23,24]. Several low dimensional and
polymeric complexes with different metal ions (Zn(II), Co(II), Cu(II)) and counter ions (Cl−,
NO3

− and ClO4
−) were synthesized and their biological activity was assessed as antimi-

crobial agents. The results revealed promising antimicrobial activities of these complexes
against different microbes. In continuation to this work, two new Zn(II) complexes of
MBPT ligand with different anions (SCN− and Br−) were synthesized and characterized.
In addition, their biological activities (antimicrobial, anticancer and antioxidant) were
examined.

2. Results and Discussion
2.1. Synthesis and Characterizations

The reaction of an aqueous solution of Zn(NO3)2.6H2O with an ethanolic solution
of the pincer ligand BPMT in presence of either KSCN or KBr afforded two new Zn(II)
complexes. Due to the relatively weak coordinating power of the nitrate ion compared with
the SCN− and Br− anions, the corresponding [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2]
(2) complexes were obtained, respectively. The structures of the two complexes were char-
acterized using FTIR spectra and elemental analysis. The FTIR spectra of both complexes
showed the vibrational fundamentals of the ligand BPMT with some observable shifts
which confirm the coordination with the Zn(II) ion. The υC=N and υC=C modes were de-
tected at 1593 and 1555 cm−1, respectively, in the case of the ligand BPMT. The υC=N mode
was found to shift to higher wavenumbers of 1626 and 1622 cm−1 in complexes 1 and 2, re-
spectively. On the other hand, the υC=C modes were detected at 1582–1540 cm−1 and 1555,
respectively. A strong intense band was detected at 2082 cm−1 confirming the presence of
the SCN− in the structure of complex 1. In addition, the molecular and supramolecular
structures of 1 are exclusively determined using a single crystal X-ray structure. Addition-
ally, the structure of complex 2 is confirmed using 1H NMR spectra where two singlets
that appeared at δ 2.37 and 2.69 ppm are related to the two methyls of the pyrazole ring
at positions 3 and 5, respectively, and a singlet at δ 4.13 ppm is related to the methoxy
group, which are at almost the same position as in the ligand BPMT; the CH of pyrazole
for complex 2 showed some shift (6.52 ppm) compared to the free ligand (6.05 ppm).

2.2. Structure Description of [Zn(BPMT)(NCS)2] Complex; (1)

The X-ray structure of [Zn(BPMT)(NCS)2] (1) is shown in Figure 2. This complex
crystallized in the monoclinic crystal system with crystal parameters a = 15.518 (5) Å,
b = 8.963 (3) Å, c = 16.818 (5) Å and β = 110.531 (11)◦ (Table S1). The unit cell volume
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is 2190.6 (12) Å3 and Z = 2. The complex crystallized in the P1c1 space group and two
[Zn(BPMT)(NCS)2] complex units as an asymmetric formula.
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Figure 2. X-ray structure with thermal ellipsoids at 30% probability level for [Zn(BPMT)(NCS)2]; 1.

