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Abstract: Cellular activities, such as attachment, spreading, proliferation, migration, and differentia-
tion are indispensable for the success of bone tissue engineering. Mesenchymal stromal cells (MSCs)
are the key precursor cells to regenerate bone. Bioactive compounds from natural products had shown
bone regenerative potential. Notoginsenoside R1 (NGR1) is a primary bioactive natural compound
that regulates various biological activities, including cardiovascular protection, neuro-protection, and
anti-cancer effects. However, the effect of NGR1 on migration, adhesion, spreading, and osteogenic
differentiation of MSCs required for bone tissue engineering application has not been tested properly.
In this study, we aimed to analyze the effect of NGR1 on the cellular activities of MSCs. Since human
adipose-derived stromal cells (hASCs) are commonly used MSCs for bone tissue engineering, we used
hASCs as a model of MSCs. The optimal concentration of 0.05 µg/mL NGR1 was biocompatible and
promoted migration and osteogenic differentiation of hASCs. Pro-angiogenic factor VEGF expression
was upregulated in NGR1-treated hASCs. NGR1 enhanced the adhesion and spreading of hASCs on
the bio-inert glass surface. NGR1 robustly promoted hASCs adhesion and survival in 3D-printed
TCP scaffold both in vitro and in vivo. NGR1 mitigated LPS-induced expression of inflammatory
markers IL-1β, IL-6, and TNF-α in hASCs as well as inhibited the RANKL/OPG expression ratio.
In conclusion, the biocompatible NGR1 promoted the migration, adhesion, spreading, osteogenic
differentiation, and anti-inflammatory properties of hASCs.

Keywords: Notoginsenoside R1; osteoblast differentiation; adhesion; migration; immunomodulation

1. Introduction

With the prolongation of life span and the aging of the population, diseases such as
tumors and osteoporosis are increasing rapidly. In addition, cases of bone defects caused by
trauma, tumors, infections, congenital dysplasia, or developmental malformations are also
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increasing [1–3]. Osteoporotic fractures are extremely common in the United States, with
an estimated 1.5 million fragility fractures each year. In the UK, one in two women and one
in five men over the age of 50 years may suffer an osteoporotic fracture in their lifetime [4].
More than 2 million bone defect repair surgery are performed worldwide annually [5].
The repair of bone defects has become a major clinical challenge. In recent years, tissue
engineering technology has become a hotspot in the field of bone defect repair. Bone tissue
engineering usually uses biological scaffolds with the addition of seed cells and growth
factors to promote bone regeneration [6,7].

Bone morphogenetic proteins (BMP), especially BMP-2 and BMP-7, are the most
extensively used agents to promote bone regeneration [8,9]. However, BMPs have the
disadvantages of high cost and short half-life in clinical use [10,11]. In addition, it may also
lead to several potential side effects on other tissues and organs, such as excessive osteogen-
esis or ectopic bone formation [12,13]. Therefore, the search and development of alternative
bone regenerative agents have been receiving more and more attention. Chinese herbology,
as an important part of traditional medicine in China, has the advantages of a wide range
of sources, good biocompatibility, low toxicity, and no or few side effects. Natural small
molecule compounds can trigger certain cellular responses through signaling cascades
which can exert anti-tumor [14], anti-oxidant [15], anti-bacterial [16], anti-inflammatory [17],
and pro-osteogenesis [18] effects. These compounds can be linked to the scaffold material
as a substitute for growth factors to promote bone regeneration [19,20]. Panax notoginseng is
a traditional Chinese medicine with a long history, which is used as a tonic and hemostatic
drug [21]. Total Panax notoginseng saponin (PNS) has been reported to prevent bone loss and
promote osteogenic differentiation [22]. Notoginsenoside R1 (NGR1) is a primary bioactive
natural compound of PNS [23]. Previous studies have reported many biological activities of
NGR1, including cardiovascular protection [24,25], neuro-protection [26,27] and anti-cancer
effects [28,29]. Recently, it has been demonstrated that NGR1 dose-dependently promotes
osteogenic differentiation of MC3T3-E1 pre-osteoblasts [22,30,31]. Mesenchymal stromal
cells (MSC) are the most commonly used seed cells in bone tissue engineering [32–35].
Compared to human bone marrow-derived MSCs (BMSCs), human adipose tissue-derived
MSCs (hASCs) have promising potential as seed cells for bone tissue engineering, due to
their easy accessibility, high yield efficiency [36], and low donor-site morbidity [37–39].
However, little is known about the effect of NGR1 on biological activities and osteogenic
differentiation of hASCs required for bone tissue engineering application.

The success of bone tissue engineering mainly depends on cell migration, adhesion,
spreading, osteogenic differentiation, and in vivo survival of precursor cells [40]. Doping
of bioactive agents on scaffold surfaces had been reported to enhance these biological
properties of scaffolds. Therefore, it is highly relevant to analyze the effect of NGR1 on
migration, adhesion, spreading, and osteogenic differentiation of precursor cells.

