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Abstract: Our research focused on the hypoglycemic capability and the possible mechanisms of
extract and fractions from Polygoni Avicularis Herba (PAH) based on α-glucosidase, α-amylase
inhibition assays, glucose uptake experiment, HPLC-MS analysis, and molecular docking experiment.
In addition, DPPH, ABTS, and FRAP assays were used for determining the antioxidant capability.
The results of total flavonoids and phenolics contents showed that ethyl acetate fraction (EAF)
possessed the highest flavonoids and phenolics with values of 159.7 ± 2.5 mg rutin equivalents/g
and 107.6 ± 2.0 mg galic acid equivalents/g, respectively. The results of in vitro hypoglycemic
activity showed that all samples had effective α-glucosidase inhibition capacities, and EAF possessed
the best inhibitory effect with IC50 value of 1.58 ± 0.24 µg/mL. In addition, n-butanol fraction
(NBF) significantly promoted the glucose uptake rate of 3T3-L1 adipocytes. HPLC-MS analysis and
molecular docking results proved the interactions between candidates and α-glucosidase. The results
of antioxidation capacities showed that EAF possessed the best antioxidation abilities with DPPH,
ABTS, and FRAP. In summary, the hypoglycemic activity of PAH might be related to the inhibition
of α-glucosidase (EAF > PEF > NBF) and the promotion of glucose uptake in 3T3-L1 adipocytes
(NBF). Simultaneously, the antioxidation capacity of PAH might be related to the abundant contents
of flavonoids and other phenolics (EAF > PEF > NBF).

Keywords: Polygoni Avicularis Herba; hypoglycemic; antioxidant; flavonoids; phenolics; molecu-
lar docking

1. Introduction

Polygoni Avicularis Herba (PAH) is the dry aerial part of Polygonum aviculare L. (fam-
ily Polygonum). It is used in traditional Chinese medicine to treat dysuria, abdominal
pain caused by intestinal parasites, skin eczema, and genital itching [1]. According to the
literature, PAH possessed anti-inflammatory [2,3], antibacterial [3,4], antioxidant [5–7],
anti-obesity [8,9], hypoglycemic [10,11], and vasorelaxant [12] activities. The main bioac-
tive components obtained in PAH were flavonoids, phenolic acids, alkaloids, terpenes,
sterols, quinones [13]. Flavonoids were the main components obtained from PAH, in-
cluding quercetin, myricetin, kaempferol, olivine glycosides, myricetin 3-O-(3”-O-galloyl)-
rhamnopyranoside, kaempferin, rutin, hyperoside, juglansin, and luteolin [14].

Diabetes mellitus (DM), a metabolic disorder characterized by hyperglycemia induced
by insulin secretion deficiency and/or resistance to its action, affects millions of people
around the world [15]. At present, antidiabetic drugs such as biguanides, sulfonylureas,
meglitinides, thiazolidinediones, dipeptidyl peptidase IV inhibitors, and α-glucosidase
inhibitors have many side effects, such as weight gain, hypoglycemia, gastrointestinal
disorders, liver and kidney damage, and hypersensitivity reactions [15]. On the other hand,
plants rich in certain types of flavonoids and other phenolics can exert a significant impact
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on diabetes via protecting pancreatic islet B cells, reducing the absorption of glucose in the
digestive tract, and promoting glucose uptake in adipocytes [16–18]. Therefore, natural
products from medicinal plants might have a good development prospect in the field of
diabetes treatment.

Antioxidant activity has been proved to be relevant in the treatment of Alzheimer’s
disease [19], diabetes [20], hypertension [21], lung fibrosis [22], and tumors [23]. Therefore,
natural products possessing antioxidant activity may present a complementary alternative
for the treatment of these diseases. The previous literature reported that the total phenolics
and flavonoids content of PAH ethanolic extract (PAHEE) was 677.4 ± 62.7 mg/g and
112.7 ± 13.0 mg/g, respectively [5], and the antioxidant effects of the extract were proved
by free radical scavenging assay, superoxide radical scavenging assay, lipid peroxidation
assay, and hydroxyl radical-induced DNA strand scission assay [5,7]. However, there are
few reports on the total flavonoids and phenolics contents of PAHEE fractions and their
corresponding antioxidant activity determined by FRAP and ABTS assays.

