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Abstract: A series of 1,7-diphenyl-1,4-heptadien-3-ones with various substituents (HO-, CH3O-, CH3-,
Cl-) on the phenyl rings were synthesized and evaluated for anti-neuroinflammatory effects in LPS-
stimulated BV2 microglia. The pharmacological results showed that the target compounds bearing
methoxy groups greatly inhibited LPS-induced NO release, and that the active compounds CU-19 and
CU-21 reduced the level of NO, TNF-α, IL-6 and PGE-2, downregulated the expression of COX-2 and
iNOS in LPS-stimulated BV2 cells. A study of the mechanism of action revealed that CU-19 and CU-21
inhibited the nuclear translocation of NF-κB and phosphorylation of MAPKs (ERK, JNK, and p38). A
preliminary pharmacokinetic study in rats revealed that the pharmacokinetic properties of CU-19 and
CU-21 were dramatically ameliorated in comparison with the pharmacokinetic properties of curcumin.

Keywords: curcumin; 1,7-diphenyl-1,4-heptadien-3-one; neuroinflammation; anti-inflammation;
BV2 cell; synthesis

1. Introduction

Neuroinflammation is a significant and complicated pathological process mediating
all types of damage and disorders of the central nervous system [1]. Microglia, the major
cellular elements of neuroinflammation, influence brain development and maintain the
neural environment and responses to brain injury [2]. Activated microglia are characterized
by the increased release of neurotoxic proinflammatory mediators, such as nitric oxide
(NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) [3,4]. Thus, inhibiting
neuroinflammation by suppressing the activation of microglia is a promising therapeutic
strategy for the treatment of neuroinflammation-associated diseases [5].

The natural product curcumin (CU) has the potential to treat neuroinflammation,
which inhibits the release of cytokines by inhibiting the MAPK signaling pathway and
promotes microglia M2 polarization via TREM2/TLR4/NF-κB signaling pathways [6–10].
Since the β-diketone moiety in the skeleton of CU is a specific substrate of a series of aldo-
keto reductases, CU is rapidly metabolized into non-bioactive components in vivo [11,12].
Most likely, the clinical applications of CU as an anti-neuroinflammatory agent will be
limited by its rapid metabolism as well as poor bioavailability. In order to avoid the
metabolic defect of β-diketone moiety, great efforts have been made in the structural
modification of CU, and the mono-carbonyl analogues of CU have been the focus of
attention in the investigation of curcuminoids in recent two decades. Many mono-carbonyl
analogues of CU with enhanced biological activities and ameliorated pharmacokinetic
properties have been discovered [11–17]. However, the anti-neuroinflammatory activities
of mono-carbonyl analogues have never been reported. 1,7-Diphenyl-1,4-heptadiene-3-
ones, such as CU-1~CU-4, exhibited potent growth inhibitory effects against various tumor
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cells in vitro [18–20] (Figure 1). In order to explore novel anti-neuroinflammatory agents,
we synthesized a series of 1,7-diphenyl-1,4-heptadien-3-ones (CU-1~CU-28, Table 1) and
investigated their anti-neuroinflammatory effects.
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H CU-18 3-OH, 4-OCH3 4′-OH
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Lipopolysaccharide (LPS)-stimulated BV2 microglia secrete proinflammatory media-
tors (NO, TNF-α, IL-6). This is a classic cell model for screening anti-neuroinflammatory
agents. Herein, we assessed the inhibitory effects of the target compounds on NO release in
LPS-stimulated BV2 cells in vitro. The results revealed that compounds CU-19 and CU-21
exhibited potent inhibition of NO release. Hence, these two compounds were further
studied for understanding the mechanism of action and metabolic characteristics.

2. Results and Discussions
2.1. Chemistry

The synthesis of 1,7-diphenyl-1,4-heptadien-3-ones is briefly described as follows.
Phenylacrylic acids and phenylpropionic acids were prepared and transformed into acyl
chlorides. The phenylacryloyl chlorides and diethyl malonate were condensed to obtain
tricarbonyl intermediates, which underwent decarboxylation to provide β-keto esters with
one phenyl ring, followed by acylation with phenylpropionyl chlorides to obtain tricarbonyl
intermediates. Subsequently, decarboxylation of tricarbonyl intermediate provided the
diketone intermediate, which underwent selective reduction of the carbonyl group at C-5 to
provide β’-hydroxy-α, β-unsaturated ketone intermediate. Finally, the target compounds
without phenolic hydroxyl groups were obtained by dehydration, and the target compounds
bearing phenolic hydroxyl groups were obtained by dehydration and deprotection.
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CU-1 was taken as an example to illustrate the specific synthesis of the compounds
bearing phenolic hydroxyl groups, and the synthetic route is shown in Scheme 1. The
starting material 4-hydroxybenzaldehyde 1 was protected via alkylation with bromomethyl
methyl ether (MOMBr) to give 2, which was subsequently transformed into (E)-3-(4-
(methoxymethoxy)phenyl)acrylic acid 3 by reacting with malonic acid. Intermediate 3 was
converted into acyl chloride by reacting with oxalyl chloride and then condensed with
diethyl malonate in the presence of NaH to provide 4, followed by decarboxylation to
provide 5. Both 4 and 5 consisted of ketone-enol tautomeric isomers via 1H NMR analysis.
Catalytic hydrogenation of 3 over Pd/C afforded 3-(4-(methoxymethoxy)phenyl)propanoic
acid 6, which was transformed into the acyl chloride 7 by reacting with oxalyl chloride.
Intermediate 5 was condensed with 7 to provide 8. Next, 8 was decarboxylated to pro-
vide (E)-1,7-bis(4-(methoxymethoxy)phenyl)-1-heptene-3,5-dione 9. Using NMR analysis,
intermediate 9 was detected as the enol form, which is interconvertible with the keto
form. The enol form is more stable due to the presence of a continuous conjugated system
and intramolecular hydrogen bonding [20]. Intermediate 9 underwent selective reduc-
tion with BH3·THF to provide 10. Intermediate 10 was then dehydrated with the catalyst
p-toluenesulfonic acid (p-TsOH) to afford 11. Finally, the protective group was removed
in the presence of hydrochloric acid to obtain CU-1. For the compounds without phenolic
hydroxyl groups, the corresponding two steps of introducing the protective groups and
removing them in the above route were not required.
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Scheme 1. Synthetic route to CU-1. Reagents and conditions: (a) MOMBr, DIPEA, CH2Cl2, r.t., 5 h,
92.8%; (b) CH2(COOH)2, pyridine, PhNH2, Tol, reflux, 1 h, 94.2%; (c) i. N2, Oxalyl chloride, CH2Cl2,
r.t., 1 h; ii. CH2(COOEt)2, NaH, THF, r.t., 2 h, 82.2%; (d) H2O, DMSO, 110 ◦C, 5 h, 42.2%; (e) H2, 10%
Pd/C, MeOH, r.t., 2 h, 98.3%; (f) N2, oxalyl chloride, CH2Cl2, r.t., 1 h; (g) Mg, EtOH, CCl4, THF, reflux,
1 h, 52.3%; (h) H2O, DMSO, 120 ◦C, 5 h, 54.2%; (i) BH3·THF, THF, r.t., 1 h, 58.2%; (j) cat. p-TsOH,
EtOAc, 60 ◦C, 2 h, 86.4%; (k) hydrochloric acid, EtOAc, r.t., 1 h, 83.2%.

In the reaction of converting (E)-3-(4-(methoxymethoxy)phenyl)acrylic acid 3 into acyl
chloride, the generated hydrogen chloride could readily remove most of the protective MOM
groups, resulting in complexity in the reaction. To tackle this problem, we tried several
approaches and found that injecting N2 into the reaction system was efficient to blow out the
generated hydrogen chloride. Using the N2 injection method, intermediate 4 was obtained
with 82.2% yield. Intermediate acyl chloride 7 was prepared using a similar method.

2.2. Biological Evaluation
2.2.1. Cell Growth Inhibition and Anti-Neuroinflammatory Screening of the Target
Compounds CU-1~CU-28

In the present study, we assessed the ability of the target compounds to inhibit NO
release in LPS-stimulated BV2 cells. To rule out the possibility that the inhibition of
NO release was due to the cytotoxicity of the target compounds, a noncytotoxic dose of
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the compounds was screened by MTT assay in BV2 cells. As shown in Table 2, most
compounds exhibited lower cytotoxicity at 3 µM, while some compounds bearing phenolic
hydroxyl groups or multiple methoxy groups on phenyl rings showed higher cytotoxicity.
Under the condition of ensuring about 90% cell viability, different concentrations (1 µM,
3 µM) of the target compounds were used in anti-neuroinflammatory activity screening
of the corresponding compounds. Based on the screening results, the structure–activity
relationships were analyzed and summarized as follows.

Table 2. The cell viability and inhibition of LPS-induced NO release in BV2 cells.

Compd. Cell Viability (%) a NO Inhibition (%)

1 µM 3 µM 10 µM 1 µM 3 µM

CU-1 88.07 ± 0.19 49.84 ± 0.27 23.70 ± 0.38 0 -
CU-2 76.92 ± 0.19 49.16 ± 0.92 10.57 ± 1.13 0 -
CU-4 107.23 ± 0.09 73.92 ± 0.30 16.61 ± 0.45 3.10 -
CU-5 95.68 ± 0.11 77.39 ± 0.30 15.92 ± 0.61 0 -
CU-7 93.46 ± 0.35 52.80 ± 0.50 14.26 ± 0.70 0 -
CU-12 92.03 ± 0.29 75.55 ± 0.17 12.67 ± 0.59 0 -
CU-17 99.36 ± 0.01 80.72 ± 0.20 32.42 ± 0.67 0 -
CU-18 96.14 ± 0.03 46.56 ± 1.16 8.63 ± 0.373 2.15 -
CU-20 97.31 ± 0.03 51.82 ± 0.60 12.24 ± 0.21 16.9 -
CU-3 106.72 ± 0.14 101.55 ± 0.01 98.50 ± 0.01 - 35.2
CU-6 106.85 ± 0.10 100.07 ± 0.01 101.56 ± 0.03 - 22.1
CU-8 101.18 ± 0.04 97.40 ± 0.07 18.20 ± 0.86 - 18.8
CU-9 99.38 ± 0.01 94.65 ± 0.07 14.75 ± 0.75 - 7.52
CU-10 95.54 ± 0.03 95.27 ± 0.16 48.66 ± 2.93 - 0
CU-11 99.17 ± 0.01 91.61 ± 0.09 11.24 ± 0.56 - 0
CU-13 109.45 ± 0.27 91.40 ± 0.32 28.53 ± 1.30 - 0
CU-14 97.96 ± 0.01 97.44 ± 0.03 18.06 ± 0.10 - 49.7
CU-15 104.99 ± 0.03 103.11 ± 0.03 84.19 ± 0.21 - 13.7
CU-16 95.00 ± 0.08 88.57 ± 0.28 33.33 ± 1.20 - 15.4
CU-19 96.94 ± 0.03 96.33 ± 0.02 67.91 ± 0.37 - 50.3
CU-21 96.94 ± 0.01 94.55 ± 0.09 77.89 ± 0.50 - 66.1
CU-22 95.14 ± 0.05 88.76 ± 0.06 46.65 ± 0.59 - 48.2
CU-23 106.47 ± 0.14 100.85 ± 0.01 12.35 ± 0.84 - 31.4
CU-24 103.49 ± 0.02 91.48 ± 0.07 23.17 ± 0.09 - 0
CU-25 128.58 ± 0.14 96.93 ± 0.01 20.30 ± 0.59 - 0
CU-26 107.17 ± 0.07 96.83 ± 0.02 12.85 ± 0.14 - 37.6
CU-27 116.10 ± 0.44 101.31 ± 0.03 38.93 ± 1.19 - 7.02
CU-28 95.71 ± 0.07 94.75 ± 0.05 81.65 ± 0.22 - 33.6

CU 97.57 ± 0.05 95.26 ± 0.05 28.15 ± 0.19 - 37.4
a Cell viability was the mean ± SD, n = 3.