The structure of the [Zn(BPMT)(NCS)2] complex showed a penta-coordinated Zn(II)
with one BPMT ligand as a tridentate NNN-pincer chelate and two terminally coordinated
thiocyanate anions (Figure 2). In both molecules found in the asymmetric formula, the
bonds Zn1-N7 (2.055 (7) Å) and Zn2-N14 (2.061 (6) Å) with the s-triazine core are shorter
than the corresponding Zn-N (pyrazole) bonds. In the molecule with lower atom number-
ing, the Zn1-N9 and Zn1-N3 bonds are found to be 2.191 (7) Å and 2.223 (7) Å, respectively,
while in the other unit, the Zn2-N12 and Zn2-N18 are found to be 2.202 (7) and 2.234 (7)
Å, respectively. In this complex, the pincer ligand forms two five membered chelate rings
with small N-Zn-N bite angles of 72.8 (3)◦ (N7-Zn1-N9) and 72.9 (3)◦ (N7-Zn1-N9) in one
unit. In the other unit, the bite angles N14-Zn2-N18 and N14-Zn2-N12 are 72.5 (3) and
73.0 (3)◦, respectively. The penta-coordination environment of the Zn(II) is completed by
two short interactions with two isothiocyanate groups (NSC−) via the nitrogen atom while
the S-atom sets were freely uncoordinated. Hence, the thiocyanate ion acts as an N-terminal
ligand. The Zn-N distances with the thiocyanate anions are found to be the shortest among
the rest of the Zn-N distances. The Zn1-N1 and Zn1-N2 bond distances are 1.932 (8) Å and
1.938 (9) Å while the corresponding Zn2-N11 and Zn2-N10 bond distances are 1.918 (8)
Å and 1.935 (7) Å, respectively. The N1-Zn1-N2 and N10-Zn2-N11 angles are found to be
117.3 (4) and 116.6 (3)◦, respectively. In this regard, the ZnN5 coordination environment [25]
is considered highly distorted compared to any of the two ideal geometries of the five
coordinated systems; the trigonal bipyramidal and square pyramidal configurations. The
τ5 parameter ((β − α)/60) was used as a measure for the extent of distortion in the five
coordinated metal ion systems. The β and α values are the largest angles in the coordination
sphere. Using the results listed in Table 1, the τ5 values were calculated to be 0.355 and
0.278 for Zn1 and Zn2, respectively. Hence, the coordination geometry is more likely to be
a distorted square pyramidal for both Zn(II) sites.

The supramolecular structure of [Zn(BPMT)(NCS)2] complex is controlled by the
S . . . H, S . . . N and S . . . C contacts shown in Figure 3 while the corresponding contact
distances are listed in Table 2. The weak S . . . H interactions occurred alternatively between
the two molecular units found in the asymmetric formula leading to the 1D chain shown in
Figure 4A. The hydrogen-acceptor distances of the S2 . . . H23B and S1 . . . H30 interactions
are 2.915 and 3.377 Å, respectively. Additionally, there are some intermolecular interactions
between the free S-atom of the coordinated thiocyanate ion from one unit with the carbon
and nitrogen atoms of the s-triazine core from another complex unit. The most important
C . . . S and S . . . N contacts are given in Table 2. The resulting packing scheme is shown
in Figure 4B.
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Table 1. Selected bond distances and angles for 1.

Bond Distance Bond Distance

Zn1-N1 1.932 (8) Zn2-N11 1.918 (8)
Zn1-N2 1.938 (9) Zn2-N10 1.935 (7)
Zn1-N7 2.055 (7) Zn2-N14 2.061 (6)
Zn1-N9 2.191 (7) Zn2-N12 2.202 (7)
Zn1-N3 2.223 (7) Zn2-N18 2.234 (7)
Bond Angle Bond Angle

N1-Zn1-N2 117.3 (4) N11-Zn2-N10 116.6 (3)
N1-Zn1-N7 118.3 (3) N10-Zn2-N14 114.7 (3)
N2-Zn1-N7 124.4 (3) N11-Zn2-N14 128.6 (3)
N1-Zn1-N9 99.7 (3) N11-Zn2-N12 100.1 (3)
N2-Zn1-N9 100.4 (3) N10-Zn2-N12 100.8 (3)
N7-Zn1-N9 72.9 (3) N14-Zn2-N12 73.0 (3)
N1-Zn1-N3 98.1 (3) N11-Zn2-N18 98.1 (3)
N2-Zn1-N3 97.1 (3) N10-Zn2-N18 97.1 (3)
N7-Zn1-N3 72.8 (3) N14-Zn2-N18 72.5 (3)
N9-Zn1-N3 145.7 (3) N12-Zn2-N18 145.3 (3)
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C10…S1 3.163 x, −1 + y, z 
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Figure 3. Important contacts in [Zn(BPMT)(NCS)2]; 1.

Table 2. Intermolecular contacts in [Zn(BPMT)(NCS)2] complex.

Atoms Contacts (Å) Symm. Code

S2 . . . H23B 2.915 x, 1 − y, 1/2 + z
S1 . . . H30 2.939 1 + x, 2 − y, 1/2 + z
N8 . . . S1 3.326 x, −1 + y, z
C10 . . . S1 3.163 x, −1 + y, z
C8 . . . S2 3.377 x, 2 − y, −1/2 + z

N16 . . . S3 3.293 x, −1 + y, z
C24 . . . S3 3.214 x, −1 + y, z
S4 . . . C26 3.393 x, 1 − y, −1/2 + z
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Figure 4. Packing schemes via S . . . H (A) and S . . . C/S . . . N (B) contacts in [Zn(BPMT)(NCS)2]; 1.
All hydrogen atoms were omitted from Figure 4B for better clarity.