Previous evidence showed that PAH had effective antioxidant and hypoglycemic
activities [6,7,10,11]. Nevertheless, there are few comparative studies on the antioxidant,
hypoglycemic activities, and the possible hypoglycemic mechanisms and molecules of
its fractions. Therefore, in this study, the antioxidant, hypoglycemic properties, and the
possible hypoglycemic mechanisms of the active fractions from PAHEE are reported. At
first, we detected the total flavonoids and total phenolics content in different fractions,
and the fractions were then assayed for their antioxidant potential via 2,2-diphenyl-2-
picrylhydrazyl (DPPH), ABTS, and FRAP assays. Next, in vitro hypoglycemic assays
(α-glucosidase, and α-amylase inhibitory activities, as well as glucose uptake in 3T3-L1
adipocytes experiment), along with HPLC-MS and in silico studies were utilized to explore
the antidiabetic mechanisms of PAH.

2. Results
2.1. Total Flavonoids Content

The standard curve of rutin was y = 0.0054x + 0.047, R2 = 0.9994 (Figure S1). The
quantitative analysis results of total flavonoids of PAHEE and its fractions showed that total
flavonoids content in different fractions had significant differences (p < 0.05). Ethyl acetate
fraction (EAF) possessed the highest content of flavonoids with values of 159.7 ± 2.5 mg/g,
followed by petroleum ether fraction (PEF) and PAHEE (88.5 ± 4.4 and 68.7 ± 0.3 mg/g, re-
spectively). n-Butanol fraction (NBF) exhibited the lowest total flavonoids content (Table 1).

Table 1. Total flavonoids content (TFC) and total phenolics content (TPC) of PAHEE and its fractions.

Samples TFC (mg/g) TPC (mg/g)

PAHEE 68.7 ± 0.3 C 43.2 ± 0.6 C

PEF 88.5 ± 4.4 B 62.2 ± 1.1 B

EAF 159.7 ± 2.5 A 107.6 ± 2.0 A

NBF 34.7 ± 2.0 D 29.7 ± 0.4 D

The values represent mean ± SD, n = 3. Polygoni Avicularis Herba ethanolic extract (PAHEE), petroleum ether
fraction (PEF), ethyl acetate fraction (EAF), n-butanol fraction (NBF). Within the same column, values with
different superscript capital letters are statistically different (p < 0.05).

2.2. Total Phenolics Content

The standard curve of gallic acid was y = 0.0463x + 0.0173, R2 = 0.9995 (Figure S1).
Consistent with the tested results of total flavonoids content, EAF possessed the highest
content of phenolics with values of 107.55 ± 1.96 mg/g, followed by PEF and PAHEE
(62.2 ± 1.1 and 43.2 ± 0.6 mg/g, respectively). NBF had the lowest total phenolic content
(Table 1).
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2.3. The Inhibitory Effects of PAHEE and Its Fractions on α-Glucosidase and α-Amylase