(i) Compounds CU-1, CU-2, CU-4, CU-5, CU-7, CU-12, CU-17, CU-18 and CU-20 with
high cytotoxicity showed very weak anti-neuroinflammatory activity (inhibition was 0–16.9%).
(ii) Compounds CU-3, CU-14, CU-19, CU-21 and CU-23-bearing methoxy groups exhib-
ited higher anti-neuroinflammatory activity (inhibition was 31.4–66.1%), indicating that the
methoxy group might be helpful for anti-neuroinflammatory activity. (iii) Compounds CU-6,
CU-8, CU-9, CU-11, CU-13, CU-24 and CU-25-bearing phenolic hydroxyl groups displayed
lower anti-neuroinflammatory activity (inhibition was 0–22.1%), indicating that phenolic
hydroxyl group contributed little to anti-neuroinflammatory activity.

2.2.2. Active Compounds Inhibit LPS-Induced NO Release in a Dose-Dependent Manner

Since CU-14, CU-19, CU-21, and CU-22 exhibited higher inhibition of NO release than
CU at 3 µM, these compounds were chosen for evaluation of dose-dependent inhibitory
effects. As shown in Figure 2, all the active compounds showed dose-dependent inhibition.
The IC50 value of CU-14 (2.43 µM), CU-19 (1.60 µM), CU-21 (1.74 µM), CU-22 (>3 µM) and
CU (3 µM) shown in Table 3 is further calculated according to NO inhibition in Figure 2.
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Accordingly, compounds CU-19 and CU-21 with an IC50 value of less than 2 µM were
selected for further exploration.
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cells were pretreated with CU-14, CU-19, CU-21, CU-22, and CU (0.3, 1.0, 3.0 µM) for 1 h and then
stimulated with LPS (1 µg/mL) for 24 h. Results were the mean ± SD, n = 3; ### p < 0.001 vs. control;
** p < 0.01; *** p < 0.001 vs. LPS alone.

Table 3. The IC50 value of active compounds to inhibit LPS-induced NO release in BV2 cells. Results
were the mean ± SD, n = 3.

Compd. CU-14 CU-19 CU-21 CU-22 CU

IC50 (µM) 2.43 ± 0.45 1.60 ± 0.31 1.74 ± 0.66 >3 >3

2.2.3. The Ability of CU-19 and CU-21 to Inhibit LPS-Induced Inflammatory
Mediator Release

Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE-2) are
key inflammatory mediators that drive inflammation progression [21,22]. In order to more
fully evaluate the anti-neuroinflammatory properties of CU-19 and CU-21, we assessed
their ability to inhibit IL-6, TNF-α and PGE-2 release in LPS-induced BV2 cells. As shown
in Figure 3, CU-19 and CU-21 significantly inhibited IL-6, TNF-α and PGE-2 release, and
exhibited better inhibitory activity than CU.
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2.2.4. The Ability of CU-19 and CU-21 to Inhibit LPS-Induced iNOS and COX-2
Upregulation

Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are key reg-
ulators and highly expressed during the inflammatory response [23,24]. We therefore
evaluated the ability of CU-19, CU-21 and CU to modulate LPS-induced iNOS and COX-2
expression in BV2 cells via Western blot. As shown in Figure 4, LPS treatment resulted in a
significant increase in the protein levels of COX-2 and iNOS, whereas CU-19 and CU-21
significantly inhibited the expression of iNOS and COX-2 and exhibited better inhibitory
activity than CU.
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Figure 4. The ability of CU-19, CU-21 and CU to inhibit LPS-induced COX-2 and iNOS expression.
BV2 cells were pretreated with CU-19, CU-21 and CU (3 µM) for 1 h, followed by stimulation with
LPS (1 µg/mL) for 24 h. Results were the mean ± SD, n = 3; ### p < 0.001 vs. control; * p < 0.05,
*** p < 0.001 vs. LPS alone.

2.2.5. The Ability of CU-19 and CU-21 to Inhibit LPS-Induced NF-κB Activation

As nuclear factor-kappa B (NF-κB) is an important transcription factor that regulates the
expression of most inflammatory mediators, such as iNOS, COX-2, IL-6 and TNF-α [25], we
examined whether CU-19 and CU-21 were able to alter the nuclear translocation of NF-κB
using immunofluorescence microscopy. Previous studies showed that CU also inhibited
NF-κB pathway-mediated inflammation [26]. As shown in Figure 5, CU-19 and CU-21
were able to inhibit NF-κB nuclear translocation with a similar efficacy to CU.
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Figure 5. (A) The impact of CU-19 and CU-21 on LPS-induced NF-κB nuclear translocation. BV2
cells were evaluated following a 24 h treatment with CU-19, CU-21, CU (3 µM) and LPS (1 µg/mL).
(B) The fluorescence intensity of NF-κB in nucleus. Results were the mean ± SD, n = 3; ### p < 0.001
vs. control; *** p < 0.001 vs. LPS alone.
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2.2.6. The Ability of CU-19 and CU-21 to Inhibit LPS-Induced MAPK Activation

Inflammatory stimuli trigger a signaling cascade mediated by MAPKs, which activates
the expression of inflammatory mediators such as COX-2, iNOS, TNF-α, IL-1β and IL-6 [27,28].
We examined the impact of CU-19, CU-21 and CU on the phosphorylation of three MAPKs
subtypes, including p38, c-Jun NH2-terminal kinase (JNK) and extracellular regulated protein
kinases (ERK). As shown in Figure 6, CU-19 and CU-21 significantly decreased JNK, ERK
and p38 phosphorylation compared to the LPS group.
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Figure 6. CU-19, CU-21 and CU inhibited LPS-induced activation of MAPK signaling pathways
in BV2 cells. BV2 cells were pretreated with CU-19, CU-21 and CU (3 µM) for 1 h, followed by
stimulation with LPS (1 µg/mL) for 24 h, then were subjected to immunoblot analysis using antibodies
that specifically recognized phosphorylated and non-phosphorylated p38, JNK, ERK. Results were
the mean ± SD, n = 3; # p < 0.05 vs. control; * p < 0.05, *** p < 0.001 vs. LPS alone.

2.3. Pharmacokinetic Study

In order to investigate the metabolic stability of the active compounds, a preliminary
pharmacokinetic study was conducted in rats. After a single intravenous dose of 20
mg/kg, 0.5 mL of blood was obtained from the fossa orbitalis veniplex of rats at 5, 10,
20, 30, 45, 60, 120, 180 and 240 min. HPLC was used to determine the concentration of
each compound in plasma and the DAS software was used for the noncompartmental
pharmacokinetic analysis of the plasma concentration–time data. The representative HPLC
spectrums are shown in Figures S1–S9 (Supplementary Materials). A metabolite of CU was
detected (Figures S1–S3), and no obvious metabolites of CU-19 and CU-21 were detected
(Figures S4–S9). The mean (±SD) plasma concentration–time curves of CU, CU-19 and
CU-21 in the plasma of healthy rats (n = 4) are shown in Figure 7. The pharmacokinetic
parameters (Cmax, the peak concentration; T1/2, the half-life; CL, the total body clearance;
AUC, the area under the curve; MRT, the mean residence time) are presented in Table 4. The
Cmax of CU was lower than that of CU-19 and CU-21. Additionally, the differences in the
AUC also exhibited a large increase from CU to CU-19 and CU-21. Furthermore, the T1/2
of CU-19 and CU-21 increased 4.5- and 5.5-fold in comparison with that of CU, respectively.
In summary, the results of the preliminary pharmacokinetic study indicate, to some extent,
the deletion of β-diketone decreases the degree and speed of metabolism of curcuminoids,
and the mono-carbonyl analogues of CU may possess much better pharmacokinetic profiles
than CU.
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Figure 7. Mean (±SD) plasma concentration–time profiles of CU-19, CU-21 and CU in the plasma of
healthy rats (n = 4), which were administered a single intravenous dose of 20 mg compound per kg
of body weight.

Table 4. Pharmacokinetic characteristics of CU-19, CU-21 and CU in the plasma of healthy rats (n = 4),
which were administrated a single intravenous dose of 20 mg compound per kg of body weight.
Results are shown as the mean ± SD, n = 4.

Parameter CU CU-19 CU-21

Cmax/(µg·mL−1) 2.45 ± 0.132 3.33 ± 0.393 6.85 ± 0.634
T1/2/min 24.7 ± 16.907 135 ± 6.244 163 ± 36.772

CL (L/h/Kg) 0.500 ± 0.069 0.150 ± 0.021 0.100 ± 0.012
AUC (0-t)/(µg·min·mL−1) 39.1 ± 4.186 106 ± 11.908 170 ± 11.121
AUC (0-∞)/(µg·min·mL−1) 40.7 ± 5.663 133 ± 16.995 212 ± 24.724

MRT (0-t)/min 14.1 ± 3.862 61.2 ± 3.189 45.4 ± 2.659
MRT (0-∞)/min 20.5 ± 9.253 127 ± 3.423 139 ± 22.909

3. Conclusions

In summary, we developed a preparation method of 1,7-diphenyl-1,4-heptadien-3-ones,
synthesized 28 compounds and evaluated anti-neuroinflammatory effects of the target com-
pounds. Pharmacological results showed that some analogues bearing the methoxy group
effectively inhibited the release of LPS-induced NO in BV2 cells. Compounds CU-19 and
CU-21, with potent inhibition of NO release, reduced the level of TNF-α, IL-6 and PGE-2,
downregulated the expression of COX-2 and iNOS in LPS-induced BV2 cells. A study on
the mechanism of action revealed that CU-19 and CU-21 inhibited the nuclear translocation
of NF-κB and the phosphorylation of MAPKs (ERK, JNK and p38). A preliminary phar-
macokinetic study showed that the pharmacokinetic properties of CU-19 and CU-21 were
significantly ameliorated. The research results indicate that CU-19 and CU-21 are promising
anti-neuroinflammatory agents and are worthy of further study.