2.3. Hirshfeld Analysis

Hirshfeld analysis is an important tool for decomposing all intermolecular interactions
in the structure of crystalline materials. For this task, the Crystal Explorer 17.5 program [26]
was used to perform the Hirshfeld analysis. The Hirshfeld surfaces of the two complex
molecules in the asymmetric unit are shown in Figure 5. Curvedness and shape index maps
could give enough evidence of the presence or absence of π-π stacking interactions. The
absence of a green flat area in the former and the absence of red/blue triangles in the latter
confirm the absence of any π-π stacking interactions in the studied system.
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On the other hand, there are many red spots in the dnorm map corresponding to the
S . . . H, S . . . C and S . . . N intermolecular interactions. The percentages of these contacts
in the Zn1 unit are 20.2, 3.5 and 5.8%, respectively while the respective values in the Zn2
unit are 18.8, 4.3 and 4.6%. All these intermolecular contacts are significant and appeared
as spikes in the fingerprint plots shown in Figure 6.
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Figure 6. The decomposed fingerprint of the S . . . H, S . . . C and S . . . N interactions in the
[Zn(BPMT)(NCS)2] complex.

Additionally, there is large number of weak intermolecular contacts contributing to
the molecular packing of this complex (Figure 7). These contacts appeared in the dnorm
map as blue or white regions. Hence, these contacts have either longer or equal interaction
distances than the sum of the vdWs radii of the two interacting atoms. Among these
interactions, the H . . . H, H . . . C and N . . . H are the most dominant. Their percentages
were found to be 30.3, 18.2 and 12.9% in the Zn1 unit, respectively. In the case of the Zn2
unit, the respective values are 29.7, 20.6 and 14.4%.
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2.4. Biological Studies
2.4.1. Antimicrobial Activity

The biological activity of the free BPMT, complexes 1 and 2 against different microbes
including bacteria and fungi were determined by detecting the sizes of inhibition zones
at 10 mg/mL of the investigated compounds. All results are listed in Table 3. The free
BPMT ligand showed only weak antibacterial activity against S. aureus with an inhibition
zone of 8 mm. On the other hand, complexes 1 and 2 have interesting antimicrobial
activity. Both complexes have good antibacterial activity against all the studied microbes
to different extents. For complex 1, the inhibition zone diameters are 16 and 33 mm
against S. aureus and B. subtilis. The corresponding values for complex 2 are 16 and
24 mm. Hence, both complexes have similar antibacterial action against S. aureus while
complex 1 has better action against B. subtilis than complex 2. For the gram negative
bacteria E. coli and P. vulgaris, complex 1 has better action against both microbes compared
to complex 2. The inhibition zone diameters are 20 and 26 mm for complex 1 against
E. coli and P. vulgaris, respectively. The corresponding values for complex 2 are 13 and
25 mm, respectively. The most promising results are found for complex 1 against B.
subtilis (33 mm) and P. vulgaris (26 mm). For Gentamycin, the respective values for the
inhibition zone diameters are 26 and 25 mm. The studied Zn(II) complexes (1 and 2)
have better antibacterial actions against S. aureus, B. subtilis and E. coli than the previously
reported [Zn(BPMT)(NO3)2] and [Zn(BPMT)(H2O)Cl]ClO4 complexes [23]. The inhibition
zone diameters for [Zn(BPMT)(NO3)2] and [Zn(BPMT)(H2O)Cl]ClO4 are in the range of
11–16 mm against these microbes. In terms of antifungal activity, complex 2 has no activity
against the harmful fungi A. fumigatus and C. Albicans while complex 1 is active only
against C. Albicans (12 mm). The inhibition zone diameter of Ketoconazole as antifungal
control is 20 mm. Hence the studied Zn(II) complexes showed either weak or no antifungal
activity against the studied fungi. In comparison with the related Zn(II) complexes [23],
the inhibition zone diameters were determined against C. albicans to be 16 and 10 mm
for [Zn(BPMT)(NO3)2] and [Zn(BPMT)(H2O)Cl]ClO4, respectively. Hence, the former has
better antifungal action against this microbe than complex 1. The opposite is true for the
perchlorate complex.