α-Glucosidase inhibition abilities of PAHEE and its’ fractions were assayed, acarbose
was used as a positive control. In a dose-dependent manner, the PAHEE, PEF, EAF, and
NBF (Figure 1) exhibited effective α-glucosidase inhibition activities, with IC50 values from
1.58 to 4.25 µg/mL. EAF possessed potent α-glucosidase inhibition ability with IC50 value
of 1.58 ± 0.24 µg/mL (Figure 1c), PEF and NBF showed comparable inhibition activities
with IC50 values of 2.32 ± 0.10 and 2.57 ± 0.28 µg/mL, respectively (Figure 1b,d). The
results of α-amylase inhibition experiment showed that NBF possessed a weak inhibitory
effect on α-amylase with IC50 value of 4.73± 1.41 µg/mL, the other samples had no obvious
inhibitory effect on α-amylase.
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Figure 1. α-Glucosidase inhibitory effects of PAHEE and its fractions. (a) Log concentration–inhibition
rate fitting curve of PAHEE. (b) Log concentration–inhibition rate fitting curve of petroleum ether
fraction (PEF). (c) Log concentration–inhibition rate fitting curve of ethyl acetate fraction (EAF).
(d) Log concentration–inhibition rate fitting curve of n-butanol fraction (NBF). (e) Log concentration–
inhibition rate fitting curve of acarbose. Calculated the IC50 value of different groups by Statistical
Product and Service Solutions (SPSS, version: 21.0, International Business Machines Corporation,
New York, USA), and all values are mean ± SD from a least three independent experiments.

2.4. Enzyme Kinetic Equation

In order to evaluate the type of the fractions partitioned from PAHEE on α-glucosidase
(the digestive enzyme that was best inhibited), Lineweaver–Burk plotting was performed.
As shown in Figure 2, all data lines of PAHEE, PEE, EAE, and NBE on the Lineweaver–Burk
plot intersected in a point in the third quadrant, and with the increase in inhibitor con-
centration, the kinetic parameters Vmax (longitudinal intercept is 1/Vmax) and Michaelis
constant Km (cross-sectional distance−1/Km) decreased. Therefore, all inhibitory effects of
samples on α-glucosidase enzyme belonged to the reverse-competitive inhibition type [24],
which suggested that the inhibitors presented in samples PEE, EAE, and NBE might be
bound to the enzyme–substrate complex to inhibit α-glucosidase.
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2.5. Glucose Uptake and Cell Viability Assays

Fully differentiated 3T3-L1 adipocytes were used to detect the glucose uptake rates
and cell viabilities of different groups (Model group, positive control group, PAHEE group,
PEF group, EAF group, and NBF group), and insulin was considered as a positive control.
Different from the antioxidant results, NBF showed a concentration-dependent effect of
promoting glucose uptake in 3T3-L1 adipocytes (Figure 3b). The results showed that the
glucose concentration in medium of each group was 5.5 mmol/L at 0 h, after 24 h of adminis-
tration, the glucose concentration in medium of model group, 40, 80, and 160 µg/mL of NBF
groups were 3.28 ± 0.19, 2.51 ± 0.01, 2.09 ± 0.05, and 1.82 ± 0.03 mmol/L, and the glucose
uptake rates were (40.32 ± 5.87)%, (54.30 ± 0.49)%, (62.08 ± 0.87)%, and (66.93 ± 0.56)%,
respectively. Concentrations of 40, 80, and 160 µg/mL of NBF had significant effects on
promoting glucose uptake in 3T3-L1 adipocytes; the differences were statistically significant
(* p < 0.01, *** p < 0.001, and *** p < 0.001, respectively). The results of cell viability showed
that the insulin group and 160 µg/mL EAF group had weak inhibitory effects on the viabil-
ity of 3T3-L1 adipocytes (*** p < 0.001). In addition, 80 µg/mL EAF group and 160 µg/mL
NBF group had weak promotion effects on the viability of 3T3-L1 adipocytes (*** p < 0.001).
Except for the groups mentioned above, other groups had no significant effects on cell
viability (Figure 3c). In conclusion, NBF had a significant capability to promote glucose
uptake in 3T3-L1 adipocytes, and without inhibitory effect on cell viability.
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Figure 3. Adipocyte differentiation process and glucose uptake, cell viability test results of PAHEE
and its fractions. (a) Schematic diagram of 3T3-L1 adipocytes differentiation. (b) Glucose uptake
rate of different groups (Model, Ins, PAHEE, PEF, EAF, NBF), insulin (Ins) was used as a positive
control. (c) Cell viability of different groups (Model, Ins, PAHEE, PEF, EAF, NBF). All values are
mean ± SD from a least three independent experiments, and each group is compared with model
group, Significant are denoted by symbols: ** p < 0.01, and *** p < 0.001.

