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Abstract: An efficient CO2 adsorbent with a hierarchically micro-mesoporous structure and a large
number of amine groups was fabricated by a two-step synthesis technique. Its structural properties,
surface groups, thermal stability and CO2 adsorption performance were fully investigated. The
analysis results show that the prepared CO2 adsorbent has a specific hierarchically micro-mesoporous
structure and highly uniformly dispersed amine groups that are favorable for the adsorption of CO2.
At the same time, the CO2 adsorption capacity of the prepared adsorbent can reach a maximum of
3.32 mmol-CO2/g-adsorbent in the actual flue gas temperature range of 303–343 K. In addition, the
kinetic analysis results indicate that both the adsorption process and the desorption process have
rapid adsorption/desorption rates. Finally, the fitting of the CO2 adsorption/desorption experimental
data by Avrami’s fractional kinetic model shows that the CO2 adsorption rate is mainly controlled by
the intra-particle diffusion rate, and the temperature has little effect on the adsorption rate.

Keywords: CO2 adsorbent; hierarchically micro-mesoporous silicon; amine-functionalized; kinetic

1. Introduction

For climate change, the ultimate global goal is to avoid dangerous disturbances to
the climate system. To achieve this goal, UNFCCC member states have shown strong
support for measurable guardrail targets, such as “Avoid 1.5 ◦C” or “Avoid 450 ppm CO2”.
However, the CO2 concentration in the atmosphere has increased sharply from 340 ppm in
1980 to 408 ppm in 2019 [1], and if existing human activities do not sufficiently and quickly
change, the global temperature increase will exceed 1.5 ◦C. Therefore, a variety of methods
should be adopted to reduce CO2 levels, such as planting more trees, replacing fossil energy
with renewable energy, improving the efficiency of coal-fired plants, and using CO2 capture
and storage (CCS) to reduce CO2 content [2,3].

CCS technology is an attractive method because it helps reduce the release of CO2
into the environment and allows the continued use of coal to meet the world’s energy
needs [2,4]. According to different coal-fired plant configurations, three main approaches
can be applied to reduce CO2 emissions from the flue gas of these plants, including pre-
combustion capture, oxyfuel combustion, and post-combustion capture [5]. Among these
CCS technologies, post-combustion capture technology (which uses wet/dry adsorbents to
absorb CO2 from the flue gas that is produced by the combustion of fossil fuels) is the most
popular industrial method [6]. Post-combustion capture technologies generally include
absorption [7], porous materials adsorption [8], membrane separation [9], cryogenics and
hydration etc. [5]. At present, some experiments and computational studies have been
conducted on the above-mentioned technologies [10–12].
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Among these technologies, the adsorption-based technology is the most attractive
because it has the potential to lower costs while avoiding the defects of aqueous amine
absorption [13]. Adsorbents are the foundation for the adsorption process. In recent years,
many porous solid adsorbents have been investigated in order to capture CO2 from flue gas,
including carbon materials [14–16], zeolites [17], mesoporous silicon [18], pillared lamellar
clays [19], and the metal-organic frameworks (MOFs) [20,21].

The ideal solid adsorbent for CO2 capture should have good CO2 selectivity, a high
CO2 adsorption capacity, and a faster CO2 adsorption/desorption rate [22]. The faster
the CO2 adsorption/desorption process the more economical the process of CCS [23].
Usually, the microporous materials, such as the MCM series and ZSM series, have a
large CO2 adsorption capacity because of their high surface area and high porosity [24].
However, due to their rapid decrease in adsorption capacity at higher temperatures, these
microporous materials are mainly used at low temperatures (below 303 K) [25]. Mesoporous
materials such as SBA series and KIT series have unique mass-transfer properties due to
their large pore diameters [26]. It is therefore expected that a new type of micro-mesoporous
composite material with the advantages of high surface area and rapid mass transfer can be
prepared through the combination of microporous and mesoporous materials production.
In addition, this material may display a better CO2 adsorption performance after surface
amine functionalization; this is because amines are nucleophilic, and they can strongly
interact with electrophilic CO2 through nucleophilic substitution reactions to increase the
CO2 adsorption capacity.