Table 3. Zone of inhibition (in mm) for BPMT, complexes 1 and 2.

Microbe 1 2 BPMT Control

A. fumigatus NA c NA c NA c 17 a

C. albicans 12 NA c NA c 20 a

S. aureus 16 16 8 24 b

B. subtilis 33 24 NA c 26 b

E. coli 20 13 NA c 30 b

P. vulgaris 26 25 NA c 25 b

a Ketoconazole, b Gentamycin c Not active.

Additionally, the minimum inhibitory concentrations (MIC) in µg/mL were deter-
mined. Complex 1 showed interestingly low MIC values against B. subtilis (2.4 µg/mL)
and P. vulgaris (4.8 µg/mL) compared to Gentamycin (4.8 µg/mL). Additionally, com-
plex 2 has relatively low MIC values against the same microbes (9.7 and 39.1 µg/mL,
respectively (Table 4).

2.4.2. Antioxidant and Anticancer Activities

The DPPH method was used to detect the antioxidant activity of the studied com-
pounds (Figure 8). The free BPMT ligand exhibited no antioxidant activity. In contrast,
complexes 1 (IC50 = 78.09 ± 4.23 µg/mL) and 2 (IC50 = 365.60 ± 20.89 µg/mL) showed
antioxidant activity which is found to depend on the coordinating anion. It is obvious that
the thiocyanate complex (1) has better antioxidant activity than the bromo complex (2).
For the reference ascorbic acid, the IC50 value was determined to be 12.3 ± 0.51 µg/mL.
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Hence, complex 1 has better antioxidant activity than complex 2. These results indicated
that the antioxidant activity of the studied Zn(II) complexes is sensitive to the nature of the
coordinating anion.

Table 4. MIC values (µg/mL) for complexes 1 and 2.

Microbe 1 2 Control

A. fumigatus ND c ND c 156.25 a

C. albicans 1250 ND c 312.5 a

S. aureus 625 312.5 9.7 b

B. subtilis 2.4 9.7 4.8 b

E. coli 156.25 1250 4.8 b

P. vulgaris 4.8 39.1 4.8 b

a Ketoconazole b Gentamycin c Not determined.
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In addition, in vitro cytotoxic activity of complexes 1 and 2 against the lung carcinoma
A-549 cell line was examined and compared with the free BPMT ligand (Figure 9). Both
Zn(II) complexes have promising cytotoxic activity against the lung carcinoma A-549 cell
line, with enhanced anticancer activity compared to the free BPMT ligand. For complexes
1 and 2, the IC50 values are 43.86 ± 3.12 and 30.23 ± 1.26 µg/mL, respectively, while the
corresponding value for the free BPMT ligand is 372.79 ± 13.64 µg/mL. The studied Zn(II)
complexes have 8 and 12 times the anticancer activity of the free BPMT ligand, respectively.
Hence, complex 2 has the best anticancer activity against the lung carcinoma A-549 cell
line. For cis-platin as control, the IC50 value is 7.53 ± 0.69 µg/mL indicating moderate
anticancer activity for both Zn(II) complexes against the lung carcinoma A-549 cell line.
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3. Materials and Methods

Chemicals and instrumentations, single crystal X-ray structure measurement de-
tails [27–31] and Hirshfeld calculations [26] are presented in Supplementary materials.
Synthesis of BPMT is described in Method S1 and Scheme S1 (Supplementary Materials).
FTIR spectra of BPMT, complexes 1 and 2 are given in Figures S1–S3, respectively. NMR
spectra of BPMT and 2 are shown in Figures S4 and S5, respectively.