2.6. HPLC-MS Analysis of EAF

The primary constituents of PAH were reported to be flavonoids, phenolic acids, alka-
loids, terpenes, sterols, quinones, other phenylpropanoids, etc. [13]. Consistent with the pre-
vious literature, the main components we detected from EAF were flavonoids, phenolics, al-
kaloids, quinones, and terpenes (Table 2). Flavonoids included agathisflavone, delphinidin
3-O-β-D-galactopyranoside, 3,5,7,2′,6′-pentahydroxyflavonol, 3′-methoxydaidzein, avic-
ularin, cyanidin, delphinidin, pelargonidin, and 6-hydroxy kaempferol-7-O-glucoside.
Phenolics included 2-methoxy-4-(3-methoxy-1-propenyl)-phenol (Table 3). In these com-
pounds, 3,5,7,2′,6′-pentahydroxyflavonol, agathisflavone, avicularin, and delphinidin were
reported to exhibited antioxidant activity; agathisflavone, avicularin, delphinidin, cyanidin,
pelargonidin, delphinidin-3-arabinoside, pelargonidin-3-galactoside, and leonurine were
reported to exhibited hypoglycemic activity; and the α-glucosidase inhibitory effects of the
other flavonoids and phenolics was not reported, as shown in Table 2.
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Table 2. HPLC/MS analysis and molecular docking results of compounds detected from EAF.

Category Compound Name Formula Mass
(g/mol)

Reference
Mass

(g/mol)

RT
(min)

Area
(µV·s)

Score
(%)

Binding Energy
(kcal/mol) References

Flavonoids

3,5,7,2′,6′-Pentahydroxyflavone C15H10O7 302.0 302.0 22.7 100671889 99.4 −9.55 [25] a

5,7,2′,3′-Tetrahydroxyflavone C15H10O6 286.0 286.1 27.0 65396294 96.3 −7.15 *
3′-Methoxydaidzein C16H12O5 284.1 284.1 48.2 43163766 97.0 −8.80 *

Agathisflavone C30H18O10 538.1 538.1 42.0 39711957 99.5 −11.35 [26] a,b

6-Hydroxykaempferol-7-O-glucoside C21H20O12 464.1 464.1 17.9 67100153 98.9 −8.08 *
Avicularin C20H18O11 434.1 434.1 22.7 57090941 99.0 −10.02 [27] a; [28] b

Desmanthin 2 C28H24O16 616.1 616.1 16.5 29675775 98.1 −8.45 *
3,5,7,3′,4′ -Pentahydroxyflavone-3-L-rhamnoside C21H20O11 448.1 448.1 24.1 26798354 96.8 −10.20 *

3,7,4′,5-Tetrahydroxyflavone-3-L-rhamnoside C21H20O10 432.1 432.1 28.5 15851984 98.8 −8.16 *
Melicitrin C20H18O12 450.1 450.1 17.6 11126608 98.9 −6.79 *

2′ ′-O-Galloylisoorientin C28H24O15 600.1 600.1 30.5 10835996 97.8 −9.78 *
Delphinidin C15H11O7 303.1 303.1 28.7 47200508 99.5 −7.50 [29] a,b; [30] b

Cyanidin C15H11O6 287.1 287.1 34.4 32042323 99.2 −8.03 [31] b; [32] b

Pelargonidin C15H11O5 271.1 271.1 35.5 27253529 97.6 −8.43 [33] b

Peonidin C16H13O6 301.1 301.1 36.7 14049096 99.3 −6.65 *
Delphinidin-3-O-β-D-galactoside C21H21O12 465.1 465.1 17.9 85247661 98.9 −11.58 *