During normal bone regeneration, acute inflammation begins after injury and is re-
solved almost immediately to ensure normal tissue repair and bone formation [41]. Acute
inflammation is necessary for bone healing after injury. However, prolonged inflammation
may lead to poor bone healing by altering the balance of inflammatory cells and inflam-
matory cytokines. Additionally, chronic inflammation leads to the differentiation and
activation of osteoclasts, which is detrimental to the healing of bone defects [42]. This
suggests that potential biological strategies to promote bone formation might entail re-
lieving chronic inflammation. MSCs can potentially be used for cell-based therapy for
inflammation, attributed to their ability to modulate the immune system and secrete impor-
tant bioactive factors. MSCs are capable of migrating to inflammatory sites and exerting
anti-inflammatory effects [43]. Insight into the anti-inflammatory effects of NGR1 of MSCs
may be relevant for bone tissue regeneration in inflammatory conditions.

This study aimed to investigate the effects of NGR1 on hASCs’ fate and function,
including cell adhesion, cell proliferation, cell migration, and osteogenic differentiation. We
also investigated the anti-inflammatory effect of NGR1 in hASCs. Our results indicated that
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NGR1 at a concentration of 0.05 µg/mL is biocompatible to hASCs and promotes migration,
adhesion, spreading, osteogenic differentiation, and anti-inflammatory properties of hASCs.

2. Results
2.1. Biocompatible NGR1 Enhances Osteogenic Differentiation of hASCs

Ideal bone regenerative therapeutic agents should be biocompatible. In this study,
NGR1 concentration up to 5 µg/mL did not inhibit the viability of hASCs on days 1, 4,
and 7 (Figure 1A). However, NGR1 promoted osteogenic differentiation of hASCs. ALP
is an early-stage osteogenic differentiation marker. On the fourth and seventh day of
treatment, NGR1 at a concentration of 0.05 µg/mL upregulated ALP expression in hASCs
(Figure 1B,C). This result was further supported by the ALP staining study (Figure 1D).
Osteocalcin (OCN) is a marker of late osteogenic differentiation marker. On the 14th
day of treatment, NGR1 (0.05 µg/mL) showed the highest stimulatory effect on OCN
expression in hASCs (Figure 1E). We further confirmed the osteoinductive potential of
NGR1 by analyzing the matrix mineralization in hASCs culture (Figure 2). All the tested
concentrations of NGR1 promoted matrix mineralization on days 21 and 28 of the culture
(Figure 2A–C). NGR1 at 0.05 µg/mL concentration showed a higher trend of effect on
matrix mineralization in the hASCs culture compared with 0.01 and 0.5 µg/mL. NGR1
(0.05 µg/mL) enhanced the expression of early and late osteogenic markers ALP, COL1A1,
and OCN and as well as the expression of osteogenic and pro-proangiogenic vascular
endothelial growth factor (VEGF) (Figure 3A–D).

Figure 1. Biocompatible NGR1 promoted osteogenic differentiation of hASCs. (A) The proliferation
of the hASCs under the different treatments with various concentrations of NGR1 for 1, 4, and 7 days.
Cell viability was measured using a CCK-8 assay, n = 3. Data were analyzed with two-way ANOVA
with Tukey’s multiple comparison test. (B) The activity of ALP in hASCs induced by NGR1 for
4 days, n = 3. (C) The activity of ALP in hASCs induced by NGR1 for 7 days, n = 3. (D) Cells
were cultured in the absence or presence of 0.05 µg/mL NGR1. On day 4, cells were subjected to
ALP staining. (E) Expression of osteocalcin (OCN) in hASCs under the different concentration NGR1
treatment for 14 days, n = 3. Data were analyzed with one-way ANOVA with Bonferroni’s multiple
comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001 relative to controls.
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Figure 2. NGR1 promoted matrix mineralization in hASCs culture. (A) Light micrographs depicting
alizarin red staining on days 21 and 28 of culture. (B,C) Quantitative analysis of mineralized matrix
in hASCs culture, n = 3. Data were analyzed with one-way ANOVA with Bonferroni’s multiple
comparison test. *** p < 0.001 relative to controls.

Figure 3. NGR1 upregulated the expression of osteogenic markers ALP, COL1A1, and OCN, as well
as pro-angiogenic growth factor VEGF in hASCs. (A) ALP and (B) COL1A1 expression in hASCs
treated with vehicle (control) or 0.05 µg/mL NGR1 for 1, 4 and 7 days, n = 3. Data were analyzed
with two-way ANOVA with Tukey’s multiple comparison test. (C) OCN and (D) VEGF expression in
hASCs treated with vehicle (control) or 0.05 µg/mL NGR1 for 7 days, n = 3. Data were analyzed with
unpaired t-test.* p < 0.05, ** p < 0.01, *** p < 0.001 relative to controls.