Therefore, the objective of this study is to synthesize an amine-functionalized hierar-
chically micro-mesoporous adsorbent and discuss its CO2 adsorption behavior. In order to
achieve this target, firstly, the nano-scale microporous silicon precursor was assembled into
an ordered cubic mesoporous structure by a two-step hydrothermal crystallization method
to synthesize the micro-mesoporous silicon material. Then, the prepared micro-mesoporous
silicon material was used as a support, an amino compound was used as a modifier, and the
amine-functionalized hierarchically micro-mesoporous silicon composites was fabricated
by an impregnation method. After that, the pore structure, surface characteristics and CO2
adsorption performance of the prepared adsorbent were analyzed. Finally, the experimental
data of isothermal CO2 adsorption/desorption was simulated by a mathematical model,
and the kinetic characteristics of CO2 adsorption/desorption were discussed.

2. Materials and Methods
2.1. Materials

Tetrapropylammonium hydroxide solution (TPAOH); aluminium isopropoxide;
tetraethylorthosilicate (TEOS); polyethylene-polypropylene glycol (P123); hydrochloric acid
(HCl); and n-Butanol were used for the synthesis of a hierarchically micro-mesoporous silicon.

Ethylenediamine (EDA); diethylenetriamine (DETA); tetraethylenepentamine (TEPA),
pentaethylenehexamine (PEHA); ethylene imine polymer (PEI); and ethanol were used for
the synthesis of an amine-functionalized hierarchically micro-mesoporous adsorbent. The
chemicals used in the experiment are listed in Table 1. All chemicals were used without
further purification.

Table 1. Chemicals used in the experiment.

Chemical Name mol. wt. Purities CAS-No. Sources

Tetrapropylammonium hydroxide
solution 203.36 25.0% 4499-86-9 Macklin Biochemical Co., Ltd.

(Shanghai, China)

Aluminium isopropoxide 204.25 ≥98.0% 555-31-7 BASF Biotechnology Co., Ltd.
(Hangzhou, China)

Tetraethylorthosilicate 208.33 98.0% 78-10-4 Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China)

Polyethylene-polypropylene
glycol ~5800 9003-11-6 Macklin Biochemical Co., Ltd.

(Shanghai, China)
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Table 1. Cont.

Chemical Name mol. wt. Purities CAS-No. Sources

Hydrochloric acid 36.46 35.0% 7647-01-0 Fuzhou Yihua Chemical Co., Ltd.
(Fuzhou, China)

n-Butanol 74.12 ≥99.5% 71-36-3 Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China)

Ethylenediamine 60.1 ≥99.0% 107-15-3 Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China)

Diethylenetriamine 103.17 99.0% 111-40-0 Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China)

Tetraethylenepentamine 189.30 98.0% 112-57-2 Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China)

Pentaethylenehexamine 232.38 98.0% 4067-16-7 Macklin Biochemical Co., Ltd.
(Shanghai, China)

Ethylene imine polymer 600 99.0% 9002-98-6 Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China)

Ethanol 46.07 ≥99.7% 64-17-5 Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China)

Carbon dioxide 44.0 ≥99.999% 124-38-9 Fuzhou Yuanhua Chemical Co., Ltd.
(Fuzhou, China)

Nitrogen 28.0 99.999% 7727-37-9 Fuzhou Yuanhua Chemical Co., Ltd.
(Fuzhou, China)

2.2. Sample Preparation
2.2.1. Synthesis of Support Material

The preparation of the hierarchically micro-mesoporous silicon material was as follows:
First, 4.54 g of TPAOH was dissolved in 16.87 g of deionized water at room temperature
and stirred for 30 min, and then 0.17 g of aluminum isopropoxide and 0.1 g of NaOH were
added. After stirring for 30 min, the mixture was heated to 303 K, and 8.5 g of TEOS was
dropped into the mixture. After 16 h of vigorous stirring, the final solid–liquid mixture
was transferred to a Teflon kettle and subjected to hydrothermal treatment at 423 K for 24 h.
The microcrystalline emulsion was then cooled to room temperature and the final resultant
was labeled as microcrystalline emulsion A.