4. Experimental Section
4.1. Chemistry and HPLC Analysis

All of the starting materials, reagents and solvents are commercially available and
were used without further purification. Melting points were determined with a Yanaco
MP-52581 apparatus, which were uncorrected. All column chromatography was carried
out on silica gel (200~300 mesh). The 1H NMR and 13C NMR spectra were recorded
on a Bruker instrument (Bruker AVANCE III) shield spectrometer at 600 and 151 MHz,
respectively. High-resolution mass spectra (HRMS) were recorded by an Agilent Accurate-
Mass QTOF 6530 (Agilent, Santa Clara, CA, USA) instrument in ESI mode. The reactions
were monitored by thin-layer chromatography (TLC; HG/T2354-92, GF254).

The purities were determined by high performance liquid chromatography (HPLC).
Purities of all final compounds were more than 97% (Shimadzu, LC-10AT). The column was
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ODS-C18 (4.6 × 250 mm, 5 µm). Chromatography conditions for compounds CU-3, CU-4,
CU-10, CU-14, CU-15, CU-16, CU-21, CU-22, CU-23, CU-28, mobile phase: MeOH:H2O =
80:20; CU-5, CU-6, CU-24, CU-25, mobile phase: MeOH:H2O = 75:25; CU-7, CU-8, CU-9,
CU-11, CU-27, mobile phase: MeOH:H2O = 70:30; CU-1, CU-2, CU-12, CU-13, CU-17,
CU-18, CU-19, CU-20, CU-26, mobile phase: MeOH:H2O = 55:45; wavelength: 254 nm;
column temperature: 30 ◦C; flow rate: 1.0 mL/min.

4.1.1. The Synthesis of 4-(methoxymethoxy)benzaldehyde 2

Diisopropylethyl amine (DIPEA, 20.4 mL, 122.8 mmol) was added to a stirred solution
of 4-hydroxybenzaldehyde (10.00 g, 81.9 mmol) in CH2Cl2 (50 mL) cooled in an ice-water
bath. Then, MOMBr (6.7 mL, 81.9 mmol) was added dropwise. After the addition was
complete, the mixture was stirred at room temperature for 5 h. The reaction was quenched
by adding water (50 mL). The organic phase was separated and the aqueous phase was
extracted with CH2Cl2 (3 × 50 mL). The combined organic phase was washed successively
with 1 M hydrochloric acid, water, 1 M aqueous sodium hydroxide and brine, and then
dried over anhydrous sodium sulfate., The filtrate was concentrated under reduced pres-
sure to afford intermediate 2 (18.90 g, 92.8%) as colorless oil. The product was used directly
for the next step without further purification. 1H NMR (600 MHz, DMSO-d6) δ 9.89 (s, 1H,
-CHO), 7.88 (d, J = 8.7 Hz, 2H, Ar-H), 7.21 (d, J = 8.7 Hz, 2H, Ar-H), 5.32 (s, 2H, -OCH2O-),
3.40 (s, 3H, -OCH3). ESI-HRMS (m/z): calcd. for C9H11O3 [M+H]+ 167.0708, found167.0707.

4.1.2. The Synthesis of (E)-3-(4-(methoxymethoxy)phenyl)acrylic Acid 3

Malonic acid (11.30 g, 107.5 mmol), pyridine (15.7 mL, 194.8 mmol), and aniline
(0.7 mL, 7.2 mmol) were added to a stirred solution of substituted benzaldehyde 2 (12.00 g,
72.2 mmol) in toluene (20 mL). The resulting mixture was refluxed for 1 h, then the solvent
was evaporated under reduced pressure. The residue was poured into 1M hydrochloric
acid solution. The precipitate was collected by filtration to provide 3 (14.20 g, 94.2%) as a
white solid. The product was of high purity and was used for the next step without further
purification. m.p.: 145–147 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.25 (s, 1H, -COOH), 7.64
(d, J = 8.7 Hz, 2H, Ar-H), 7.54 (d, J = 16.0 Hz, 1H, -CH=), 7.05 (d, J = 8.7 Hz, 2H, Ar-H), 6.39
(d, J = 16.0 Hz, 1H, -CH=), 5.24 (s, 2H, -OCH2O-), 3.38 (s, 3H, -OCH3). ESI-HRMS (m/z):
calcd. for C11H11O4 [M-H]− 207.0657, found 207.0659.

4.1.3. The Synthesis of Diethyl(E)-2-(3-(4-(methoxymethoxy)phenyl)acryloyl)malonate 4
and Diethyl(E)-2-(1-hydroxy-3-(4-(methoxymethoxy)phenyl)allylidene)malonate 4′

A suspension of substituted phenyl acrylic acid 3 (10.00 g, 48.0 mmol) in CH2Cl2
(300 mL) was cooled to 0 ◦C and nitrogen was injected continuously into the suspension.
Oxalyl chloride (8.1 mL, 96.1 mmol) was added dropwise with stirring. After the addition
was complete, the mixture was stirred for 1 h at room temperature. Then, the solvent was
evaporated under reduced pressure and the residue was azeotroped twice with CH2Cl2
to afford acyl chloride. Sodium hydride (60% dispersion in oil, 3.80 g, 96.1 mmol) was
added in four batches to a stirred solution of diethyl malonate (14.6 mL, 96.1 mmol) in
anhydrous tetrahydrofuran (THF, 70 mL) in 30 min under nitrogen. Then, the solution
of acyl chloride prepared above in anhydrous THF (20 mL) was added dropwise and
the mixture was stirred for 2 h at room temperature. The reaction was quenched by the
careful addition of water (50 mL). The solvent was evaporated under reduced pressure.
The residue was adjusted to pH 5 with 1 M hydrochloric acid and then extracted with
EtOAc (3 × 50 mL). The combined organic phase was washed with brine and dried over
anhydrous sodium sulfate. The filtrate was concentrated under reduced pressure to afford
a mixture of intermediate 4 and 4′ (13.80 g, 82.2%) as yellow oil. The product was used
directly for the next step without further purification. 4, 1H NMR (600 MHz, DMSO-d6)
δ 7.69 (d, J = 8.7 Hz, 2H, Ar-H), 7.65 (d, J = 16.1 Hz, 1H, -CH=), 7.09 (d, J = 8.6 Hz, 2H,
Ar-H), 6.89 (d, J = 16.1 Hz, 1H, -CH=), 5.39 (s, 1H, -CH-), 5.26 (s, 2H, -OCH2O-), 4.18 (q,
J = 7.0 Hz, 4H, -OCH2CH3 × 2), 3.38 (s, 3H, -OCH3), 1.19 (t, J = 7.1 Hz, 6H, -OCH2CH3×2).
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4′, 1H NMR (600 MHz, DMSO-d6) δ 12.93 (s, 1H, -OH), 7.61 (d, J = 8.7 Hz, 2H, Ar-H), 7.57
(d, J = 15.7 Hz, 1H, -CH=), 7.08 (d, J = 8.6 Hz, 2H, Ar-H), 6.88 (d, J = 15.7 Hz, 2H, -CH=),
5.25 (s, 2H, -OCH2O-), 4.26 (q, J = 7.1 Hz, 4H, -OCH2CH3 × 2), 3.38 (s, 3H, -OCH3), 1.26
(t, J = 7.1 Hz, 6H, -OCH2CH3 × 2). ESI-HRMS (m/z): calcd. for C18H22O7Na [M+Na]+

373.1263, found 373.1280.
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4.1.5. The Synthesis of 3-(4-(methoxymethoxy)phenyl)propionic acid 6

Pd/C (l0%, 0.30 g) was added to a stirred solution of 3 (10.00 g, 48.0 mmol) in methanol
(40 mL), and the reaction mixture was stirred under hydrogen atmosphere for 2 h at room
temperature. The catalyst was then filtered off and the solvent was evaporated under
reduced pressure to furnish the substituted propionic acid 6 (9.90 g, 98.3%) as a white solid.
The product was of high purity and was used in the next step without further purification.
m.p.: 50–52 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 12.08 (s, 1H, -COOH), 7.14 (d, J = 8.5 Hz,
2H, Ar-H), 6.92 (d, J = 8.5 Hz, 2H, Ar-H), 5.14 (s, 2H, -OCH2O-), 3.36 (s, 3H, -OCH3), 2.75 (t,
J = 7.6 Hz, 2H, -CH2), 2.48 (t, J = 7.6 Hz, 2H, -CH2). ESI-HRMS (m/z): calcd. for C11H13O4
[M-H]− 209.0841, found 209.0829.

4.1.6. The Synthesis of (1E,3E)-1,7-bis(4-(methoxymethoxy)phenyl)-3-hydroxy-4-
(ethoxycarbonyl)-1,3-heptadiene-5-one 8

A suspension of substituted propionic acid 6 (8.20 g, 39.0 mmol) in CH2Cl2 (240 mL)
was cooled to 0 ◦C, and nitrogen was injected continuously into the reaction mixture. Oxalyl
chloride (6.6 mL, 78.0 mmol) was added with stirring and the solution was stirred for 1.5 h.
The solvent was evaporated under reduced pressure and the residue was azeotroped twice
with CH2Cl2 to afford acyl chloride 7. Magnesium turnings (0.70 g, 31.2 mmol) were added
to a solution of absolute ethanol (1.5 mL, 26.0 mmol) and carbon tetrachloride (0.2 mL,
2.6 mmol), and the mixture was stirred for 5 min at room temperature. Then, THF (10 mL)
was added and the mixture was heated to 60 ◦C. A solution of 5 (7.20 g, 26.0 mmol) in THF
(10 mL) was added, and the mixture was refluxed for 1 h. Then, a solution of 7 prepared
above in THF (5 mL) was added dropwise. After the addition was complete, the mixture
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was refluxed for 1 h. The reaction was cooled and quenched by careful addition of water
(50 mL). After the removal of the solvent under reduced pressure, the residue was adjusted
to pH 6 with 1 M hydrochloric acid, then extracted with EtOAc (3×50 mL). The combined
organic phase was washed with brine and dried over anhydrous sodium sulfate. The filtrate
was concentrated under reduced pressure and the residue was separated using silica gel
chromatography with petroleum ether/ethyl acetate (5:1) as an eluting agent to furnish 8
(6.40 g. 52.3%) as yellow oil. 1H NMR (600 MHz, DMSO-d6) δ 7.75 (d, J = 15.7 Hz, 1H, -CH=),
7.66 (d, J = 8.8 Hz, 2H, Ar-H), 7.14 (d, J = 8.5 Hz, 2H, Ar-H), 7.09 (d, J = 8.8 Hz, 2H, Ar-H),
7.05 (d, J = 15.6 Hz, 1H, -CH=), 6.93 (d, J = 8.6 Hz, 2H, Ar-H), 5.26 (s, 2H, -OCH2O-), 5.14 (s,
2H, -OCH2O-), 4.29 (q, J = 7.1 Hz, 2H, -OCH2CH3), 3.38 (s, 3H, -OCH3), 3.36 (s, 3H, -OCH3),
2.96 (t, J = 7.7 Hz, 2H, -CH2), 2.84 (t, J = 7.6 Hz, 2H, -CH2), 1.28 (t, J = 7.1 Hz, 3H, -OCH2CH3).
ESI-HRMS (m/z): calcd. for C26H30O8Na [M+Na]+ 493.1838, found 493.1824.

