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Tert-butyl ((1S)-(5-oxo-1,4-oxazepan-7-yl)(phenyl)methyl)carbamate (11): Into a round-

bottomed flask equipped with magnetic stir bar and septum, α, β- unsaturated olefin (1 equiv.) 

was dissolved in anhydrous DCM. Next, ethanolamine (4 equiv.) was added by syringe. The 

homogeneous solution was stirred at rt for 48h, after which time the TLC and LCMS showed no 

starting material remaining. The reaction mixture was evaporated to an oil, redissolved in ethyl 

acetate and washed with water and brine. The organic phase was collected and dried over 

anhydrous Na2SO4. The solvent was removed under reduced pressure to give the crude residue. 

Purification by silica gel chromatography (ethyl acetate/ hexanes) provided the pure product 11. 

Yield; 40%. Formula: C17H24N2O4; 1H NMR (600 MHz, CDCl3) δ 7.43-7.41 (m, 2H), 7.38 – 7.31 (m, 

3H), 7.03 (bs, 1H), 5.84 (bs, 1H), 3.73 – 3.66 (m, 2H), 3.45 (bs, 1H), 3.42 – 3.34 (m, 2H), 3.19 – 3.17 

(m, 2H), 1.49-1.47 (m, 9H). 

 

 

Scheme S1: synthesis of 3-Phenyl substituted piperazines-2-acetic acid ester 

 

The following compounds synthesized by following literature procedure [1 & 2]. 
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Ethyl 2-(3-phenyloxiran-2-yl)acetate (12); Formula: C12H14O3;  1H NMR (600 MHz, CDCl3) δ 7.39 

– 7.30 (m, 5H), 4.22 (qd, J = 7.1, 1.9 Hz, 2H), 3.74 (d, J = 2.1 Hz, 1H), 3.37 (ddd, J = 6.2, 5.2, 2.1 Hz, 

1H), 2.79 – 2.69 (m, 2H), 1.31 (t, J = 7.2 Hz, 3H). 

 

Ethyl 2-(3-phenylaziridin-2-yl)acetate; Formula: C12H15NO2; 1H NMR (600 MHz, CDCl3) δ 7.35 

– 7.32 (m, 2H), 7.28 – 7.25 (m, 1H), 7.24 – 7.22 (m, 2H), 4.20 (qd, J = 7.1, 1.4 Hz, 2H), 2.81 – 2.79 

(m, 1H), 2.69 – 2.62 (m, 1H), 2.57-2.53 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H). 

 

 

Ethyl (3S,4R)-3-amino-4-azido-4-phenylbutanoate; Formula: C12H16N4O2; 1H NMR (600 MHz, 

CDCl3) δ 7.46 – 7.44 (m, 2H), 7.41 – 7.39 (m, 3H), 4.81 – 4.74 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.60 

– 3.57 (m, 1H), 2.68 (dd, J = 16.5, 3.8 Hz, 1H), 2.55 – 2.51 (m, 1H), 1.28 (t, J = 7.1, 3H). 

 

Ethyl (3S,4R)-4-azido-3-((4-nitrophenyl)sulfonamido)-4-phenylbutanoate; Formula: 

C18H19N5O6S; 1H NMR (600 MHz, CDCl3) δ 8.01 – 7.99 (m, 1H), 7.86 – 7.84 (m, 1H), 7.71 – 7.67 

(m, 2H), 7.28 – 7.24 (m, 5H), 6.12 (d, J = 8.5 Hz, 1H), 4.93 (d, J = 6.3 Hz, 1H), 4.15-4.10 (m, 1H), 

4.05 (q, J = 7.1 Hz, 2H), 2.72 (dd, J = 16.6, 6.3 Hz, 1H), 2.52 (dd, J = 16.6, 4.8 Hz, 1H), 1.23 (t, J = 7.1, 

3H). 
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Ethyl (3S,4R)-4-azido-3-((N-(2-hydroxyethyl)-4-nitrophenyl)sulfonamido)-4-phenylbutanoate; 

Formula: C20H23N5O7S; 1H NMR (600 MHz, CDCl3) δ 8.05 (dd, J = 7.9, 1.5 Hz, 1H), 7.72 (td, J = 

7.6, 1.4 Hz, 1H), 7.68 (td, J = 7.7, 1.4 Hz, 1H), 7.60 (dd, J = 7.8, 1.4 Hz, 1H), 7.35-7.31 (m, 5H), 5.10 

(d, J = 5.7 Hz, 1H), 4.43-4.40 (m, 1H), 3.96 (q, J = 7.1 Hz, 2H), 3.88 (ddd, J = 11.5, 6.9, 4.3 Hz, 1H), 

3.83 – 3.79 (m, 1H), 3.72 (ddd, J = 15.7, 6.9, 4.3 Hz, 1H), 3.43-3.40 (m, 1H), 2.90 (dd, J = 16.4, 8.3 

Hz, 1H), 2.75 (dd, J = 16.4, 5.0 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H). 