Second, 4.0 g of P123 (5800) was dissolved in a mixture of 144 g of H2O and 7.9 g of
hydrochloric acid solution (35 wt.%) at 313 K under stirring. After the P123 was completely
dissolved, 4.0 g of n-Butanol was added. After stirring continuously for 1 h, the above mi-
crocrystalline emulsion A was added and sonicated for 30 min. After vigorously stirring at
313 K for 24 h the resultant was transferred to a Teflon kettle and subjected to hydrothermal
treatment at 373 K for 24 h. The solid–liquid mixture was filtered to obtain a solid product
and the solid product was dried at 373 K for 10 h. After that, the obtained solid sample was
calcined at 823 K for 6 h under a temperature programmed system (5 K/min) to remove
the template. The resulting material is herein denoted as micro-mesoporous silicon (MMS).

2.2.2. Preparation of Amine-Functionalized Hierarchically Micro-Mesoporous Adsorbent

The amine-loaded hierarchically micro-mesoporous adsorbent was produced by a
wet impregnation method. The ethylenediamine (EDA); diethylenetriamine (DETA);
tetraethylenepentamine (TEPA); pentaethylenehexamine (PEHA); and polyetherimide (PEI)
were used as amine-modified materials. In a typical experiment, 1 g of amine-modified ma-
terial was dissolved in 50 mL of ethanol at room temperature, and after stirring for 30 min,
1 g of MMS was added, and then the mixture was stirred for 2 h. After that, the mixture
was evaporated at 353 K and then dried in air at 373 K for 1 h. Finally, a white composite
was obtained. The obtained composites are denoted as AMMS-E, AMMS-D, AMMS-T,
AMMS-P and AMMS-PEI, respectively. Here, the AMMS represents amine-functionalized
micro-mesoporous silicon, and the E, D, T, P, and PEI stand for EDA, DETA, TEPA, PEHA,
and PEI, respectively.
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2.3. Characterization

The surface crystallinity of the AMMS was analyzed by the X-ray diffraction (XRD)
measurement using a Rigaku powder diffractometer (D8 ADVANCE, Bruker, Bremen,
Germany) with Cu Kα radiation (λ = 0.15406 nm). The tube voltage was 45 kV and the
current was 40 mA. The XRD diffraction patterns were taken in the 2θ range of 0.5–10◦ and
5–60◦ at a scan speed of 2◦/min. The surface morphology was determined with a scanning
electron microscope (S4800, Hitachi, Tokyo, Japan).

The surface area analyzer (Autosorb iQ, The Quantachrome Instruments U.S., Boynton
Beach, FL, USA) was used for the nitrogen adsorption/desorption test. Before the measure-
ment, the sample was degassed at 573 K under nitrogen flow for 3 h. The surface area of
the powder was obtained using the Brunauer-Emmett-Teller (BET) method. The pore size
distributions were calculated by the Barrett-Joyner-Halenda (BJH) equation. The total pore
volume was determined from the amount of adsorbed N2 at P/P0 = 0.99.

A TG (TG 209F3, Netzsch, Selb, Germany) instrument was used to analyze the thermal
stability of AMMS, and the thermogravimetric analysis test was performed at a temperature
of 303 K to 973 K with a heating rate of 10 K/min under a dynamic N2 atmosphere.

The surface chemical groups were analyzed by Fourier Transform Infrared (FTIR,
Nicolet IS50, Thermo Fisher Scientific, Waltham, MA, USA) spectroscopies.

2.4. Adsorption/Desorption of CO2

A TGA device (TG209F3, Netzsch) was used for the CO2 adsorption/desorption test.
A total of 10 mg of AMMS samples were loaded into a 0.05 cm3 platinum sample pan.
After stabilization, each sample was heated to 423 K in a nitrogen stream (120 cm3 min−1),
then cooled to the adsorption temperature, and a CO2 (99.99%)/N2 (99.99%) mixture
(10 Vol.% CO2) was introduced until the mass of the sample no longer increased (about
50 min). The adsorption capacity was calculated based on the AMMS sample mass increase
using Equation (1).

qa =
M1 − M0

44 × M0
× 103 (1)

where qa is the adsorption capacity of CO2, mmol g−1; M0 is the mass of pure adsorbent,
and g; M1 is the mass of the sample after adsorbing CO2 g.