3.1. Synthesis of Zn(II) Complexes

The synthesis of the [Zn(BPMT)X2] complexes (X = SCN−; 1 and X = Br−; 2) was per-
formed by mixing 10 mL ethanolic solution of BPMT (29.9 mg, 0.1 mmol) with Zn(NO3)2·6H2O
(29.8 mg, 0.1 mmol) in 5 mL distilled water followed by the addition of 1 mL saturated
KSCN (for 1) or KBr (for 2) aqueous solution. The resulting solutions were left for slow
evaporation at room temperature, and colorless crystals of the target compounds were
obtained after two weeks. Only for complex 1, the quality of single crystals was found
suitable for the single crystal X-ray structure measurement.

Yield; C16H17N9OS2Zn (1) 76%. Anal. Calc. C, 39.96; H, 3.56; N, 26.21; S, 13.34; Zn,
13.60%. Found: C, 39.62; H, 3.43; N, 26.01; S, 13.12; Zn, 13.35. IR (KBr, cm−1): 3103, 3038,
2990, 2082, 1626, 1539.

Yield; C14H17N7OBr2Zn (2) 71%. Anal. Calc. C, 32.06; H, 3.27; N, 18.69; Br, 30.47; Zn,
12.47%. Found: C, 31.83; H, 3.19; N, 18.57; Br, 30.32; Zn, 12.31. IR (KBr, cm−1): 3098, 2984,
1622, 1582, 1540. 1H NMR (DMSO-d6) δ (ppm): 6.52 (s, 2H, 2CH-pyrazole), 4.13 (s, 3H, OCH3),
2.69 (s, 6H, 2CH3), 2.37 (s, 6H, 2CH3) ppm (Figure S5).

3.2. Biological Studies

The bio-activities of the free BPMT and the two Zn(II) complexes as antimicrobial,
anticancer and antioxidant agents were investigated. The experimental details are described
in Methods S2–S4 (Supplementary Materials).
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4. Conclusions

Synthesis and biological evaluations of two new penta-coordinated Zn(II) complexes
with an s-triazine pincer type ligand were presented. Mixing an aqueous solution of
Zn(NO3)2.6H2O and ethanolic solution of the BPMT pincer ligand in presence of either
KSCN or KBr afforded [Zn(BPMT)(NSC)2] (1) and [Zn(BPMT)(Br)2] (2) complexes at a
good yield. The structure of complex 1 is confirmed by X-ray single crystal structure where
the Zn(II) ion is coordinated with one tridentate BPMT ligand and two isothiocyanate
ions. Its supramolecular structure aspects were analyzed using Hirshfeld analysis. The
H . . . H, H . . . C and N . . . H interactions are the most dominant in the crystal struc-
ture of 1. Only the S . . . H, S . . . C and S . . . N contacts have the characteristics of
short interactions. The antimicrobial, antioxidant and anticancer activities of the Zn(II)
complexes are compared with the results of the BPMT ligand. The latter has no or very
weak biological activity while the studied Zn(II) complexes are biologically active. It is
found that; complex 1 has better antibacterial and antioxidant activities than complex 2.
In contrast, complex 2 (30.23 ± 1.26 µg/mL) has better anticancer activity than complex 1
(43.86 ± 3.12 µg/mL) against the lung carcinoma A-549 cell line.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113625/s1. Chemicals and instrumentations; X-ray
structure measurement details; Figure S1: FTIR spectra of BPMT; Figure S2: FTIR spectra of 1; Figure
S3: FTIR spectra of 2; Figure S4: 1H and 13C NMR spectra of the ligand (BPMT); Figure S5: 1H
NMR spectra of the complex 2. Chemical shifts are reported in parts per million (ppm); Scheme
S1: Synthesis of the ligand (BPMT); Method S1: Synthesis of BPMT; Method S2: Antimicrobial
studies; Method S3: DPPH Radical Scavenging Activity; Method S4: Evaluation of Cytotoxic
activity; Table S1: Crystal data and refinement details of 1; Table S2: Evaluation of antioxidant activity
of 1; Table S3: Evaluation of antioxidant activity of 2; Table S4: Evaluation of antioxidant activity
of BPMT; Table S5: Evaluation of cytotoxicity of 1 against A-549 cell line; Table S6: Evaluation of
cytotoxicity of 2 against A-549 cell line; Table S7: Evaluation of cytotoxicity of BPMT against A-549
cell line [32–34].
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