 

 

Note: Crude NMR;  

2-((4-nitro-N-((2R,3S)-5-oxo-2-phenylpyrrolidin-3-yl)phenyl)sulfonamido)ethyl 

methanesulfonate; Formula: C19H21N3O8S2; 1H NMR (600 MHz, CDCl3) δ 7.99 (dd, J = 7.9, 1.3 

Hz, 1H), 7.76 (ddd, J = 8.0, 7.4, 1.4 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.38 – 7.32 (m, 3H), 7.31 – 7.26 (m, 

4H), 5.58 (d, J = 4.3 Hz, 1H), 4.72 (ddd, J = 8.8, 5.2, 4.3 Hz, 1H), 4.46 (t, J = 5.6 Hz, 2H), 3.81-3.77 

(m, 2H), 3.07 (s, 3H), 3.02 – 2.95 (m, 1H), 2.76 – 2.69 (m, 1H). 

 

23a and 24a are further subjected to Boc-protection on N1 and compared with literature 

compounds [1].  
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Analyzing NMR data for the 23b and 24b piperazine products 

Assignments for a single set of resonances were unambiguously inferred for 23b and 24b in 

deuterated chloroform from 2D HSQC and HMBC spectra (Table 1).  

The expected 1H-1H J couplings for six membered rings in a canonical chair conformation are: 2J 

~12-15 Hz; 3Jax-ax 12-13 Hz, 3Jax-eq ~3.5-4.0 Hz, 3Jeq-eq < 2 Hz. 

3J analysis for 23b. H2 (4.59 ppm) is a multiplet due to the ester CH2, but splitting of H3 (3.95 

ppm, 3.2 Hz doublet) matches 3Jax-eq. H6 (3.74 ppm, 13.5 Hz doublet, <2Hz multiplet) and H6’ (3.16 

ppm, 13.5 Hz, 3.0 Hz, doublet of doublets) share the 13.5 Hz 2J and H6’ adds 13.5 Hz 3Jax-ax; the H6’ 

3.0 Hz coupling matches 3Jax-eq, and the small unresolved 

H6 coupling matches 3Jeq-eq. H5 (3.06 ppm, 11.6 Hz doublet, 

unresolved) and H5’ (2.89 ppm, 12.0 Hz doublet of 

doublets, 3.5 Hz further doublet) share the 11.6 Hz 2J to 

which H5’ adds a large splitting that matches 3Jax-ax; the H5’ 

3.5 Hz coupling matches 3Jax-eq, and the unresolved H5 

coupling matches 3Jeq-eq. The 3J couplings within the ring 

indicate that 23b adopts a single chair, and the 3Jax-eq 

between H2 and H3 show that this is the cis product. The 

ester methylene protons have nearly identical chemical 

shifts, indicating that the C2-E1 bond rotates freely with 

almost no rotamer bias. The ethyl group protons show no 

evidence of exchange. 

3J analysis for 24b. H2 (4.67 ppm, 9.4 Hz, ~3Hz, doublet of 

doublets) shows a 9.4 Hz coupling to E1; with a pair of doublets of ~3 Hz, 3JH2-H3 is a poor match 

to 3Jeq-eq but it could be 3Jax-eq or result from averaging of 3Jeq-eq with a little 3Jax-ax. The broad H3 peak 

(3.95 ppm, 6 Hz FWHM, unresolved) could mask any doublet of about 3 Hz or smaller, and so is 

of little help. E1 (3.18 ppm, 16.3 Hz, 9.4 Hz, doublet of doublets) and E1’ (2.54 ppm, 16.3 Hz, 3.4 

Hz, doublet of doublets) share a 16.3 Hz 2J; the E1 9.4 Hz doublet is due to H2, as is the E1’ 3.4 Hz 

doublet. The different values for 3JH2-E1 and 3JH2-E1’ mean that any averaging about the C2-E1 bond 

must be highly rotamer biased, consistent with the E1/E1’ chemical shift differences. H5 (2.96 

ppm, 11.9 Hz, 3.9 Hz, doublet of doublets) and H5’ (2.80 ppm, 12.2 Hz, 3.0 Hz, doublet of doublets) 

share the 12.2 Hz 2J and H5 adds one coupling that is somewhat weaker than 3Jax-ax and another 

that is at the upper limit of or stronger than 3Jax-eq. The two H5’ ~3.0 Hz couplings are too strong 

and too similar to correspond to both 3Jeq-eq and 3Jax-eq. H6 (3.51 ppm, 12.9 Hz, 3.0 Hz, doublet of 

doublets) and H6’ (3.25 ppm, 12.1, 3.5 Hz, doublet of doublets) share the 12.9 Hz 2J and H6’ adds 

a strong coupling that seems weaker than 3Jax-ax; the H6’ 3.5 Hz coupling could however be 3Jax-eq. 

The lack of a small 3Jeq-eq (< 2 Hz) between the H5s/H6s or between H2 and H3 indicates that 24b 

does not adopt a single chair; we infer that it averages between the diaxial (predominant) and 

diequatorial species. The multiplet pattern for the ethyl CH2 is consistent with some kind of 

exchange. 

 

Table 1. Chemical shift assignments from 
600 MHz 

 23b 24b  

 1H 13C 1H 13C Δδ 

2 4.59 55.93 4.67 54.55 -1.4 

3 3.95 62.94 3.96 57.14 -5.8 

5 3.06 
46.61 

2.96 
39.99 -6.6 

5’ 2.89 2.80 

6 3.74 
41.05 

3.51 
41.58 +0.5 

6’ 3.16 3.25 

E1 
2.37 31.00 

3.18 
36.03 +5.0 

E1’ 2.54 

E2  170.52  170.94 +0.4 

Et1 3.62 60.49 4.07* 61.11 +0.6 

Et2 0.96 13.95 1.19 14.20 +0.2 
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