Once the adsorption process reached equilibrium, the temperature programmed
desorption (TPD) test was performed on the same experimental system. The adsor-
bent was heated to the required desorption temperature (383 K) in a nitrogen stream
(120 cm3 min−1). The total amount of CO2 was calculated based on the loss of sample mass
using Equation (1).

2.5. Adsorption/Desorption Kinetic Models

Avrami’s fractional kinetic model (Equation (2)) is used to study the kinetics of CO2
adsorption on AMMS materials. Usually, Equation (2) can be transformed into Equation (3)
in the form of desorption component y. Thus, Equation (3) can be employed to further
understand the desorption kinetics of the CO2 desorption process [27].

qt = qe

[
1 − e−(kat)n]

(2)

y = 1 − e−(kat)n
(3)

where qe and qt (mmol·g−1) denote the equilibrium capacity and the adsorption capacity at
any time t (s), respectively, ka is the kinetic constant of the Avrami model, the n represents
as the Avrami exponent, which is often in fractional form, and reflects possible mechanism
changes in the adsorption process [28].
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3. Results and Discussions
3.1. Characterization of the AMMS
3.1.1. XRD Analysis

Figure 1 provides the small-angle XRD pattern of the MMS and AMMS powder. The
spectrum for the MMS and AMMS powder reveals a strong peak at about 2θ = 0.55◦ that
corresponds to the (100) crystal face, indicating that the composites materials MMS and
AMMS may have a p6 mm hexagonal-symmetry mesoporous structure that is similar to
SBA-15 [29]. However, we cannot find the (110) and (200) peaks that are normally observed
in SBA-15 from the spectra of the MMS and AMMS powders, which may indicate that the
mesoporous system of MMS and AMMS has become disordered [30]. This disorder may be
attributed to the formation of microporous structures that are similar to ZSM-5 materials in
MMS and AMMS materials. Figure 1 also displays the XRD patterns in the wide-angle of
the MMS and AMMS powder. The sharp peaks that are clearly visible at 2θ = 7.9◦, 8.8◦,
20.3◦, 23.1◦ and 23.9◦ correspond to (101), (200), (103), (501), and (303) crystal plains and
consistent with the patterns of ZSM-5 that are reported in the literature [31].
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Figure 1. XRD patterns of MMS and AMMS.

The locations of the characteristic Bragg diffraction peaks of the MMS and AMMS
samples are almost the same, but the peak intensity (XRD patterns in wide-angle) of the
AMMS is reduced, indicating that the amine-modified material is loaded into the micro-
pores of MMS. At the same time, the micro-mesoporous structure of MMS is retained.

3.1.2. SEM Analysis

The surface morphology of MMS and AMMS-T is presented in Figure 2, and the SEM
images of other AMMS are shown in Figure S1. The SEM micrograph of MMS shows that
this solid is formed by the aggregation of small amorphous material units (like the ZSM-5
material [31], and a certain number of pores are formed between the units. In contrast to
the surface morphology of the MMS material, the SEM micrograph of AMMS-T shows that
the surface of AMMS-T is distributed with highly dispersed and uniform particles. This
result indicates that the amine-modified material was successfully impregnated into the
pores of the MMS material, and the loading of the amine-modified material resulted in a
decrease in the surface area and pore volume of the structure, which was further confirmed
in the BET surface area analysis. At the same time, the highly uniformly dispersed amine
on the solid surface may be beneficial to the adsorption of CO2 [32]. The subsequent CO2
adsorption analysis also proved this possibility.
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3.1.3. BET Analysis