4.1.7. The Synthesis of (1E,3E)-1,7-bis(4-(methoxymethoxy)phenyl)-3-hydroxy-
1,3-heptadiene-5-one 9

A mixture of 8 (3.10 g, 6.4 mmol), water (0.2 mL, 12.8 mmol) and DMSO (15 mL) was
heated at 120 ◦C for 5 h, then quenched with water (30 mL) and extracted with EtOAc
(3× 30 mL). The combined organic phase was washed with brine and dried over anhydrous
sodium sulfate. The filtrate was concentrated under reduced pressure and the residue
was separated by silica gel chromatography with petroleum ether/ethyl acetate (5:1) as an
eluting agent to furnish 9 (1.40 g, 54.2%) as yellow oil. 1H NMR (600 MHz, DMSO-d6) δ
15.51 (s, 1H, -OH), 7.64 (d, J = 8.8 Hz, 2H, Ar-H), 7.52 (d, J = 15.9 Hz, 1H, -CH=), 7.16 (d,
J = 8.6 Hz, 2H, Ar-H), 7.06 (d, J = 8.8 Hz, 2H, Ar-H), 6.93 (d, J = 8.6 Hz, 2H, Ar-H), 6.67 (d,
J = 15.9 Hz, 1H, -CH=), 5.91 (s, 1H, -CH=), 5.24 (s, 2H, -OCH2O-), 5.14 (s, 2H, -OCH2O-),
3.38 (s, 3H, -OCH3), 3.35 (s, 3H, -OCH3), 2.84 (t, J = 7.4 Hz, 2H, -CH2), 2.70 (t, J = 7.6 Hz, 2H,
-CH2). ESI-HRMS (m/z): calcd. for C23H26O6Na [M+Na]+ 421.1627, found 421.1614.

4.1.8. The Synthesis of (E)-1,7-bis(4-(methoxymethoxy)phenyl)-5-hydroxy-
1-heptene-3-one 10

An amount of 1 M BH3·THF (2.5 mL, 2.5 mmol) was added dropwise to a stirred solu-
tion of 9 (1.10 g, 2.5 mmol) in anhydrous THF (40 mL) at 0 ◦C under nitrogen atmosphere.
After the addition was complete, the reaction mixture was stirred for 1 h at room tempera-
ture and then quenched by careful addition of 1 M sodium hydroxide and concentrated
under reduced pressure. The residue was adjusted to pH 6.0 with 1 M hydrochloric acid
and then extracted with EtOAc (3 × 20 mL). The combined organic phase was washed
with brine and dried over anhydrous sodium sulfate. The filtrate was concentrated un-
der reduced pressure and the residue was separated by silica gel chromatography with
petroleum ether/ethyl acetate (4:1) as an eluting agent to furnish 10 (0.60 g, 58.2%) as a
pale yellow solid, m.p.: 45–47 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 7.66 (d, J = 8.4 Hz, 2H,
Ar-H), 7.54 (d, J = 16.2 Hz, 1H, -CH=), 7.11 (d, J = 8.1 Hz, 2H, Ar-H), 7.07 (d, J = 8.4 Hz, 2H,
Ar-H), 6.92 (d, J = 8.1 Hz, 2H, Ar-H), 6.77 (d, J = 16.2 Hz, 1H, -CH=), 5.24 (s, 2H, -OCH2O-),
5.13 (s, 2H, -OCH2O-), 4.70 (d, J = 5.6 Hz, 1H, -OH), 4.01–3.92 (m, 1H, -CH-), 3.38 (s, 3H,
-OCH3), 3.36 (s, 3H, -OCH3), 2.81 (dd, J = 14.9, 7.9 Hz, 1H, -CH2), 2.73–2.62 (m, 2H, -CH2),
2.59–2.53 (m, 1H, -CH2), 1.72–1.58 (m, 2H, -CH2). ESI-HRMS (m/z): calcd. for C23H28O6Na
[M+Na]+ 423.1784, found 423.1835.

4.1.9. The Synthesis of (1E,4E)-1,7-bis(4-(methoxymethoxy)phenyl)-1,4-heptadiene-3-one 11

p-TsOH (0.02 g, 0.1 mmol) was added to a stirred solution of 10 (0.50 g, 1.3 mmol) in
dry EtOAc (20 mL). The reaction was stirred for 2 h under nitrogen atmosphere at 60 ◦C
and then cooled to room temperature. The organic phase was separated and washed
successively with saturated aqueous sodium bicarbonate, water and brine and dried over
anhydrous sodium sulfate. The filtrate was concentrated under reduced pressure and the
residue was separated by silica gel chromatography with petroleum ether/ethyl acetate
(5:1) as an eluting agent to furnish 11 (0.40 g, 86.4%) as yellow oil. 1H NMR (600 MHz,
CDCl3) δ 7.58 (d, J = 15.9 Hz, 1H, -CH=), 7.51 (d, J = 8.6 Hz, 2H, Ar-H), 7.12 (d, J = 8.4 Hz, 2H,
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Ar-H), 7.05 (d, J = 8.5 Hz, 2H, Ar-H), 7.03–6.95 (m, 3H, Ar-H and -CH=), 6.83 (d, J = 15.9 Hz,
1H, -CH=), 6.44 (d, J = 15.7 Hz, 1H, -CH=), 5.21 (s, 2H, -OCH2O-), 5.15 (s, 2H, -OCH2O-),
3.48 (s, 3H, -OCH3), 3.48 (s, 3H, -OCH3), 2.78 (t, J = 7.7 Hz, 2H, -CH2), 2.60–2.54 (m, 2H,
-CH2). ESI-HRMS (m/z): calcd. for C23H26O5Na [M+Na]+ 405.1678, found 405.1718.

4.1.10. The Synthesis of the Target Compounds

Concentrated hydrochloric acid (0.2 mL, 2.5 mmol) was added to a solution of 11
(0.20 g, 0.5 mmol) in EtOAc (20 mL) and the reaction mixture was stirred for 1 h at
room temperature. The reaction solution was adjusted to pH 6 with 1M aqueous sodium
hydroxide and then extracted with EtOAc (3 × 20 mL). The combined organic phase was
washed with brine and dried over anhydrous sodium sulfate. The filtrate was concentrated
under reduced pressure and the residue was separated by silica gel chromatography with
petroleum ether/ethyl acetate (5:1) as an eluting agent to furnish CU-1 (0.10 g, 83.2%) as a
yellow solid.

All the target compounds were synthesized using a similar method to the one de-
scribed for the synthesis of CU-1. For the compounds without phenolic hydroxyl groups,
such as CU-2, the corresponding steps of introducing the protective groups and removing
them in the above route were not required.

(1E,4E)-1,7-bis(4-hydroxyphenyl)-1,4-heptadien-3-one (CU-1)

Yellow solid; yield: 83.2%; m.p.: 154–156 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 10.04
(s, 1H, Ar-OH), 9.16 (s, 1H, Ar-OH), 7.60 (d, J = 8.6 Hz, 2H, Ar-H), 7.55 (d, J = 16.0 Hz, 1H,
-CH=), 7.03 (d, J = 8.4 Hz, 2H, Ar-H), 7.00–6.95 (m, 2H, -CH= and -CH=), 6.82 (d, J = 8.6 Hz,
2H, Ar-H), 6.68 (d, J = 8.4 Hz, 2H, Ar-H), 6.51 (d, J = 15.7 Hz, 1H, -CH=), 2.68 (t, J = 7.7 Hz,
2H, -CH2), 2.53–2.49 (m, 2H, -CH2). 13C NMR (151 MHz, DMSO-d6) δ 188.5, 160.2, 155.8,
146.8, 143.2, 131.4, 130.9, 129.8, 129.5, 126.0, 122.1, 116.1, 115.4, 34.4, 33.3. ESI-HRMS (m/z):
calcd. for C19H18O3[M-H]− 293.1178, found 293.1183. Purity: 99.0% (tR = 7.00 min).

(1E,4E)-1,7-bis(3,4-dimethoxyphenyl)-1,4-heptadien-3-one (CU-2)

Yellow solid; yield: 51.7%; m.p.: 97–99 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.57 (d,
J = 15.9 Hz, 1H, -CH=), 7.15 (d, J = 8.3 Hz, 1H, Ar-H), 7.09 (s, 1H, Ar-H), 7.02 (dt, J = 14.6,
6.8 Hz, 1H, -CH=), 6.88 (d, J = 8.3 Hz, 1H, Ar-H), 6.82–6.79 (m, 2H, Ar-H and -CH=),
6.75–6.72 (m, 2H, Ar-H), 6.47 (d, J = 15.5 Hz, 1H, -CH=), 3.93 (s, 6H, Ar-OCH3), 3.88 (s, 3H,
Ar-OCH3), 3.86 (s, 3H, Ar-OCH3), 2.78 (t, J = 7.7 Hz, 2H, -CH2), 2.61–2.57 (m, 2H, -CH2).
13C NMR (151 MHz, CDCl3) δ 188.8, 151.2, 149.1, 148.8, 147.3, 146.3, 143.1, 133.4, 129.4,
127.6, 123.0, 120.1, 111.7, 111.2, 111.0, 109.7, 55.8, 55.8, 55.8, 55.7, 34.5, 34.0. ESI-HRMS (m/z):
calcd. for C23H26O5Na [M+Na]+ 405.1678, found 405.1693. Purity: 98.2% (tR = 14.87 min).