Delphinidin-3-arabinoside C20H19O11 435.1 435.1 22.7 70570638 99.0 −8.52 [34] b

Pelargonidin-3-galactoside C21H21O10 433.1 433.1 28.5 19201678 99.2 / [35] b

Delphinidin-3′-O-(2”-O-galloyl-β-galactoside) C28H25O16 617.1 617.1 17.3 13797523 98.2 −6.29 –

Phenolics 2-Methoxy-4-(3-methoxy-1-propenyl)-phenol C11H14O3 194.1 194.1 11.73 16988535 97.9 −5.14 *

Alkaloids
Leonurine C14H21N3O5 311.2 311.2 26.7 27644760 98.6 / [36] b

Gnoscopine C24H27NO6 425.2 425.2 46.5 24023457 97.1 / –
8-Acetyldolaconine C26H39NO6 461.3 461.3 31.8 18923730 98.6 / –

Quinones
1,8-Dihydroxy-4-hydroxymethyl anthraquinone C15H10O5 270.1 270.1 35.5 23901981 97.6 / –
1,6-Dihydroxy-2,4-dimethoxyanthraquinone V C16H12O6 300.1 300.1 36.7 12128297 99.3 / –

Abieta-8,12-dien-11,14-dione C20H28O2 300.2 300.2 37.8 11252041 98.6 / –

Terpenoids (12R)-12-Hydroxy cascarill one C20H30O3 318.2 318.2 43.2 12287901 96.6 / –

Where “a” represent antioxidation activity, “b” represent hypoglycemic activity, “*” represent reported for the first time, “/” represent had not been detected.
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Table 3. Antioxidant activities of PAHEE and its fractions via assays for DPPH, ABTS, and FRAP.

Samples DPPH
(SC50/µg/mL)

ABTS
(mmol Trolox/L)

FRAP
(mmol Trolox/L)

PAHEE 47.64 ± 3.72 B 0.83 ± 0.03 C 0.35 ± 0.00 C

PEF 31.13 ± 2.23 C 1.12 ± 0.01 B 0.54 ± 0.00 B

EAF 19.94 ± 1.37 D 1.30 ± 0.00 A 0.76 ± 0.04 A

NBF 96.62 ± 5.87 A 0.42 ± 0.12 D 0.14 ± 0.00 D

Ascorbic acid 2.44 ± 0.33 E – –
The values represent mean ± SD, n = 3. 2, 2-diphenyl-2-picrylhydrazyl (DPPH), 2, 2-azinobis-3-ethylbenzothia-
zoline-6-sulfonic acid (ABTS), ferric reducing-antioxidant power (FRAP) experiment. A-E (DPPH), A-D (ABTS
and FRAP) within the same column, values with different superscript capital letters are statistically different
(p < 0.05).

2.7. Molecular Docking of the Candidate Compounds on α-Glucosidase

The molecular docking results showed that flavonoids agathisflavone and delphinidin
3-O-β-D-galactoside possessed the lowest binding energy with α-glucosidase (−11.35,
−11.58 kcal/mol, respectively). In addition, the other flavonoids and phenolics also
showed inhibitory effect on α-glucosidase with superior binding energy (Table 2). The
surface structure of ligand–enzyme complexes showed that the candidate was positioned
in the pocket of α-glucosidase, as illustrated in Figure 4a,c.
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of 3WY1-agathisflavone. (c) The surface structure of 3WY1-delphinidin 3-O-β-D-galactoside. (d) The
binding site structure of 3WY1-delphinidin 3-O-β-D-galactoside.