Through nitrogen adsorption experiments at 77 K, the structural characteristics of
MMS and AMMS, such as surface area, average pore size and pore volume were analyzed.
The nitrogen-adsorption isotherms of MMS and AMMS-T are presented in Figure 3, and the
nitrogen adsorption isotherms of other AMMS are displayed in Figure S2. All adsorption
isotherms represent the typical type IV features of mesoporous silica. The pore size distribu-
tion of MMS and AMMS-T are also displayed in Figure 3. The pore size distribution curve
of MMS has two obvious peaks at 1.6 nm and 3.5 nm, indicating that its pore structure
is mainly composed of micro-pores and meso-pores. However, the pore size distribution
of AMMS-T is relatively random and irregular. This phenomenon may be caused by the
disordered accumulation of amine-modified materials on the surface of the pores during
the impregnation process.
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Table 2 summarizes the surface area, average pore size and pore volume of all the
materials. It was observed that after amine modification, the surface area and pore volume
of AMMS were significantly reduced. This can be explained by amine impregnation, where
amine material accumulates on the surface of the MMS porous channels, resulting in a
decrease in surface area and pore volume. These results are consistent with the XRD
measurement results.
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Table 2. Nitrogen adsorption/desorption characterization details for MMS and AMMS.

Sample Surface Area
(m2·g−1)

Total Pore Volume
(cm3·g−1)

Micropore
Volume Mesopore Volume Average Pore

Diameter (nm)

MMS 498 1.261 0.170 1.091 3.5
AMMS-E 404 1.445 0.080 1.365 3.5
AMMS-D 314 1.351 0.140 1.211 1.2
AMMS-T 121 0.770 0.080 0.690 1.6
AMMS-P 88 0.500 0.050 0.450 1.4

AMMS-PEI 9.7 0.084 0 0.084 3.3

3.1.4. TG Analysis

The thermal behavior of AMMS was studied by TG analysis. Figure 4 shows the mass
loss curve of AMMS. Two stages of mass loss are observed in the TG curve of AMMS.
Due to the removal of adsorbed water and CO2, the mass loss of 3–8 wt.% in the first
stage is approximately between 303 K and 373 K. We noticed that when the temperature is
higher than 373 K, the mass loss curves display a relatively straight line within a certain
temperature range, indicating that there is basically no mass loss in the sample within this
temperature range. For AMMS-T, the temperature range is 373 K to 423 K, AMMS-P is
373 K to 483 K, and AMMS-PEI is 373 K to 543 K. As the temperature continues to rise, the
samples begin to undergo the second stage of the mass loss process. The results suggest
that AMMS-T, AMMS-E, AMMS-D, AMMS-P and AMMS-PEI have a thermal stability of
423 K, 483 K, 403 K, 483 K, and 543 K, respectively. Finally, when the sample mass remains
constant, the total mass loss of AMMS-T, AMMS-P and AMMS-PEI is about 55%, 61%
and 55%, respectively. The reason for the different total mass loss of the samples may be
attributed to the volatilization and decomposition of different amine-modified materials.
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3.1.5. FTIR Analysis

The FTIR spectrums of MMS and AMMS in the domain of 400–4000 cm−1 are demon-
strated in Figure 5. For MMS, the adsorption peak around 462 cm−1, 804 cm−1 and
1092 cm−1 could be attributed to the Si-O-Si bending vibrations [33], the symmetric stretch-
ing vibrations of Si–O–Si bonds [33], and the asymmetric stretching vibrations of Si–O–Si
bonds [34]. Moreover, the adsorption band at 552 cm−1 represents the typical vibration
band of five- or six-membered rings of X–O–X, where X can be Al or Si [35]. In addition, the
adsorption band at 972 cm−1 is ascribed to the defective Si–OH group [36]. Furthermore,
the adsorption bands at 1632 cm−1 and 3448 cm−1 are due to the H–O–H bending vibration
and the typical of O–H stretching vibration, respectively [37].
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Figure 5. FTIR spectrums of MMS and AMMS.