2.2. NGR1 Increases the Adhesion, Spreading, and Migration of hASCs

More hASCs adhered with higher spreading in the NGR1-treated group compared
to the control group (Figure 4A). Quantification of cell adhesion indicated ~1.4 times as
many cells attached in the coverslip in presence of NGR1 (Figure 4B). Similarly, cell area
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was significantly higher in the NGR1 treated group at 4 and 24 h compared to that of the
control group (Figure 4C).

Figure 4. NGR1 promoted the adhesion and spreading of hASCs. (A) Images of hASCs on the glass
surface. Green shows actin and blue shows nuclei. (B) Measurement of cell number after 1.5 h
incubation, n = 3. Data were analyzed with unpaired t-test. (C) Quantification of hASCs spreading on
the glass surface at 1.5, 4, and 24 h, n = 3. Data were analyzed with two-way ANOVA with Tukey’s
multiple comparison test. * p < 0.05, ** p < 0.01 relative to controls.

To determine the effect of NGR1 on the migration of hASCs, a transwell migration
assay and scratch wound assay were performed. The transwell migration assay indicated
that NGR1 at a concentration of 0.05 µg/mL robustly promoted hASCs migration compared
to at 5 µg/mL (Figure 5A,C). A similar result was further confirmed by the scratch wound
assay (Figure 5B,D).
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Figure 5. NGR1 promoted the migration of hASCs. (A) Representative images of transwell migration
assay. (B) Representative images of scratch wound assay. (C) Quantitative data of migrated cells in
transwell assay, n = 3. (D) Quantification of wound closure, n = 3. Data were analyzed with one-way
ANOVA with Bonferroni’s multiple comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001 relative
to controls.

We further analyzed the effect of NGR1 on cell adhesion on 3D-printed TCP scaffolds.
Significantly more numbers of the cell were observed on the TCP scaffold in presence of
NGR1 (0.05 µg/mL) at 1.5, 4, and 24 h (Figure 6A–C). Quantification of adhered cells in
TCP scaffold revealed 2.92-, 2.48-, and 3.31-fold higher cell numbers in presence of NGR1
at 1.5, 4, and 24 h, respectively (Figure 6D–F).

2.3. NGR1 Promotes hASCs Adhesion and Survival in 3D Printed TCP Scaffolds In Vivo

Cell-scaffold constructs implanted subcutaneously in nude mice were imaged up
to 10 days after implantation. At the subcutaneous implantation site, viable grafts were
detected, showing bright fluorescent spots (Figure 7A). The fluorescence intensity of hASCs
was reduced over time. At all the time points, the intensity of fluorescence signals in the
NGR1 group was higher than in the control group (Figure 7B), which indicates that NGR1
enhanced the adhesion and in vivo survival rate of hASCs on β-TCP scaffolds.
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Figure 6. NGR1 enhanced hASCs adhesion on 3D-printed β-TCP scaffolds surface. Cells seeded on
β-TCP scaffolds surface treated with or without NGR1 (0.05 µg/mL) for (A) 1.5 h, (B) 4 h, and (C) 24 h.
Green shows actin and blue shows nuclei. The attached number of cells on β-TCP scaffolds surface
(D) at 1.5 h, (E) at 4 h, and (F) at 24 h, n = 3. Data were analyzed with unpaired t-test. *** p < 0.001.
Magnification: 2×.

Figure 7. NGR1 enhanced the hASCs survival on 3D printed β-TCP scaffolds ectopically implanted
in nude mice. (A) Representative images of cell-scaffold constructs implanted subcutaneously in
nude mice. (B) Quantitative results of cells’ fluorescence intensity. Total radiant efficiency, n = 4. Data
were analyzed with two-way ANOVA with Tukey’s multiple comparison test. ** p < 0.01 relative
to control.
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2.4. Anti-Inflammatory Effects of NGR1 in hASCs

LPS treatment was used to induce inflammation in hASCs. The anti-inflammatory
effect of low and high doses of NGR1 in LPS-treated hASCs was further evaluated by
analyzing the expression of inflammation markers IL-1β, IL-6, and TNF-α (Figure 8A–C).
LPS treatment enhanced the gene expression of IL-1β, IL-6, and TNF-α in hASCs. A low
dose of NGR1 alleviated the LPS-induced expression of IL-1β and TNF-α. Additionally,
a high dose of NGR1 alleviated the LPS-induced expression of anti- IL-1β and IL-6 in
hASCs. LPS treatment has no significant effect on the gene expression of anti-inflammation
markers IL-10 and TGF-β (Figure 8D,E). However, a high dose of NGR1 reduced TGF-β
expression relative to the LPS group. A higher level of receptor activator of nuclear factor
the kappa B ligand (RANKL)/OPG expression ratio in osteoblast lineage cells results in
osteoclast formation and osteoclastic bone resorption. LPS treatment enhanced RANKL
expression but did not affect the OPG expression and RANKL/OPG expression ratio in
hASCs (Figure 8F–H). Interestingly, NGR1 alleviated the LPS-induced RANKL expression.
Only high dose NGR1 alleviated the OPG expression in hASCs. The low dose of NGR1
showed prominent inhibition of the RANKL/OPG expression ratio in hASCs.