The docking results showed that agathisflavone formed two hydrogen-bonding in-
teractions between GLU231, LYS225 residues of α-glucosidase and hydroxyl groups, del-
phinidin 3-O-β-D-galactoside formed two hydrogen-bonding interactions between PHE516,
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ALA518 residues of the enzyme and hydroxyl groups, and the inhibitory effects of delphini-
din 3-O-β-D-galactoside, 3,5,7,2′,6′-pentahydroxyflavone, 5,7,2′,3′-tetrahydroxyflavone,
3′-methoxydaidzein, 6-hydroxykaempferol-7-O-glucoside, delphinidin 3′-O-(2”-O-galloyl-
β-galactoside), and peonidin on α-glucosidase via molecular docking were reported for
the first time (Table 2). In summary, the results indicated that the flavonoids and phenolics
detected in EAF might be bound to the active site of α-glucosidase to inhibit the activity of
the enzyme.

2.8. DPPH-Free Radical Scavenging Assay

DPPH-free radical scavenging assay is widely used to determine the antioxidant capac-
ity of natural products [37]. PAHEE and its fractions possessed effective scavenging capaci-
ties on DPPH-free radicals, and had concentration-dependent relationships. Ascorbic acid
was considered as a positive control with the SC50 value of 2.4439 ± 0.33 µg/mL (Figure 5e).
EAF had the strongest scavenging capacity with the SC50 value of 19.94 ± 1.37 µg/mL
(Figure 5c). Simultaneously, the scavenging effect of PEF (SC50 = 31.13 ± 2.23 µg/mL)
was stronger than PAHEE (SC50 = 47.64 ± 3.72 µg/mL). In summary, the results showed
that the DPPH free radical scavenging ability was EAF > PEF > PAHEE > NBF, and the
scavenging capacity of PAH was related to the accumulative effects of each fraction.
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2.9. ABTS Radical Scavenging Assay

The ABTS radical scavenging assay is commonly used to detect the scavenging effect
of the sample on ABTS radical [38,39]. All of the samples showed ABTS radical scavenging
capacity in vitro, ranging from 0.42 to 1.30 mmol Trolox/L, as shown in Table 3 EAF possessed
the strongest ABTS radical scavenging ability (1.30± 0.003 mmol Trolox/L), while NBF and
PAHEE showed a lower antioxidant potential than PEF (1.12± 0.012 mmol Trolox/L).

2.10. Ferric Reducing Antioxidation Power

Antioxidants presented in samples have the ability to reduce ferric tripyridyltriazine
(Fe 3+ TPTZ) into ferrous tripyridyltriazine (Fe 2+ TPTZ) to evaluate the antioxidant poten-
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tial [40]. The tested results were consistent with the ABTS assay, all of the samples showed
ferric reducing antioxidation power (Table 3), EAF possessed the strongest ferric reducing
antioxidation power with 0.76 ± 0.036 mmol Trolox/L, while NBF and PAHEE showed
lower ferric reducing antioxidation power than PEF (0.54 ± 0.004 mmol Trolox/L).

3. Discussion

The hypoglycemic activity of PAH has been reported in traditional Chinese medicine
classics [41]. In subsequent studies, Zhao, et al. and Chen, et al. confirmed the hypo-
glycemic effect of PAH in clinical trials, but did not clarify its possible hypoglycemic
mechanisms [10,11]. Up to now, there have been few reports on the hypoglycemic mech-
anism of PAH. In our research, we explored the hypoglycemic mechanism of PAH via
α-glucosidase inhibition assay, α-amylase inhibition assay, and 3T3-L1 adipocytes glucose
uptake experiments. The results showed that the polar fractions of PAHEE might have
different contributions for diabetes treatment. The digestive enzymes (α-glucosidase, α-
amylase) inhibition experiments showed that all samples (PAHEE, PEF, EAF, and NBF)
have effective α-glucosidase inhibition activity, and NBF possessed a weak α-amylase
inhibition activity.