(1E,4E)-7-phenyl-1-(4-methoxyphenyl)-1,4-heptadien-3-one (CU-3)

Pale yellow solid; yield: 51.4%; m.p.: 48–50 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.59
(d, J = 15.9 Hz, 1H, -CH=), 7.52 (d, J = 8.7 Hz, 2H, Ar-H), 7.31 (t, J = 7.6 Hz, 2H, Ar-H),
7.24–7.18 (m, 3H, Ar-H), 7.01 (dt, J = 15.6, 6.8 Hz, 1H, -CH=), 6.92 (d, J = 8.7 Hz, 2H, Ar-H),
6.82 (d, J = 15.9 Hz, 1H, -CH=), 6.44 (d, J = 15.6 Hz, 1H, -CH=), 3.85 (s, 3H, Ar-OCH3), 2.83
(t, J = 7.8 Hz, 2H, -CH2), 2.68–2.51 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.1,
161.5, 146.2, 143.0, 140.9, 130.0, 129.7, 128.5, 128.4, 127.5, 126.1, 122.7, 114.4, 55.4, 34.5, 34.4.
ESI-HRMS (m/z): calcd. for C20H20O2Na [M+Na]+ 315.1361, found 315.1354. Purity: 95.7%
(tR = 11.00 min).

(1E,4E)-7-phenyl-1-(3,4,5-trimethoxyphenyl)-1,4-heptadien-3-one (CU-4)

Yellow solid; yield: 50.9%; m.p.: 95–97 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.53 (d,
J = 15.8 Hz, 1H, -CH=), 7.31 (t, J = 7.6 Hz, 2H, Ar-H), 7.23-7.20 (m, 3H, Ar-H), 7.03 (dt,
J = 15.6, 6.8 Hz, 1H, -CH=), 6.83 (d, J = 15.9 Hz, 1H, -CH=), 6.79 (s, 2H, Ar-H), 6.47 (d, J = 15.6
Hz, 1H, -CH=), 3.90 (s, 6H, Ar-OCH3), 3.89 (s, 3H, Ar-OCH3), 2.84 (t, J = 7.8 Hz, 2H, -CH2),
2.64–2.58 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 188.9, 153.4, 146.7, 143.2, 140.8,
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140.2, 130.2, 129.4, 128.5, 128.3, 126.2, 124.4, 105.4, 60.9, 56.1, 34.5, 34.3. ESI-HRMS (m/z):
calcd. for C22H24O4Na [M+Na]+ 375.1572, found 375.1567. Purity: 98.1% (tR = 8.15 min).

(1E,4E)-1-(2-hydroxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-5)

Earth-yellow solid; yield: 82.1%; m.p.: 134–136 ◦C. 1H NMR (600 MHz, DMSO-d6) δ
10.21 (s, 1H, Ar-OH), 7.84 (d, J = 16.1 Hz, 1H, -CH=), 7.67 (d, J = 7.7 Hz, 1H, Ar-H), 7.30 (t,
J = 7.5 Hz, 2H, Ar-H), 7.27–7.23 (m, 3H, Ar-H), 7.21–7.17 (m, 2H, Ar-H and -CH=), 7.00 (dt,
J = 15.7, 6.8 Hz, 1H, -CH=), 6.91 (d, J = 8.1 Hz, 1H, Ar-H), 6.85 (t, J = 7.5 Hz, 1H, Ar-H), 6.49
(d, J = 15.7 Hz, 1H, -CH=), 2.80 (t, J = 7.7 Hz, 2H, -CH2), 2.61–2.55 (m, 2H, -CH2). 13C NMR
(151 MHz, CDCl3) δ 191.3, 156.4, 147.5, 140.8, 140.5, 131.9, 129.3, 129.1, 128.5, 128.4, 126.2,
125.3, 121.9, 120.4, 116.7, 34.5, 34.5. ESI-HRMS (m/z): calcd. for C19H19O2[M+H]+ 279.1385,
found 279.1390. Purity: 98.5% (tR = 11.37 min).

(1E,4E)-1-(3-hydroxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-6)

Yellow solid; yield: 83.3%; m.p.: 94–96 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.62 (s,
1H, Ar-OH), 7.53 (d, J = 15.9 Hz, 1H, -CH=), 7.30 (t, J = 7.5 Hz, 2H, Ar-H), 7.27–7.22 (m, 3H,
Ar-H), 7.21 -7.16 (m, 2H, Ar-H), 7.13–7.08 (m, 2H, Ar-H and -CH=), 7.05 (dt, J = 15.4, 6.8 Hz,
1H, -CH=), 6.85 (d, J = 7.8 Hz, 1H, Ar-H), 6.55 (d, J = 15.7 Hz, 1H, -CH=), 2.81 (t, J = 7.7 Hz,
2H, -CH2), 2.62–2.55 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 190.0, 156.5, 147.8, 143.8,
140.7, 136.0, 130.1, 129.4, 128.5, 128.3, 126.2, 124.8, 120.7, 118.0, 115.0, 34.4, 34.4. ESI-HRMS
(m/z): calcd. for C19H19O2[M+H]+ 279.1385, found 279.1399. Purity: 98.6% (tR = 9.59 min).

(1E,4E)-1-(4-hydroxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-7)

Grayish yellow solid; yield: 80.2%; m.p.: 121–123 ◦C. 1H NMR (600 MHz, CDCl3)
δ 7.58 (d, J = 15.9 Hz, 1H, -CH=), 7.48 (d, J = 8.6 Hz, 2H, Ar-H), 7.30 (t, J = 7.6 Hz, 2H,
Ar-H), 7.21 (m, 3H, Ar-H), 7.02 (dt, J = 15.4, 6.8 Hz, 1H, -CH=), 6.86 (d, J = 8.5 Hz, 2H,
Ar-H), 6.82 (d, J = 15.9 Hz, 1H, -CH=), 6.44 (d, J = 15.7 Hz, 1H, -CH=), 5.32 (s, 1H, Ar-OH),
2.83 (t, J = 7.8 Hz, 2H, -CH2), 2.63–2.58 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ
190.1, 158.7, 147.2, 144.1, 140.7, 130.4, 129.5, 128.5, 128.3, 127.0, 126.2, 122.2, 116.1, 34.4, 34.4.
ESI-HRMS (m/z): calcd. for C19H17O2 [M-H]− 277.1229, found 277.1247. Purity: 99.0%
(tR = 15.09 min).

(1E,4E)-1-(3-hydroxy-4-methoxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-8)

Yellow solid; yield: 81.6%; m.p.: 72–74 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.16 (s, 1H,
Ar-OH), 7.50 (d, J = 15.9 Hz, 1H, -CH=), 7.36–7.23 (m, 4H, Ar-H), 7.23–7.13 (m, 3H, Ar-H),
7.07–6.96 (m, 2H, Ar-H and -CH=), 6.94 (d, J = 16.0 Hz, 1H, -CH=), 6.54 (d, J = 15.7 Hz, 1H,
-CH=), 3.83 (s, 3H, Ar-OCH3), 2.81 (t, J = 7.6 Hz, 2H, -CH2), 2.63–2.54 (m, 2H, -CH2). 13C
NMR (151 MHz, CDCl3) δ 189.1, 148.6, 146.3, 145.8, 143.0, 140.7, 129.7, 128.4, 128.3, 128.2,
126.1, 123.0, 122.3, 112.9, 110.4, 55.9, 34.4, 34.3. ESI-HRMS (m/z): calcd. for C20H20O3Na
[M+Na]+ 331.1310, found 331.1319. Purity: 98.9% (tR = 10.27 min).

(1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-9)

Yellow solid; yield: 82.7%; m.p.: 114–116 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.66 (s,
1H, Ar-OH), 7.56 (d, J = 15.9 Hz, 1H, -CH=), 7.36 (d, J = 2.0 Hz, 1H, Ar-H), 7.31 (t, J = 7.5 Hz,
2H, Ar-H), 7.26 (d, J = 6.6 Hz, 2H, Ar-H), 7.20 (t, J = 7.2 Hz, 1H, Ar-H), 7.18 (dd, J = 8.2,
2.0 Hz, 1H, Ar-H), 7.07–6.98 (m, 2H, -CH= and -CH=), 6.83 (d, J = 8.1 Hz, 1H, Ar-H), 6.54
(d, J = 15.7 Hz, 1H, -CH=), 3.84 (s, 3H, Ar-OCH3), 2.81 (t, J = 7.7 Hz, 2H, -CH2), 2.61–2.56
(m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.2, 148.2, 146.4, 143.5, 140.8, 129.5, 128.5,
128.4, 127.3, 126.1, 123.4, 122.8, 114.8, 109.7, 55.9, 34.5, 34.4. ESI-HRMS (m/z): calcd. for
C20H20O3Na [M+Na]+ 331.1310, found 331.1317. Purity: 96.7% (tR = 11.38 min).

(1E,4E)-1-(4-chlorophenyl)-7-phenyl-1,4-heptadien-3-one (CU-10)

Pale yellow solid; yield: 80.2%; m.p.: 70–72 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 7.79
(dd, J = 8.8, 2.0 Hz, 2H, Ar-H), 7.61 (d, J = 16.0 Hz, 1H, -CH=), 7.53–7.48 (m, 2H, Ar-H),
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7.31–7.24 (m, 5H, -CH= and Ar-H), 7.19 (t, J = 7.2 Hz, 1H, Ar-H), 7.09 (dt, J = 15.7, 6.8 Hz,
1H, -CH=), 6.52 (d, J = 15.8 Hz, 1H, -CH=), 2.81 (t, J = 7.7 Hz, 2H, -CH2), 2.61–2.57 (m, 2H,
-CH2). 13C NMR (151 MHz, CDCl3) δ 188.9, 147.1, 141.7, 140.7, 136.2, 133.3, 129.7, 129.4,
129.2, 128.5, 128.3, 126.2, 125.1, 34.4, 34.4. ESI-HRMS (m/z): calcd. for C19H18ClO [M+H]+

297.1046, found 297.1039. Purity: 96.0% (tR = 16.00 min).

(1E,4E)-1-(4-hydroxyphenyl)-7-(p-tolyl)-1,4-heptadien-3-one (CU-11)

Yellow solid; yield: 83.4%; m.p.: 132–134 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.51 (d,
J = 15.9 Hz, 1H, -CH=), 7.41 (d, J = 8.6 Hz, 2H, Ar-H), 7.06–7.00 (m, 4H, Ar-H), 6.94 (dt,
J = 15.5, 6.8 Hz, 1H, -CH=), 6.79 (d, J = 8.6 Hz, 2H, Ar-H), 6.75 (d, J = 15.8 Hz, 1H, -CH=),
6.37 (d, J = 15.7 Hz, 1H, -CH=), 5.31 (s, 1H, Ar-OH), 2.72 (t, J = 7.8 Hz, 2H, -CH2), 2.54–2.48
(m, 2H, -CH2), 2.25 (s, 3H, Ar-CH3). 13C NMR (151 MHz, CDCl3) δ 190.1, 158.7, 147.3, 144.1,
137.7, 135.6, 130.4, 129.4, 129.2, 128.2, 127.0, 122.2, 116.1, 34.6, 34.0, 21.0. ESI-HRMS (m/z):
calcd. for C20H20O2Na [M+Na]+ 315.1361, found 315.1360. Purity: 97.9% (tR = 8.69 min).