Figure 8. NGR1 showed anti-inflammatory properties in LPS-treated hASCs. Relative expression of
(A) IL-1β, (B) IL-6, (C) TNF-α, (D) IL-10, (E) TGF-β, (F) RANKL, (G) OPG, and (H) RANKL/OPG
in the inflammatory microenvironment, n = 3. Data were analyzed with one-way ANOVA with
Bonferroni’s multiple comparison test. * p < 0.05, *** p < 0.001 relative to controls. # p < 0.05, ## p < 0.01,
### p < 0.001 relative to LPS (without NGR1) group.

3. Discussion

Bone tissue engineering technology has developed rapidly and has great potential
in biomedical applications. Osteointegration and osteoinductive properties of materials
determine their efficacy for bone regeneration. The key cells’ cellular activities, such as
adhesion, spreading, proliferation, migration, and differentiation, are indispensable for
the success of bone tissue engineering. NGR1, one of the main bioactive compounds
from Panax notoginseng root, has been reported to promote proliferation and osteogenic
differentiation of MC3T3-E1 pre-osteoblasts [30]. In this study, NGR1 did not inhibit the
proliferation of hASCs. NGR1 significantly increased adhesion, spreading, and migration of
hASCs. NGR1-treated hASCs showed higher adhesion in 3D-printed TCP scaffold in vitro
and better survival in vivo. In addition, NGR1 promoted osteogenic differentiation of
hASCs as indicated by higher ALP activity, OCN expression, matrix mineralization, and
expression of osteogenic differentiation markers ALP, COL1A1, and OCN. NGR1 mitigated
LPS-induced expression of inflammatory markers IL-1β, IL-6, and TNF-α in hASCs as
well as the RANKL/OPG expression ratio. In summary, the biocompatible NGR1 has the
potential to induce migration, adhesion, and osteogenic differentiation of precursor cells,
as well as an anti-inflammatory effect (Figure 9).
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Figure 9. NGR1 promotes adhesion, spreading, migration, immunomodulation, and osteogenic
differentiation potential of hASCs. The images were created with BioRender.com accessed on
3 March 2022.

NGR1 promotes osteoblast differentiation, but the optimal concentration of NGR1
treatment remains debatable. Liu et al. reported that treatment with 5–1000 µg/mL NGR1
promoted osteogenic differentiation of MC3T3-E1, while NGR1 at 200 and 1000 µg/mL
significantly inhibited cell proliferation [30]. Huang et al. reported that NGR1 at a concen-
tration of ≤20 µM could promote differentiation of human alveolar osteoblasts (HAOBs)
in a TNF-α induced inflammatory microenvironment [44]. NGR1 at a concentration of
≤ 20 µM stimulates rat osteoblast proliferation and differentiation [45]. The inconsistent ef-
fects of NGR1 treatment on different cell types of mice, rats, and humans may be attributed
to the differential tolerance of NGR1 in different cell types. The lower concentration of
drugs used in vivo ensures lower adverse effects. Therefore, in this study, we tested the
effect of 0.01–5 µg/mL of NGR1 on the biological functions of hASCs and the results
showed that 0.05 µg/mL of NGR1 was able to induce the cellular activities of hASCs
required for bone tissue engineering application. Reports from literature had shown the
different concentrations of NGR1 to promote the osteogenic differentiation of MSCs from
different sources. Our results show that 0.05 µg/mL of NGR1 concentration can induce the
osteogenic differentiation of hASCs. However, the exact molecular mechanism of precursor
cell type-dependent optimal dose of NGR1 to induce osteogenic differentiation should be
further studied.

Cell adhesion and spreading have been used as key parameters to evaluate the efficacy
of surface compatibility of biomaterials for different types of cells in vitro [46,47]. The
adhesion and spreading of cells onto the bone graft/implant surface are vital for successful
stromal cell-based bone tissue engineering techniques [7]. Various bone grafts and implants
with similar mechanical and physicochemical properties as bone fail osteointegration, is due
to a lack of cell adhesive properties [48]. Bioactive molecules, such as collagen, fibronectin,
RGD peptides, and basic fibroblast growth factor, have been widely used to improve the
cell adhesive properties of biomaterials [49]. These bioactive molecules always required
additional treatment to direct immobilization on the surface of the materials, which is often

BioRender.com
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complex and time-consuming. Particularly, 3D-printed materials often need post-printing
heating and sintering to get sufficient mechanical strength, which precludes the potential
for simultaneous incorporation of heat-labile bioactive molecules. In this study, for the
first time, we showed that 0.05 µg/mL of NGR1 optimally promoted the adhesion and
spreading of hASCs on the glass surface and 3D-printed β-TCP scaffold surfaces.