3T3-L1 cell line is considered a classic cell line that has been frequently used in research
such as adipocytes differentiation, glucose uptake, and lipid metabolism [42]. In recent
years, more and more studies have reported the hypoglycemic activity of the plant extracts
or active ingredients via glucose uptake experiments in 3T3-L1 adipocytes [43,44]. Our re-
sults showed that NBF possessed a significant dose-dependent effect on promoting glucose
uptake in 3T3-L1 adipocytes, and the difference was statistically significant (*** p < 0.001).
Interestingly, NBF showed the weakest antioxidant and α-glucosidase inhibition activities,
but showed the strongest effect of promoting glucose uptake in 3T3-L1 adipocytes. This
result was discovered for the first time in PAH, as also its active ingredients and the mech-
anisms of promoting glucose uptake. Nevertheless, further studies should be needed to
complete these data.

The antioxidant activity of PAH crude extracts and fractions have been reported
in the literature by different methods, including DPPH free radical scavenging assay,
superoxide scavenging assay [5,45], hydroxyl radical scavenging assay, and total reducing
ability tests [7]. Our study evaluated PAHEE and its polar fractions’ antioxidant abilities
via DPPH, ABTS, and FRAP assays. The results of DPPH free radical scavenging were
consistent with the previous literature, EAF > PEF > PAHEE > NBF, ABTS, and FRAP
results proved this point as well. It is noteworthy that the conclusion was consistent with
total flavonoids and total phenolic content results, and higher content of flavonoids and
phenolics showed better antioxidant activity, which indicated that the antioxidant capacity
of PAH might be related to its abundant flavonoids and phenolics.

Polyphenols such as flavonoids and tannins can inhibit the digestion of carbohy-
drates to glucose by inhibiting the activity of key enzymes, such as α-glucosidase and
α-amylase [46]. According to the literature, some of the flavonoids detected by HPLC-MS
in our study have been reported to have potential hypoglycemic and antioxidant activ-
ity. On the one hand, the results showed that agathisflavone, avicularin, cyanidin, and
pelargonidin exhibited significant inhibitory activity in digestive enzymes (α-glucosidase
and/or α-amylase), and agathisflavone, avicularin inhibited α-glucosidase with IC50 values
of 11.4 ± 0.9 µmol/L, 69.8 mg/L, respectively. In addition, delphinidin-3-arabinoside has
the potential to modulate dipeptidyl peptidase-IV and its substrate GLP-1, to increase
insulin secretion [26–34]. On the other hand, previous research suggested that 3,5,7,2′,6′-
pentahydroxyflavone with a hydroxyl group in the B ring possessed a potent activity
against lipid peroxidation [25]. In summary, the results suggested that PAH might possess
great hypoglycemic and antioxidant activities, and its hypoglycemic activity might be
related to the inhibition of digestive enzymes, and the promotion of insulin secretion.

Our results proved that flavonoids and phenolics were the abundant ingredients pre-
sented in EAF (the strongest α-glucosidase inhibitory effect). Next, we virtual-docked the
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detected compounds (aglycones and glycosides of flavonoids and other phenolics) with the
crystal structure of α-glucosidase via AutoDock in silico. The results showed that the candi-
date compounds might be bound to the active site of α-glucosidase to inhibit the activity
of α-glucosidase. It is worth noting that the α-glucosidase inhibitory abilities of delphini-
din 3-O-β-D-galactoside, 3,5,7,2′,6′-pentahydroxyflavone, 5,7,2′,3′-tetrahydroxyflavone,
3′-methoxydaidzein, and delphinidin 3′-O-(2”-O-galloyl-β-galactoside) peonidin via molec-
ular docking were reported for the first time, as shown in Table 3. Furthermore, several
polyphenols, such as resveratrol, epigallocatechin-3-gallate and quercetin, enhanced glu-
cose uptake in the muscles and adipocytes by translocating GLUT4 to plasma membrane
mainly by the activation of the AMP-activated protein kinase pathway [46]. In summary,
it could be seen that the in vitro hypoglycemic activity of PAH might be related to the
inhibition of α-glucosidase (EAF, PEF, and NBF) and the promotion of glucose uptake in
3T3-L1 adipocytes (NBF).