(1E,4E)-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)-1,4-heptadien-3-one
(CU-12)

Grayish yellow solid; yield: 81.2%; m.p.: 122–124 ◦C. 1H NMR (600 MHz, DMSO-d6)
δ 10.03 (s, 1H, Ar-OH), 8.69 (s, 1H, Ar-OH), 7.62–7.57 (m, 2H, Ar-H), 7.54 (d, J = 16.0 Hz,
1H, -CH=), 7.03–6.94 (m, 2H, -CH= and -CH=), 6.83–6.79 (m, 3H, Ar-H), 6.68 (d, J = 7.9 Hz,
1H, Ar-H), 6.62 (dd, J = 8.0, 2.0 Hz, 1H, Ar-H), 6.51 (d, J = 15.7 Hz, 1H, -CH=), 3.74 (s, 3H,
Ar-OCH3), 2.69 (t, J = 7.6 Hz, 2H, -CH2), 2.55–2.52 (m, 2H, -CH2). 13C NMR (151 MHz,
DMSO-d6) δ 188.5, 160.3, 147.7, 146.8, 145.0, 143.2, 132.1, 130.8, 129.8, 126.0, 122.1, 120.7,
116.1, 115.6, 112.9, 55.8, 34.4, 33.8. ESI-HRMS (m/z): calcd. for C20H20O4Na [M+Na]+

347.1259, found 347.1260. Purity: 98.8% (tR = 8.97 min).

(1E,4E)-1-(4-hydroxyphenyl)-7-(4-methoxyphenyl)-1,4-heptadien-3-one (CU-13)

Yellow solid; yield: 83.8%; m.p.: 136–138 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.59 (d,
J = 15.9 Hz, 1H, -CH=), 7.46 (d, J = 8.5 Hz, 2H, Ar-H), 7.11 (d, J = 8.5 Hz, 2H, Ar-H), 7.02 (dt,
J = 15.6, 6.9 Hz, 1H, -CH=), 6.89 (d, J = 8.5 Hz, 2H, Ar-H), 6.84 (d, J = 8.5 Hz, 2H, Ar-H), 6.81
(d, J = 15.9 Hz, 1H, -CH=), 6.45 (d, J = 15.6 Hz, 1H, -CH=), 3.78 (s, 3H, Ar-OCH3), 2.76 (t,
J = 7.7 Hz, 2H, -CH2), 2.60–2.53 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 190.0, 158.7,
157.9, 147.2, 144.0, 130.4, 129.5, 129.3, 122.2, 116.1, 113.9, 55.3, 34.7, 33.6. ESI-HRMS (m/z):
calcd. for C20H20O3Na [M+Na]+ 331.1310, found 331.1319. Purity: 98.6% (tR = 11.22 min).

(1E,4E)-1,7-bis(4-methoxyphenyl)-1,4-heptadien-3-one (CU-14)

Pale yellow solid; yield: 80.1%; m.p.: 65–67 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.58 (d,
J = 15.9 Hz, 1H, -CH=), 7.52 (d, J = 8.7 Hz, 2H, Ar-H), 7.12 (d, J = 8.6 Hz, 2H, Ar-H), 6.99 (dt,
J = 15.6, 6.9 Hz, 1H, -CH=), 6.91 (d, J = 8.8 Hz, 2H, Ar-H), 6.84 (d, J = 8.6 Hz, 2H, Ar-H),
6.82 (d, J = 15.9 Hz, 1H, -CH=), 6.43 (d, J = 15.6 Hz, 1H, -CH=), 3.85 (s, 3H, Ar-OCH3),
3.79 (s, 3H, Ar-OCH3), 2.77 (t, J = 7.7 Hz, 2H, -CH2), 2.58–2.55 (m, 2H, -CH2). 13C NMR
(151 MHz, CDCl3) δ 189.1, 161.4, 146.3, 142.9, 132.8, 129.9, 129.6, 129.2, 127.4, 122.7, 114.3,
113.8, 55.3, 55.1, 34.5, 33.5. ESI-HRMS (m/z): calcd. for C21H22O3Na [M+Na]+ 345.1467,
found 345.1466. Purity: 98.8% (tR = 10.67 min).

(1E,4E)-1,7-diphenyl-1,4-heptadien-3-one (CU-15)

Pale yellow solid; yield: 53.4%; m.p.: 28–30 ◦C. 1H NMR (600 MHz, DMSO-d6) δ
7.76–7.75 (m, 2H, Ar-H), 7.62 (d, J= 15.96 Hz, 1H, -CH=), 7.45–7.43 (m, 3H, Ar-H), 7.30
(t, J= 7.5 Hz, 2H, Ar-H), 7.26–7.25 (m, 2H, Ar-H), 7.23 (d, J = 16.1 Hz, 1H, -CH=), 7.20
(t, J = 7.2 Hz, 1H, Ar-H), 7.07 (dt, J = 15.7, 6.7 Hz, 1H, -CH=), 6.55 (d, J = 15.7 Hz, 1H,
-CH=), 2.81 (t, J = 7.7 Hz, 2H, -CH2), 2.62–2.56 (m, 2H, -CH2); 13C NMR (151 MHz, CDCl3)
δ 189.2, 146.8, 143.2, 140.7, 134.7, 130.3, 129.5, 128.8, 128.4, 128.3, 128.2, 126.1, 124.7, 34.4,
34.3. ESI-HRMS (m/z): calcd. for C19H19O[M+H]+ 263.1433, found 263.1436, calcd. for
C19H18ONa [M+Na]+ 285.1255, found 285.1259. Purity: 98.8% (tR = 17.36 min).
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(1E,4E)-7-phenyl-1-(p-tolyl)-1,4- heptadien-3-one (CU-16)

Pale yellow solid; yield: 55.5%; m.p.: 46–48 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.59 (d,
J = 15.9 Hz, 1H, -CH=), 7.46 (d, J = 7.9 Hz, 2H, Ar-H), 7.31 (t, J = 7.5 Hz, 2H, Ar-H), 7.23–7.20
(m, 5H, Ar-H), 7.02 (dt, J = 15.4, 6.8 Hz, 1H, -CH=), 6.90 (d, J = 15.9 Hz, 1H, -CH=), 6.45 (d,
J = 15.7 Hz, 1H, -CH=), 2.83 (t, J = 7.8 Hz, 2H, -CH2), 2.66–2.57 (m, 2H, -CH2), 2.38 (s, 3H,
Ar-CH3). 13C NMR (151 MHz, CDCl3) δ 189.2, 146.5, 143.2, 140.9, 140.8, 132.0, 129.6, 128.5,
128.4, 128.3, 126.2, 124.0, 34.5, 34.4, 21.5. ESI-HRMS (m/z): calcd. for C20H20ONa [M+Na]+

299.1412, found 299.1413. Purity: 99.6% (tR = 13.31 min).

(1E,4E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-1,4-heptadien-3-one
(CU-17)

Red solid; yield: 83.2%; m.p.: 141–143 ◦C. 1H NMR (600 MHz, DMSO- d6) δ 9.63 (s, 1H,
Ar-OH), 9.15 (s, 1H, Ar-OH), 7.54 (d, J = 15.9 Hz, 1H, -CH=), 7.34 (d, J = 1.9 Hz, 1H, Ar-H),
7.16 (dd, J = 8.1, 2.0 Hz, 1H, Ar-H), 7.04–7.01 (m, 3H, Ar-H and -CH=), 6.98 (dt, J = 15.6,
6.7 Hz, 1H, -CH=), 6.81 (d, J = 8.1 Hz, 1H, Ar-H), 6.68 (d, J = 8.2 Hz, 2H, Ar-H), 6.51 (d,
J = 15.6 Hz, 1H, -CH=), 3.83 (s, 3H, Ar-OCH3), 2.68 (t, J = 7.7 Hz, 2H, -CH2), 2.53–2.49 (m,
2H, -CH2). 13C NMR (151 MHz, DMSO-d6) δ 188.5, 155.8, 149.8, 148.3, 146.7, 143.6, 131.4,
129.8, 129.5, 126.5, 123.8, 122.4, 115.9, 115.4, 111.7, 56.0, 34.4, 33.3. ESI-HRMS (m/z): calcd.
for C20H20O4Na [M+Na]+ 347.1259, found 347.1264. Purity: 98.9% (tR = 9.05 min).

(1E,4E)-1-(3-hydroxy-4-methoxyphenyl)-7-(4-hydroxyphenyl)-1,4-heptadien-3-one
(CU-18)

Yellow solid; yield: 83.6%; m.p.: 152–154 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.17 (s,
1H, Ar-OH), 9.15 (s, 1H, Ar-OH), 7.50 (d, J = 15.9 Hz, 1H, -CH=), 7.17–7.15 (m, 2H, Ar-H),
7.03 (d, J = 8.4 Hz, 2H, Ar-H), 7.00–6.96 (m, 2H, Ar-H and -CH=), 6.94 (d, J = 16.0 Hz, 1H,
-CH=), 6.68 (d, J = 8.4 Hz, 2H, Ar-H), 6.52 (d, J = 15.7 Hz, 1H, -CH=), 3.82 (s, 3H, Ar-OCH3),
2.68 (t, J = 7.6 Hz, 2H, -CH2), 2.52–2.48 (m, 2H, -CH2). 13C NMR (151 MHz, DMSO-d6) δ
188.5, 155.8, 150.4, 147.0, 147.0, 143.2, 131.3, 129.7, 129.5, 127.8, 123.0, 121.9, 115.4, 114.7,
112.2, 56.0, 34.4, 33.3. ESI-HRMS (m/z): calcd. for C20H20O4Na [M+Na]+ 347.1259, found
347.1261. Purity: 99.0% (tR = 8.28 min).