The poor survival rate of MSCs during in vivo transplantation is one of the main
drawbacks of the direct use of MSCs in bone tissue regeneration [50]. It has been reported
that in vivo monitoring of transplanted MSCs in an acute myocardial infarction could
identify only 4.4% of MSCs in the transplanted site after 1 week, which indicated the poor
survival rate of transplanted MSCs [51]. In our study, we used the Live Image software
with the IVIS Lumina LT Series III system to assess the survival rate of hASCs on 3D printed
β-TCP scaffolds in vivo. At each time point, the survival rate of cells in the NGR1 group
was higher than those in the control (1.65, 2.03, 1.70, and 6.22 times, respectively). In the
NGR1 group, 10 days after injection with hASCs, 39.9% of cells in the implantation site were
identified as hASCs, compared to 11.0% in the control group. Facilitating the migration
of MSCs would increase the efficiency of MSC transplantation in clinical applications,
resulting in significantly improved MSC-based cell therapy and regenerative medicine
outcomes. Therefore, enhancing the migration of endogenous precursor cells in the defect
site has become one of the prime aims of bone tissue engineering [52]. In this study,
0.05 and 5 µg/mL NGR1 robustly promoted the migration of hASCs.

The majority of bone grafts and implants have high osteoconductivity but lack os-
teogenic differentiation-inducing potential [53]. In bone tissue engineering, the incorpora-
tion of growth factors and various nanomaterials have been employed widely to drive the
osteogenic differentiation of precursor cells. The shortcomings of these approaches, such
as the low stability and high costs of growth factors [10,12], and the possible cytotoxicity
of nanomaterials [54] often limit their clinic translation. In the past decade, engineered
herbal constructs have received increasing attention owing to the biocompatibility, low
toxicity, and cost-effectiveness of herbal extracts. In particular, some herbal extracts with
pro-angiogenic and pro-osteogenic activities can add osteogenesis properties to bioma-
terials and increase the clinical efficacy of bone tissue engineering. For instance, icariin,
isolated from several species of plants belonging to the genus Epimedium, was reported
to have the potential to be applied in bone tissue engineering, owing to their biological
functions, such as anti-osteoporotic, osteogenic, anti-osteoclastogenic, chondrogenic, angio-
genic, and anti-inflammatory effects [55–57]. Ursolic acid is an active compound found in a
variety of natural plants, which when loaded on biomaterial scaffolds has been shown to
enhance bone regeneration by increasing the ALP activity and osteogenic differentiation-
related protein and gene expression [58]. Otherwise, ursolic acid-loaded-mesoporous
hydroxylapatite-chitosan scaffolds were reported to regulate bone regeneration ability
by inhibiting the polarization of macrophages to M1 type [59]. In another study, grape
seed, pomegranate peel, and jabuticaba peel extracts direct blend with scaffolds of nanohy-
droxyapatite and collagen showed potent anti-bacterial activity and offered a promising
strategy to design novel biomaterials for bone tissue regeneration [60]. In addition, scaf-
folds containing herbal extracts, such as Cissus quadrangularis [61], kaempferol [62], aloe
vera extract [63], and Elaeagnus Angustifolia extract [64], have shown a potential bone tissue
regeneration ability. In addition, NGR1 significantly induces osteogenic differentiation of
MC3T3-E1 cells in vitro [30]. In this study, NGR1 promoted the osteogenic differentiation
of hASCs, as indicated by enhanced ALP activity, OCN expression, matrix mineralization,
and osteogenic gene expression. Bone regeneration needs rapid vascularization to supply
oxygen and nutrients. An increase in angiogenesis can lead to the restoration of damaged
tissues, thereby leading the way for successful tissue regeneration. Our data has shown
that NGR1 promoted the expression of proangiogenic growth factor VEGF.