The FTIR spectrum of AMMS displays some new adsorption peaks at 1314 cm−1,
1475 cm−1, 1589 cm−1, 1673 cm−1, 2839 cm−1, and 2958 cm−1. The peak at 1314 cm−1 is
attributed to C–N tensile vibration. The adsorption peaks at 1475 cm−1 and 1589 cm−1

represent N–H stretching vibrations which are associated with asymmetric and symmetric
bending of the primary amines (–NH2). In addition, the adsorption peak at 1673 cm−1

is related to the bending of secondary amines (–N(R)H) in amine-modified materials.
Moreover, the adsorption peaks at 2839 cm−1 and 2958 cm−1 are due to the CH2 asymmetric
and symmetric stretching modes of the amine chain in the AMMS. Compared with the
MMS [38], we cannot observe the peak at 1632 cm−1 from the FTIR spectrum of AMMS. At
the same time, the intensity of the peak at 3448 cm−1 decreases with the impregnation of
amine. The reason for this may be due to the interaction of amine and MMS. Overall, the
above FTIR analysis indicates that the amine-modified material is effectively loaded into
the pores of the MMS.
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3.2. Adsorption Properties Analysis

CO2 adsorption experiments were carried out at the required temperature with
C0 = 10 vol.% of CO2 (inlet CO2 concentration). The CO2 adsorption capacities (qa) of
MMS and AMMS are presented in Table 3. In addition, the adsorption curves of MMS and
AMMS-T at three temperatures (303 K, 323 K, and 343 K) are shown in Figure 6, and the
adsorption curves of the other AMMS are displayed in Figure S3.

Table 3. The CO2 adsorption capacity of MMS and AMMS.

Adsorbent Amine-Modified Material qa (mmol-CO2/g-Adsorbent)

303 K 323 K 343 K

MMS * 0.99 0.45 0.33
AMMS-E * EDA 0.79 0.47 0.37
AMMS-D DETA 0.70 0.67 0.51

AMMS-T TEPA 2.23 2.90 3.32
AMMS-P PEHA 1.41 1.95 2.65

AMMS-PEI PEI 0.74 1.11 1.75

* C0 = 100 vol.% CO2.
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It can be seen from Table 3 that the qa of MMS (at different temperatures) is very
limited. At the same time, as the temperature increases from 303 K to 343 K, the qa decreases
significantly. This may be due to the exothermic behavior of the adsorption phenomenon.
However, the qa of AMMS-T increases with increasing temperature. The reason for this may
be that the loaded amine-modified material has higher molecular activity and mobility at
higher temperatures, so the qa of AMMS shows an increasing trend when the temperature
increases from 303 K to 343 K.

From Table 3, we observed that under similar conditions AMMS-T has the best ad-
sorption capacity (qa = 3.32 mmol-CO2/g-adsorbent at 343 K) among all the AMMS. This
result is consistent with the results of the SEM analysis. The previous SEM analysis results
indicated that among all the surface morphologies of AMMS samples, the surface particle
dispersion of AMMS-T was the most consistent and uniform. It is precisely because of the
highly uniform dispersion of the amine-modified material particle that agglomeration of
the particles is avoided, so that more amine groups of the amine-modified material can
contact and react with CO2 molecules, thereby improving the ability to adsorb CO2.
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The adsorption capacity of AMMS-T was compared with the values that were obtained un-
der similar conditions for the CO2 adsorbents proposed in the literature (Table 4). We noticed
that AMMS-T exhibited a relatively good adsorption capacity under similar conditions.

Table 4. Comparison of CO2 adsorption capacity of AMMS-T (present study) with the literature.

Support Amine Type Temp.
K

CO2 Partial
Pressure (bar)

CO2 Adsorption
(mmol-CO2/g-ads) Ref.

HMS PEI 318 1 2.40 [39]
MS-3040 (Microspherical Silica) PEI 358 0.95 3.26 [40]

SBA-15 TEPA 333 0.15 2.15 [41]
Zn/CoZIF PEI 298 1 1.82 [42]

SFM-0.83-100-5.2 PEI 348 0.15 2.48 [43]
Silica PEI 353 0.15 2.86 [44]

Mesoporous PCN-777 PEI 298 0.25 1.41 [45]
MOF PEI 298 1 2.84 [46]

MCM550 (Mesoporous Monolithic) PEI 348 0.12 1.89 [47]
AMMS-T TEPA 343 0.10 3.32 This work

The abscissa in Figure 6 denotes the time and the ordinate represents the qa. The
overall adsorption curve profiles for 303 K, 323 K, and 343 K display similar adsorptive
behavior. All the adsorption processes are completed in a short time, and the adsorption
rate is approximately the same. This means that although a higher temperature can
increase the CO2 adsorption capacity, the adsorption rate is not controlled by the adsorption
temperature. The adsorption rate is further analyzed in the subsequent kinetic analysis of
the adsorption process.