(1E,4E)-1-(3,4-dimethoxyphenyl)-7-phenyl-1,4-heptadien-3-one (CU-19)

Yellow oil; yield: 53.6%; 1H NMR (600 MHz, CDCl3) δ 7.57 (d, J = 15.9 Hz, 1H, -CH=),
7.32–7.29 (m, 2H, Ar-H), 7.23–7.20 (m, 3H, Ar-H), 7.15 (dd, J = 8.3, 2.0 Hz, 1H, Ar-H), 7.09
(d, J = 2.0 Hz, 1H, Ar-H), 7.02 (dt, J = 15.6, 6.9 Hz, 1H, -CH=), 6.88 (d, J = 8.3 Hz, 1H, Ar-H),
6.81 (d, J = 15.9 Hz, 1H, -CH=), 6.47 (dt, J = 15.6, 1.6 Hz, 1H, -CH=), 3.93 (s, 3H, Ar-OCH3),
3.92 (s, 3H, Ar-OCH3), 2.84 (t, J = 7.3 Hz, 2H, -CH2), 2.63–2.59 (m, 2H, -CH2). 13C NMR
(151 MHz, CDCl3) δ 189.0, 146.3, 143.2, 140.7, 129.4, 128.4, 128.3, 127.6, 126.0, 123.0, 111.0,
109.7, 55.9, 55.8, 34.4, 34.3. ESI-HRMS (m/z): calcd. for C21H22O3Na [M+Na]+ 345.1467,
found 345.1480. Purity: 99.8% (tR = 21.02 min).

(1E,4E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4-heptadien-3-one (CU-20)

Yellow solid; yield: 80.4%; m.p.: 103–105 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.64
(s, 1H, Ar-OH), 8.70 (s, 1H, Ar-OH), 7.55 (d, J = 15.9 Hz, 1H, -CH=), 7.35 (d, J = 2.0 Hz,
1H, Ar-H), 7.17 (dd, J = 8.2, 2.0 Hz, 1H, Ar-H), 7.04 (d, J = 16.0 Hz, 1H, -CH=), 7.00 (dt,
J = 15.6, 6.7 Hz, 1H, -CH=), 6.82–6.80 (m, 2H, Ar-H), 6.68 (d, J = 7.9 Hz, 1H, Ar-H), 6.63
(dd, J = 8.0, 2.0 Hz, 1H, Ar-H), 6.53 (d, J = 15.7 Hz, 1H, -CH=), 3.84 (s, 3H, Ar-OCH3), 3.75
(s, 3H, Ar-OCH3), 2.70 (dd, J = 8.7, 6.6 Hz, 2H, -CH2), 2.56–2.52 (m, 2H, -CH2). 13C NMR
(151 MHz, CDCl3) δ 189.1, 148.1, 146.7, 146.4, 146.3, 143.8, 143.5, 132.7, 129.3, 127.2, 123.2,
122.7, 120.8, 114.7, 114.2, 110.9, 109.6, 55.8, 55.8, 34.6, 34.1. ESI-HRMS (m/z): calcd. for
C21H22O5Na [M+Na]+ 377.1365, found 377.1380. Purity: 98.5% (tR = 6.89 min).
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(1E,4E)-7-(4-methoxyphenyl)-1-phenyl-1,4-heptadien-3-one (CU-21)

Pale yellow solid; yield: 51.6%; m.p.: 58–60 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.61 (d,
J = 15.9 Hz, 1H, -CH=), 7.56 (dd, J = 6.6, 2.9 Hz, 2H, Ar-H), 7.40-7.39 (m, 3H, Ar-H), 7.12 (d,
J = 8.4 Hz, 2H, Ar-H), 7.02 (dt, J = 15.7, 6.9 Hz, 1H, -CH=), 6.94 (d, J = 15.9 Hz, 1H, -CH=),
6.85 (d, J = 8.5 Hz, 2H, Ar-H), 6.44 (d, J = 15.7 Hz, 1H, -CH=), 3.79 (s, 3H, -OCH3), 2.78 (t,
J = 7.7 Hz, 2H, -CH2), 2.60–2.55 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.1, 146.9,
143.0, 132.7, 130.3, 129.5, 129.2, 128.8, 128.2, 124.8, 113.8, 55.1, 34.6, 33.5. ESI-HRMS (m/z):
calcd. for C20H20O2Na [M+Na]+ 315.1361, found 315.1368. Purity: 98.7% (tR = 11.03 min).

(1E,4E)-1-phenyl-7-(p-tolyl)-1,4-heptadien-3-one (CU-22)

Pale yellow solid; yield: 54.9%; m.p.: 62–64 ◦C. 1H NMR (600 MHz, DMSO-d6) δ
7.77–7.73 (m, 2H, Ar-H), 7.62 (d, J = 16.0 Hz, 1H, -CH=), 7.45–7.42 (m, 3H, Ar-H), 7.23 (d,
J = 16.1 Hz, 1H, -CH=), 7.13 (d, J = 8.0 Hz, 2H, Ar-H), 7.11–7.04 (m, 3H, Ar-H and -CH=),
6.53 (d, J = 15.7 Hz, 1H, -CH=), 2.76 (t, J = 7.6 Hz, 2H, -CH2), 2.58–2.54 (m, 2H, -CH2), 2.26
(s, 3H, Ar-CH3). 13C NMR (151 MHz, CDCl3) δ 189.2, 147.0, 143.1, 137.7, 135.6, 134.8, 130.4,
129.6, 129.2, 128.9, 128.3, 128.2, 124.8, 34.5, 34.0, 21.0. ESI-HRMS (m/z): calcd. for C20H21O
[M+H]+ 277.1592, found 277.1584. Purity: 99.0% (tR = 10.49 min).

(1E,4E)-7-(3,4-dimethoxyphenyl)-1-phenyl-1,4-heptadien-3-one (CU-23)

Pale yellow oil; yield: 53.5%; 1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 16.0 Hz, 1H,
-CH=), 7.59–7.55 (m, 2H, Ar-H), 7.40-7.39 (m, 3H, Ar-H), 7.03 (dt, J = 15.7, 6.9 Hz, 1H,
-CH=), 6.94 (d, J = 16.0 Hz, 1H, -CH=), 6.81 (d, J = 8.1 Hz, 1H, Ar-H), 6.75–6.72 (m, 2H,
Ar-H), 6.45 (d, J = 15.7 Hz, 1H, -CH=), 3.88 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 2.79 (t,
J = 7.7 Hz, 2H, -CH2), 2.62–2.57 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.1, 148.8,
146.8, 143.1, 133.3, 130.3, 129.5, 128.8, 128.2, 124.7, 120.1, 111.6, 111.2, 55.8, 55.7, 34.5, 34.0.
ESI-HRMS (m/z): calcd. for C21H22O3Na [M+Na]+ 345.1467, found 345.1467. Purity: 97.8%
(tR = 6.99 min).

(1E,4E)-7-(3-hydroxyphenyl)-1-phenyl-1,4-heptadien-3-one (CU-24)

Pale yellow solid; yield: 81.7%; m.p.: 70–72 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.27
(s, 1H, Ar-OH), 7.77–7.74 (m, 2H, Ar-H), 7.62 (d, J = 16.0 Hz, 1H, -CH=), 7.44–7.43 (m, 3H,
Ar-H), 7.23 (d, J = 15.8 Hz, 1H, -CH=), 7.09–7.04 (m, 2H, Ar-H and -CH=), 6.66 (d, J = 7.4 Hz,
1H, Ar-H), 6.63 (s, 1H, Ar-H), 6.58 (d, J = 8.0 Hz, 1H, Ar-H), 6.54 (d, J = 15.9 Hz, 1H, -CH=),
2.70 (t, J = 8.1 Hz, 2H, -CH2), 2.57–2.53 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.9,
156.1, 147.6, 143.8, 142.5, 134.6, 130.6, 129.7, 129.5, 128.9, 128.4, 124.7, 120.5, 115.4, 113.3, 34.3,
34.2. ESI-HRMS (m/z): calcd. for C19H18O2Na [M+H]+ 279.1385, found 279.1396. Purity:
99.2% (tR = 7.89 min).

(1E,4E)-7-(4-hydroxyphenyl)-1-phenyl-1,4-heptadien-3-one (CU-25)

Red solid; yield: 81.2%; m.p.: 75–77 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.16 (s, 1H,
Ar-OH), 7.76–7.75 (m, 2H, Ar-H), 7.62 (d, J = 16.1 Hz, 1H, -CH=), 7.46–7.44 (m, 3H, Ar-H),
7.23 (d, J = 16.0 Hz, 1H, -CH=), 7.08–7.02 (m, 3H, Ar-H and -CH=), 6.69–6.67 (m, 2H, Ar-H),
6.52 (d, J = 15.7 Hz, 1H, -CH=), 2.69 (t, J = 8.0 Hz, 2H, -CH2), 2.54–2.51 (m, 2H, -CH2).
13C NMR (151 MHz, CDCl3) δ 189.7, 154.2, 147.5, 143.6, 130.5, 129.5, 129.4, 128.9, 128.3,
124.7, 115.4, 34.7, 33.6. ESI-HRMS (m/z): calcd. for C19H18O2Na [M+H]+ 279.1385, found
279.1394. Purity: 98.9% (tR = 6.61 min).

(1E,4E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-1,4-heptadien-3-one (CU-26)

Pale yellow solid; yield: 80.1%; m.p.: 72–74 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 8.80
(s, 1H, Ar-OH), 7.75 (dd, J = 6.7, 2.9 Hz, 2H, Ar-H), 7.62 (d, J = 16.1 Hz, 1H, -CH=), 7.46–7.43
(m, 3H, Ar-H), 7.22 (d, J = 16.1 Hz, 1H, -CH=), 7.05 (dt, J = 15.7, 6.7 Hz, 1H, -CH=), 6.83 (d,
J = 8.2 Hz, 1H, Ar-H), 6.67 (d, J = 2.1 Hz, 1H, Ar-H), 6.62 (dd, J = 8.2, 2.1 Hz, 1H, Ar-H), 6.54
(d, J = 15.8 Hz, 1H, -CH=), 3.73 (s, 3H, Ar-OCH3), 2.67 (t, J = 7.6 Hz, 2H, -CH2), 2.55–2.52
(m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 147.0, 145.6, 145.0, 143.1, 134.8, 134.1, 130.3,
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129.6, 128.9, 128.3, 124.8, 119.7, 114.5, 110.7, 56.0, 34.5, 33.8. ESI-HRMS (m/z): calcd. for
C20H20O3Na [M+Na]+ 331.131, found 331.1316. Purity: 99.0% (tR = 15.05 min).