The inflammatory response to chronic injury affects tissue regeneration and has be-
come an important factor influencing the prognosis of patients [65]. It has been demon-
strated that LPS-stimulated inflammation is significantly reduced by NGR1 in the atopic der-
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matitis model [66]. In this experiment, our data show that NGR1 had an anti-inflammation
effect by effectively reducing IL-1β, IL-6, and TNF-α expression in LPS-treated hASCs.
IL-1 induces bone destruction in a variety of diseases, such as osteoporosis, rheumatoid
arthritis, and periodontal diseases [67]. IL-6 has been reported to increase osteoclastoge-
nesis [68]. TNF-α is a common inflammatory cytokine elevated in chronic inflammatory
conditions with poor bone healing [41]. IL-10 and TGF-β are important anti-inflammatory
cytokines. NGR1 modulated mRNA expression of pro-inflammatory cytokines but not
anti-inflammatory cytokines in LPS-treated hASCs. Reports from the literature showed
the role of tumor necrosis factor receptor 1 (TNFR1) and tumor necrosis factor receptor
2 (TNFR2) in the immunomodulatory effect of MSCs [69–71]. The increased expression of
TNFR1 is related to pro-inflammatory phenotypes and, inversely, the higher expression of
the TNFR2 is related to anti-inflammatory phenotypes [70,72]. Therefore, the possible role
of TNFR1/TNFR2 on NGR1-mediated anti-inflammatory effect on hASCs should be further
explored. It is generally known that RANKL plays a key role in osteoclastogenesis and bone
absorption. OPG is a critical negative modulator of bone resorption, which induces bone
remodeling by regulating the RANKL/OPG ratio [67]. A previous study had shown that
NGR1 significantly induces bone development by inhibiting RNAKL-mediated MAPK and
NF-κB signaling pathways and suppressing osteoclastogenesis and bone resorption [73].
Our data showed that NGR1 mitigated the ratio of RANKL/OPG, which increased by
LPS. Downregulating the ratio of RANKL/OPG in the bone microenvironment inhibits the
differentiation and maturation of osteoclasts. Our results indicate that NGR1 has the poten-
tial to regulate the immune microenvironment during tissue repair. Further studies, such
as the LPS-induced osteolysis model, are warranted to validate these inferences in vivo.
Based on our results, in vitro NGR1 pretreated hASCs or a low dose NGR1-coating of 3D
scaffold could improve the efficacy of bone tissue engineering. However, the in vivo bone
regenerative potential of NGR1 with these approaches still needs to be further investigated
in relevant experimental setups, such as critical-size bone defects reconstruction using
3D-printed scaffold and stromal cells.

NGR1 is a phytoestrogen and binds to estrogen receptors of rat primary osteoblasts
to promote osteogenic differentiation [45]. This suggests the estrogen signaling activation
potential of NGR1 in osteoblast lineage cells. Further study is obligatory to unravel whether
the estrogen signaling is involved in NGR1-mediated osteogenic differentiation of hASCs.
Furthermore, the use of hASCs from a single donor is another limitation of this study.
A future study using hASCs from multiple donors is recommended to corroborate the
findings of the current study.

4. Materials and Methods
4.1. Cell Culture and Chemicals

The hASCs, purchased from Cyagen Biosciences Technology (Guangzhou, China),
were isolated from the adult adipose tissue and cultured in hASCs complete growth
medium (HUXMD-90011, Cyagen, Guangzhou, China). The standard characterization
assay, including osteogenic, adipogenic, and chondrogenic differentiation assay, was per-
formed by Cyagen as quality control. Cells from exponentially growing cultures at passages
4–5 were used for in vitro and in vivo experiments. NGR1 (C47H80O18, product number
SN8230, purity ≥ 98%) was purchased from Solarbio® Life Sciences (Beijing, China).

4.2. Cell Viability Assay

The hASCs (3000 cells/well) were seeded into a 96-well plate and treated with NGR1
(0, 0.01, 0.05, 0.5, and 5 µg/mL) for 1, 4 and 7 days. Cells were washed with PBS and
incubated with a 110 µL fresh medium containing a 10 µL Cell Counting Kit (CCK)-8
solution (Dojindo Corp., Japan) for 4 h. Cell viability was determined by measurement of
the absorbance using a spectrophotometer at a wavelength of 450 nm.
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4.3. Alkaline Phosphatase (ALP) Staining and Activity Assay

For osteogenic differentiation studies, the osteogenic induction medium (hASCs com-
plete growth medium with 50 µg/mL L-ascorbic acid (Sigma Aldrich, St. Louis, MO, USA),
10 mM β-glycerophosphate (Sigma Aldrich, St. Louis, MO, USA), and 10 nmol/L dexam-
ethasone (Sigma Aldrich, St. Louis, MO, USA)) was added in the cultures. The hASCs
(2.5 × 104 cells/well) were seeded in 48-well plates. ALP activity was determined on days
4 and 7 using an ALP kit according to the manufacturer’s protocol (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China), and normalized to total protein content. To-
tal protein was measured by a commercial BCA protein assay kit (Beyotime Institute of
Biotechnology, Shanghai, China). The ALP staining was performed using a BCIP/NBT
alkaline phosphatase color development kit (Beyotime Institute of Biotechnology, Shanghai,
China) according to the manufacturer’s instructions.

4.4. Osteocalcin (OCN) ELISA

OCN protein release in the culture medium was measured on day 14. The supernatants
of the cells were collected and OCN concentrations were detected with a human OCN
enzyme-linked immunosorbent assay kit (SEA471Hu, Cloud-Clone Corp, Wuhan, China),
according to the manufacturer’s instructions.