3.3. Adsorption/Desorption Kinetics Analysis

Previous adsorption capacity studies have shown that AMMS-T exhibits the best
adsorption capacity among all AMMS (qa = 3.32 mmol-CO2/g-adsorbent, at 343 K). There-
fore, AMMS-T was used as a CO2 adsorbent to analyze the characteristics of the adsorp-
tion/desorption kinetics of the CO2 adsorption/desorption process in this study. Multiple
adsorption kinetics models have been employed to quantitatively analyze the adsorption
and to explore the adsorption mechanism; for example, Lagergren’s pseudo-first-order
model [48]; Ho’s pseudo-second-order model [49]; the classical intracrystalline diffusion
model [50]; and Avrami’s fractional-order kinetic model [51]. Among these models, since
the fractional order of the Avrami model can be used to characterize the complexity of
the reaction mechanism or the simultaneous occurrence of multiple reaction paths [52,53],
the Avrami fractional-order kinetic model is well suited to analyzing the CO2 adsorption
kinetics and adsorption mechanisms [54]. For the Avrami model, if n = 1, it means that
the adsorption process has uniform adsorption [55,56]. If n = 2, then the adsorption pro-
cess may show a perfect one-dimensional growth at the adsorption point after uniform
adsorption [57].

The kinetics character of CO2 adsorption on AMMS-T were investigated by isothermal
adsorption at several T (303, 323 and 343 K) and at various C0 (10, 15, 20, and 40 vol.%). The
experimental data were simulated using the Avrami model and the results can be found in
Figure 7 and Table 5.

As described in Table 5, the adsorption rate constant ka increases with the increase
in C0 at the same T. However, the value of ka only slightly changes with the increase in T
under the same C0. The high partial pressure of CO2 can promote the faster diffusion of
CO2 to the active sites on the surface of the solid pores. Therefore, it can be deduced from
the simulation results that ka is mainly controlled by the intra-particle diffusion process,
and temperature has little effect on the ka.
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Table 5. The approximate values of the model parameters obtained by Avrami’s model and the
corresponding correlation coefficient R2.

T (K) C0 (vol.%)
Avrami Model

qa (mmol/g)
Ka qe (mmol/g) n R2

303 10 0.309 2.09 2.000 0.996 2.235
303 15 0.453 1.486 1.681 0.995 1.576
303 20 0.592 1.156 0.543 0.974 1.133
303 40 0.858 0.851 1.024 0.982 1.189
323 10 0.348 2.685 1.813 0.988 2.900
323 15 0.470 1.585 1.731 0.991 1.775
323 20 0.568 1.758 0.653 0.989 1.744
323 40 0.846 2.291 1.880 0.988 2.667
343 10 0.232 3.160 1.982 0.999 3.322
343 15 0.326 2.074 1.549 0.995 2.368
343 20 0.547 1.947 1.750 0.996 2.322
343 40 0.822 2.822 1.882 0.995 3.078

It can be seen from Table 5 that most Avrami exponent n are greater than 1 and
less than 2, indicating that additional adsorption may be preferentially provided on the
existing adsorption sites and resulting in one-dimensional growth at these adsorption
points after uniform adsorption. The value of n is less than 2, because as the adsorption
progresses, not all the adsorption sites that have adsorbed CO2 start a new uniform one-
dimensional adsorption, but only some sites continue to adsorb CO2; the rest do not
continue to absorb CO2.

The ka can be demonstrated by the Arrhenius equation:

ka = Ae−(Ea/RT) (4)

where A denotes the Arrhenius pre-exponential factor, Ea is the activation energy, and R is
the universal ideal gas constant. A plot of lnka versus 1/T is shown in Figure 8. Table 6
presents the A and Ea that were obtained by linear regression of the experimental data.
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Table 6. Related parameters calculated from CO2 adsorption isotherms fitted to the Arrhenius Equation.