(1E,4E)-1-phenyl-7-(3,4,5-trimethoxyphenyl)-1,4-heptadien-3-one (CU-27)

Pale yellow oil; yield: 50.3%. 1H NMR (600 MHz, CDCl3) δ 7.63 (d, J = 16.0 Hz, 1H,
-CH=), 7.57 (dd, J = 6.7, 3.0 Hz, 2H, Ar-H), 7.41–7.40 (m, 3H, Ar-H), 7.04 (dt, J = 15.6, 6.9 Hz,
1H, -CH=), 6.95 (d, J = 15.9 Hz, 1H, -CH=), 6.48 (d, J = 15.7 Hz, 1H, -CH=), 6.42 (s, 2H,
Ar-H), 3.85 (s, 6H, Ar-OCH3), 3.83 (s, 3H, Ar-OCH3), 2.78 (t, J = 7.7 Hz, 2H, -CH2), 2.63–2.59
(m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 153.1, 146.8, 143.3, 136.2, 134.6, 130.4, 129.5,
128.8, 128.6, 128.2, 127.1, 124.7, 105.2, 60.7, 56.0, 34.8, 34.4. ESI-HRMS (m/z): calcd. for
C22H24O4Na [M+Na]+ 375.1572, found 375.1569. Purity: 97.7% (tR = 10.33 min).

(1E,4E)-7-(4-chlorophenyl)-1-phenyl-1,4-heptadien-3-one (CU-28)

Pale yellow solid; yield: 56.8%; m.p.: 48–50 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.61
(d, J = 16.0 Hz, 1H, -CH=), 7.57 (dd, J = 6.7, 2.9 Hz, 2H, Ar-H), 7.41–7.39 (m, 3H, Ar-H),
7.27 (d, J = 8.4 Hz, 2H, Ar-H), 7.13 (d, J = 8.3 Hz, 2H, Ar-H), 6.99 (dt, J = 15.6, 6.8 Hz, 1H,
-CH=), 6.93 (d, J = 16.0 Hz, 1H, -CH=), 6.44 (d, J = 15.6 Hz, 1H, -CH=), 2.81 (t, J = 7.7 Hz,
2H, -CH2), 2.60–2.57 (m, 2H, -CH2). 13C NMR (151 MHz, CDCl3) δ 189.0, 151.3, 149.2,
147.4, 146.4, 143.3, 133.4, 129.4, 127.7, 123.1, 123.0, 120.2, 111.7, 111.3, 111.0, 109.8, 34.6, 34.1.
ESI-HRMS (m/z): calcd. for C19H17ClONa [M+Na]+ 319.0866, found 319.0875. Purity:
97.9% (tR = 17.37 min).

4.2. Biological Evaluation
4.2.1. Cell Culture

The BV2 microglial cells were purchased from the China Center for Type Culture
Collection, CCTCC (Wuhan, Hubei). BV2 microglia cells were incubated in DMEM media
supplemented with 10% (v/v) FBS, 100 U/mL penicillin G and 100 mg/mL streptomycin at
37 ◦C with 5% CO2.

4.2.2. Determination of Cell Viability

Cell viability assays were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay. BV2 microglia cells were seeded in 96-well
plates at a density of 1.6× 105 cells/well in complete medium and incubated for 24 h. Then,
the culture medium was sucked and discarded, and sterile PBS was added for washing,
and then PBS was removed. Then the cells were treated with different concentrations of
target compounds for 24 h. An amount equal to 100 µL of MTT was added to each well
and the cells were further incubated for 2–4 h. An amount equal to 150 µL of DMSO was
added into a 96-well plate and vibrated with micro-oscillator for 10 min. The optical density
(A) was measured at 630 nm on a microplate reader. The inhibitory rate of the various
concentrations of agents in BV2 cells was calculated using the following formula:

Cell viability (%) = [A492 (sample) − A492 (blank)]/[A492 (control) − A492 (blank)] × 100%

4.2.3. Assay for NO Production

Nitrite, a stable product of nitric oxide, was used to assess NO production. To study
the effects of the compounds on NO production, BV2 microglia cells in the logarithmic
phase were plated at 1 × 105 cells/well in a 24-well microplate and incubated in DMEM
medium (10% FBS) overnight. The cells were pretreated with various concentrations of
the test compounds for 1 h and further co-cultured with 1 µg/mL LPS and 5% CO2 for
24 h in a 37 ◦C incubator; then, the supernatant was taken and stored at −20 ◦C for NO
detection. The target compound and LPS were configured with DMEM medium (2% FBS).
The determination of NO was carried out according to the instructions. Unpretreated
and unstimulated BV2 microglia cells were conducted as the blank control group. The
absorbance value was determined at 540 nm, and the corresponding NO content was
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calculated by using the standard curve. The NO inhibitory rate of the various concentrations
of agents in BV2 cells was calculated as per the following formula:

Inhibition rate (%) = (LPS(NO concentration) − sample(NO concentration))/(LPS(NO concentration) −
negative control(NO concentration)) × 100%.

4.2.4. Inflammatory Mediator Assays

BV2 microglia cells were seeded at 1 × 105 cells/well in a 24-well microplate and
incubated overnight. The cells were pretreated with 3 µM of CU-19, CU-21 and curcumin
for 1 h and then stimulated with 1 µg/mL of LPS for 24 h. CU-19, CU-21 and LPS were
configured with DMEM medium (2% FBS). According to the protocol of the manufacturer,
supernatant was harvested at the 24th hour for the assay of IL-6, TNF-α and PGE-2 with
ELISA kits (Absin Shanghai, China). Briefly, 100 µL of biotinylated antibody reagent and the
culture supernatant were added to anti-mouse IL-6, TNF-α and PGE-2-precoated 96-well
plates, and the plates were incubated for 2.5 h at room temperature. The plate was washed
with a washing buffer and subsequently incubated with 100 µL of the streptavidin–HRP
solution for 20 min at room temperature. The plate was washed and incubated with 100 µL
of TMB substrate solution for 20 min at room temperature in the dark. The reaction was
stopped by adding 50 µL of stop solution, and then the absorbance was measured at 450 nm
by a plate reader. The average value was substituted into the standard curve to obtain the
antibody concentration.

4.2.5. Western Blot Analysis

BV2 microglia cells (5 × 105 cells/well) plated onto 6-well plates were incubated for
18 h and treated with 3.0 µM of CU-19, CU-21 and curcumin for 1 h and then stimulated
with 1.0 µg/mL of LPS for 24 h. CU-19, CU-21 and LPS were configured with DMEM
medium (2% FBS). The cells were collected and washed three times with ice-cold PBS.
The lysate (containing 1% protease inhibitor and phosphatase inhibitor) was added to
the collected cells for suspension, and the cells were lysed by ultrasonic crusher. Then
the cell lysates were centrifuged (14,000 rpm, 10 min, 4 ◦C) for 5 min and collect the
supernatant. Aliquots of the lysates were separated on 10% sodium dodecyl sulphate (SDS)-
polyacrylamide gel electrophoresis (PAGE) and then electro blotted onto a polyvinylidene
difluoride (PVDF) membrane. The blots were blocked with 5% (w/v) nonfat dry milk for
2 h at room temperature, followed by incubation with specific primary antibodies at 4 ◦C
overnight. Blots were washed with PBST and incubated with secondary antibody for 2 h,
after which an ECL reagent was used for chemiluminescent detection.

4.2.6. Immunofluorescent Staining

Cells were added to 6-well plates (5× 105/well) for 24 h, after which they were treated
with a combination of LPS (1 mg/mL) and 3.0 µM of CU-19, CU-21 and curcumin. CU-19,
CU-21 and LPS were configured with DMEM medium (2% FBS). After 24 h of treatment,
cells were fixed with 4% paraformaldehyde for 18 min and washed three times with PBS
(5 min per wash). The fixed cells were then permeabilized in 1% Triton X-100 (0.15%) for
15 min and washed three times with PBS (5 min per wash). Nonspecific binding sites were
blocked with 5% goat serum for 30 min. These cells were then incubated with anti-NF-κB
antibody at a dilution of 1:400 overnight at 4 ◦C. After washing with PBS three times,
cells were incubated with fluorescent-conjugated secondary antibody (1:150) for 1 h, and
counterstained with DAPI (1:50) at room temperature for 15 min in the dark. Cells were
then washed and imaged via confocal microscopy.

4.2.7. Statistical Analysis

Statistical analyses were realized by using GraphPad Prism 6.0 software (GraphPad
Software, San Diego, CA, USA). Significant differences between the groups were deter-
mined by one-way and two-way analyses of variance (ANOVA), which were followed by
Fisher’s LSD tests for multiple comparisons. Obtained results were presented as mean ±
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standard deviation (SD) of independently performed experiments, and the experiment was
repeated at least three times. Differences between the datasets were accepted as significant
when p value < 0.05.

4.3. In Vivo Pharmacokinetic Study in Rats

Sprague–Dawley male rats, 200–240 g, were housed in cages in an airconditioned room
with light dark cycle of 12 h before the experiment started. The animals were fasted for
12 h with water ad libitum. The rats were divided into 3 groups each of 3 animals. Doses of
CU, CU-19 and CU-21, were calculated as 20 mg compound per kg of body weight. The
administration volume was 6 mL per kg of body weight. The compounds were dissolved in
PEG400 (10% of the administration volume) and water (90% of the administration volume)
and sonicated for 30 min. After tail vein injection administration at a dose of 20 mg/kg,
0.5 mL blood was obtained from fossa orbitalis veniplex of rats at 5, 10, 20, 30, 45, 60, 120,
180 and 240 min. Whole blood samples were collected in heparinized tubes and the plasma
was immediately centrifuged (10,000 rpm, 10 min, 4 ◦C) and then stored at −20 ◦C until
analysis. The calibration standards and the plasma samples were extracted by protein
precipitation using methanol. The concentrations of compounds in the extracted standards
and plasma samples were quantified by HPLC with a reversed-phase column (Waters
Spherisorb ODS column (250 × 4.6 mm, 5 µm) (column temperature = 30 ± 2 ◦C) and
methanol: 0.1% triethylamine (70:30 for CU, 80:20 for CU-19 and CU-21) as the mobile
phase. The flow rate was maintained at 1 mL/min and UV detection at 390 nm (CU),
340 nm (CU-19), 300 nm (CU-21). The pharmacokinetics parameters were calculated using
DAS software. CU was used as the internal standard of CU-19 and CU-21; Kaempferol was
used as the internal standard of CU.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1.
Representative chromatogram of the determination of CU after intravenous administration 5 min,
Figure S2. Representative chromatogram of the determination of CU after intravenous administration
10 min, Figure S3. Representative chromatogram of the determination of CU after intravenous
administration 20 min, Figure S4. Representative chromatogram of the determination of CU-19 after
intravenous administration 5 min, Figure S5. Representative chromatogram of the determination of
CU-19 after intravenous administration 10 min, Figure S6. Representative chromatogram of the deter-
mination of CU-19 after intravenous administration 20 min, Figure S7. Representative chromatogram
of the determination of CU-21 after intravenous administration 5 min, Figure S8. Representative
chromatogram of the determination of CU-21 after intravenous administration 10 min, Figure S9.
Representative chromatogram of the determination of CU-21 after intravenous administration 20 min,
Spectrums of compounds 2–11.
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