4.5. Alizarin Red Staining

Cells cultured in 48-well plates were stained with 2% alizarin red staining solution
(pH 4.2) on days 21 and 28 to visualize the mineralized matrix in the hASCs culture. Images
were obtained with a stereomicroscope (Leica, Singapore). To quantify the mineralized
matrix, the alizarin red-stained calcium deposition was extracted with 10% cetylpyridinium
chloride (CPC, Sigma Aldrich, St. Louis, MO, USA) for 20 min, and the absorbance of the
extract was measured at 562 nm wavelength in a microplate reader.

4.6. The induction of the Inflammatory Microenvironment in hASCs

Lipopolysaccharide (LPS) is a pro-inflammatory component of the cell membrane
of Gram-negative bacteria, which could create an inflammatory microenvironment. The
hASCs were exposed to 1 µg/mL LPS (E. coli) (Sigma Aldrich, Shanghai, China) for 4 h,
washed twice with PBS, then, treated with different concentrations of NGR1 (0, 0.05, and
5 µg/mL) for 3 days.

4.7. RT-qPCR Analysis

NGR1 or LPS-induced changes in gene expression of hASCs were analyzed using RT–
qPCR. Total RNA was extracted using a SteadyPure Universal RNA Extraction Kit (Accurate
Biology, Changsha, China) and reversed transcribed into cDNA using a PrimeScript RT
reagent kit with gDNA Eraser (Takara, Dalian, China) according to the manufacturer’s
protocols. The expression of ALP, COL1A1, OCN, VEGF, RANKL, OPG, IL-1β, IL-6, TNF-α,
IL-10, and TGF-β were analyzed by RT-qPCR. The RT-qPCR was performed using the TB
Green Premix Ex Taq II kit (Takara, Dalian, China). The conditions for PCR reaction were
1 cycle of 95 ◦C for 30 s, followed by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. Each
reaction was performed in triplicate. The 2−∆∆CT method was used to calculate the relative
expression mRNA levels. The relative mRNA expression levels were standardized to the
levels of the reference gene GAPDH. The primer sequences for the tested genes are listed
in Table 1.
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Table 1. Primers used for RT-qPCR analysis.

Gene Primer Sequences

ALP Forward: 5′-GGACCATTCCCACGTCTTCAC-3′

Reverse: 5′-CCTTGTAGCCAGGCCCATTG-3′

COL1A1 Forward: 5′-GTGCCAAGGGTCTGACTGGAA-3′

Reverse: 5′-ATCACACCAGCCTGACCACG-3′

OCN Forward: 5′-CTCACACTCCTCGCCCTATTGG-3′

Reverse: 5′-GTAGCGCCTGGGTCTCTTCACT-3′

VEGF Forward: 5′-GGAGGCAGAGAAAAGAGAAAGTGT-3′

Reverse: 5′-TAAGAGAGCAAGAGAGAGCAAAAGA-3′

RANKL Forward: 5′- TGATGAAAGGAGGAAGCA-3′

Reverse: 5′- GTAAGGAGGGGTTGGAGA-3′

OPG Forward: 5′-AACCCCAGAGCGAAATAC-3′

Reverse: 5′-AGCAGGAGACCAAAGACAC-3′

IL-1β Forward: 5′-ATGATGGCTTATTACAGTGGCAA-3′

Reverse: 5′-GTCGGAGATTCGTAGCTGGA-3′

IL-6 Forward: 5′-ACTCACCTCTTCAGAACGAATTG-3′

Reverse: 5′-CCATCTTTGGAAGGTTCAGGTTG-3′

TNF-α Forward: 5′-GAGGCCAAGCCCTGGTATG-3′

Reverse: 5′-CGGGCCGATTGATCTCAGC-3′

IL-10 Forward: 5′-GACTTTAAGGGTTACCTGGGTTG-3′

Reverse: 5′-TCACATGCGCCTTGATGTCTG-3′

TGF-β Forward: 5′-CAATTCCTGGCGATACCTCAG-3′

Reverse: 5′-GCACAACTCCGGTGACATCAA-3′

GAPDH Forward: 5′-GCACCGTCAAGGCTGAGAAC-3′

Reverse: 5′-TGGTGAAGACGCCAGTGGA-3′

4.8. Cell Migration Assay

For the transwell assay, hASCs pretreated with NGR1 for 24 h (10,000 cells/well)
suspended in serum-free medium were added into the upper chamber of a 24-well plate
transwell insert. The serum-containing medium was placed in the lower chamber. After
16 h of incubation, the cells in the upper chambers were fixed with 4% paraformaldehyde
for 20 min and stained with 0.1% crystal violet. The remaining cells on the inner side
of the upper chamber were removed, and the migrated cells were imaged with a light
microscope (Leica DMi1, Shanghai, China). The numbers of migrated cells were quantified
using ImageJ. For migration analysis, cell numbers of five randomly selected fields per
sample were measured for three samples per condition.