CO2 Concentration
(vol.%) A (min−1) Ea (KJ/mol) R2

10 0.031696 −5.81806 0.43709
15 0.03105 −6.76534 0.63287
20 0.300659 −1.66947 0.99993
40 0.597542 −0.89788 0.94752

As shown in Table 6, the absolute value of Ea decreases with the increase in C0,
indicating that a high CO2 partial pressure promotes the adsorption of CO2. The result
is consistent with the previous analysis results, that is, the CO2 adsorption rate is mainly
controlled by the intra-particle diffusion process. The Ea of AMMS-T is less than that of
liquid ammonia absorption (40−50 kJ·mol−1 [58,59]), which indicates that AMMS-T may
be a promising and effective CO2 adsorbent.

Figure 9 displays the TPD curve, the desorption curve at 383 K and the fitting curve of
the Avrami fractional kinetic model. The TPD curve is basically a horizontal straight-line
segment between 343 K and 353 K, indicating that the adsorbent that was saturated with
CO2 had almost no mass loss, which means that when T ≤ 353 K, no desorption process
occurs. Then, the TPD curve is a downwardly sloping line segment between 353 K and
383 K, and mass loss begins to appear, indicating that CO2 is gradually desorbed from
the surface of the adsorbent. Finally, when the temperature is maintained at 383 K, the
TPD curve presents a vertical line segment, indicating that CO2 is quickly and completely
desorbed from the surface of the adsorbent. Moreover, according to the desorption curve,
the CO2 is almost completely desorbed within 6 min, which means that the desorption rate
is very fast. All these results suggest that the optimal desorption temperature for AMMS-T
is about 383 K.
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Figure 9. Results of TPD and desorption experiment at 383 K.

From Figure 9, we also noticed that the R2 values for the fitted Avrami fractional-order
model are 0.99725, which verifies that the Avrami model can describe the experimental
data well.

3.4. Cyclic CO2 Adsorption/Desorption Behavior of the AMMS-T

The persistent cyclic adsorption/desorption behavior of the adsorbent is essential
for long-term operation. Figure 10 describes the adsorption capacity of the AMMS-T in
repeated cycles of CO2 adsorption at 343 K and desorption at 383 K. The cycle data indicate
that the adsorption performance of the AMMS-T is quite stable, and the adsorption capacity
is still about 3.05 mmol g−1 after five adsorption/regeneration cycles.
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4. Conclusions

This study presents an effective amine-functionalized micro-mesoporous silicon ad-
sorbent for CO2 capture. The adsorbent was prepared by the impregnation method using
micro-mesoporous silicon as a support and TEPA as a modifier. The resulting sample
was characterized with the XRD, SEM, TG, nitrogen adsorption and FTIR analysis. The
characterization results show that the prepared AMMS-T maintains a micro-mesoporous
structure after amine loading, and there are highly uniformly dispersed amine groups
distributed on the surface of the pore which is beneficial to the adsorption of CO2.

The CO2 adsorption capacity of AMMS-T displays an upward trend with the in-
crease in temperature in the range of 303–343 K, and the maximum adsorption capacity is
3.32 mmol-CO2 g−1-adsorbent. The results of the adsorption kinetic analysis illustrate that
Avrami’s fractional kinetic model can fit the CO2 adsorption experimental data well. In
addition, the simulation results reveal that the CO2 adsorption rate of AMMS-T is mainly
affected by the intra-particle diffusion rate, and temperature has little effect on it. The
optimal regeneration temperature of AMMS-T is about 383 K and the CO2 desorption
process can be well simulated by the Avrami model.

In summary, the prepared AMMS-T shows excellent CO2 adsorption/desorption
performance. The good agreement between the results of the Avrami model and the
experimental data shows that the kinetic constants that were obtained by the simulation
are highly effective for designing the actual CO2 adsorption process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113429/s1, Figure S1: SEM images of AMMS-E,
AMMS-D, AMMS-PEI and AMMS-P; Figure S2: N2 adsorption isotherms of AMMS-E, AMMS-D,
AMMS-P and AMMS-PEI; Figure S3: CO2 adsorption curves of MMS, AMMS-E, AMMS-D, AMMS-P
and AMMS-PEI.
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