For the scratch wound assay, hASCs (4 × 105 cells/well) were plated into 6-well plates
24 h prior to scratching. A 200 µL pipette tip was used to scratch the cell monolayer. Then,
the cells were cultured in a low-serum medium (2% FBS) in the absence or presence of
NGR1. Images were captured using a light microscope (Leica DMi1, Shanghai, China)
at 0 h, 6 h. 12 h, and 18 h. The scratch area was assessed using ImageJ. Wound closure (%)
= (original wound area − wound area at the metering point)/original wound area × 100.

4.9. Analysis of hASCs Adhesion and Spreading

The hASCs (1.2× 104 cells/coverslip) were seeded on glass coverslips (8 mm diameter)
plated in a 48-well plate and treated with or without 0.05 µg/mL NGR1 for 1.5, 4, and
24 h. Cells were fixed with 4% fresh paraformaldehyde for 10 min at room temperature,
permeabilized with 0.1% TritonX-100 in PBS for 10 min. Cells were incubated with 1%
bovine serum albumin (BSA) in PBS at room temperature for 1 h to prevent non-specific
binding. Subsequently, cells were stained with FITC-Phalloidin for 2 h at room temperature
in the dark. After washing, cells were counterstained with DAPI for 5 min. After this,
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images were obtained with a 63× objective lens of Leica TCS SP8 confocal microscope
(Leica, Germany). The attached number and surface area of hASCs were counted using the
IN Cell Analyzer 2500HS (GE Healthcare, Issaquah, WA, USA). The attached number of
cells was considered to represent cell adhesion. The surface area of cells was considered to
quantitatively represent cell spreading [74,75].

We further analyzed the adhesion of NGR1 pretreated hASCs on 3D-printed β-
tricalcium phosphate (TCP) scaffolds. The 3D TCP scaffolds were printed as follows:
Briefly, β-TCP (Kunshan Chinese Technology New Materials Co., Ltd. Qingdao, China) ink
was prepared by dispersing the powder in dispersant with distilled water, a proper amount
of hydroxypropyl methylcellulose, and polyethylenimine (PEI) to increase agglomeration.
A bio 3D printer (Regenovo, Hangzhou, China) was employed for the scaffold fabrication.
The printing parameters were set at 700 µm in distance and 200 µm in height to obtain
the final scaffold with a diameter of 5 mm and a thickness of 1 mm. After printing, the
scaffolds were dried in air for 24 h and sintered at 1100 ◦C for 3 h. To seed the cells in
the scaffolds, the sterile 3D TCP scaffolds were soaked in a culture medium overnight
and dried in air. TPC scaffold was placed in a well of 48-well culture plates and covered
with culture medium with or without 0.05 µg/mL NGR1. Cells (1 × 105 cells/well) were
dropped vertically on the TCP-plated wells and incubated for 1.5, 4, and 24 h. Subsequently,
cells on scaffolds were fixed and stained. The images were captured with a Leica TCS SP8
laser scanning confocal microscopy. Image J software was used for cell counting.

4.10. Animal Study

All animal experiments obtained approval from the Animal Care Committee of PLA
General Hospital of Southern Theatre Command, Guangzhou, China. PKH26-labeled
hASCs were seeded on 3D-printed β-TCP scaffolds and treated with or without 0.05 µg/mL
NGR1 for 3 h. Male nude mice (6 weeks old, 18–20 mg bodyweight) were anesthetized
by intraperitoneal injection of 1% pentobarbital. Cell-scaffold constructs were carefully
implanted in each of the two dorsal subcutaneous pockets. After implantation, the skin
was closed using black non-resorbable 5-0 Mersilk sutures (Ethicon, Shanghai, China).
Fluorescent images were acquired by the Living Image software with the IVIS Lumina LT
Series III system (PerkinElmer, Hopkinton, MA, USA). The autofluorescence background
signal intensity was subtracted. The fluorescence intensity was represented by a multicolor
scale ranging from red (least intense) to yellow (most intense). Signal intensity images were
superimposed over grayscale reference photographs for anatomical representations. In all
experiments, signals were collected from a defined ROI using the contour ROI tool, and total
radiant efficiency ([p/s]/[µM/cm2]) was analyzed using the Living Image software, 4.5.

4.11. Statistical Analysis

All quantitative data in this study represent the mean values± SD (standard deviation)
for n ≥ 3 (number of experiments). Data were analyzed using GraphPad Prism (GraphPad
Software version 9.1, La Jolla, CA, USA). Significance differences were determined by one-
way analysis of variance (ANOVA) with Bonferroni’s multiple comparison test, two-way
ANOVA with Tukey’s multiple comparisons test, or the unpaired t-test. A value of p < 0.05
was considered statistically significant.

5. Conclusions

In summary, NGR1 enhances adhesion, spreading, migration, immunomodulation,
and osteogenic differentiation of hASCs. In addition, NGR1 also enhanced the survival rate
of hASCs on cell-scaffold constructs in vivo. This study explored the influence of NGR1 on
hASCs’ function from different aspects required for effective bone regeneration.
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