4. Materials and Methods
4.1. Chemicals and Reagents

3T3-L1 mouse preadipocytes were purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). High glucose DMEM, low glucose DMEM, Pen-Strep
solution (P/S), insulin, certified fetal bovine serum (FBS), special newborn calf serum
(NBCS), and phosphate buffered saline (PBS) were purchased from Biological Industries
(Shanghai, China). The glucose test kit was purchased from Rongsheng Biotech Co.,
Ltd. (Shanghai, China). α-Glucosidase (solid), 3,5-dinitrosalicylic acid, p-nitrophenyl α-
D-glucopyranoside (PNPG), and ascorbic acid were purchased from Yuanye Biotech Co.,
Ltd. (Shanghai, China). Acarbose and rutin were obtained from Solarbio (Beijing, China).
CellTiter 96® AQueous One Solution Reagent (Promega Corporation, Madison, WI, USA).
DPPH, ABTS, and FRAP detection reagents were purchased from Suzhou Comin Biotech-
nology Co., Ltd. (Jiangsu, China). Sodium nitrite, aluminum nitrate, sodium carbonate,
and sodium hydroxide were purchased from MACKLIN (Shanghai, China).

4.2. Preparation of Plant Extracts

Polygoni Avicularis Herba (Polygonum aviculare L.) was purchased from Hele Chinese
Medicine Co., Ltd. (Kunming, China), a voucher specimen was deposited at the innovative
drug research group of Xishuangbanna Tropical Botanical Garden, Chinese Academy of
Sciences (No. 20201036EW). An amount of 50 g PAH was extracted with 0.5 L of 85%
ethanol under reflux three times, each time for 2 h. The obtained ethanol extracts were
mixed, and the organic solvent was removed under reduced pressure to obtain a dry
ethanol extract of PAH (PAHEE, 6.7 g). Then, 1.0 g PAHEE was dissolved in 30 mL purified
water, and in accordance with the polarity, petroleum ether, ethyl acetate, and n-butanol
were used to extract separately to obtain the petroleum ether fraction (PEF), ethyl acetate
fraction (EAF), and n-butanol fraction (NBF), respectively.

4.3. Determination of Total Flavonoids Content

The total flavonoids content of PAHEE and its fractions were evaluated by using colori-
metric method according to the literature, and rutin was considered as an equivalent [47,48].
A 20 µL sample in PBS (0.1 M, pH 6.8) and 60 µL of 5% sodium nitrite solution were mixed
in test tubes, and incubated at room temperature for 6 min. Next, 60 µL 10% aluminum
nitrate solution was added to the mixture to continue the reaction for 5 min. Then, 400 µL
NaOH (1 M) was added to the mixture above, and incubated at room temperature for
20 min again. After the experiment, the OD value of the supernatants were measured at
510 nm, and the total flavonoids content in the samples was calculated by the standard
curve constructed with rutin. The data were expressed as rutin equivalents (mg) per dry
weight of fractions (g).
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4.4. Determination of Total Phenolics Content

The total phenolic content of PAHEE and its fractions were estimated by using colori-
metric method according to the literature, and rutin was considered as an equivalent [49].
A 20 µL sample in PBS (0.1 M, pH 6.8) and 500 µL Folin–Ciocalteu reagent (1 M) were
mixed in test tubes, and incubated at room temperature for 4 min. An amount of 400 µL
Na2CO3 (0.5 M) was then added to the mixture to continue the reaction for 60 min. After the
experiment, the OD value of supernatants was measured at 760 nm in triplicate, and total
phenolic content was calculated through a standard curve constructed using gallic acid.
The data were expressed as gallic acid equivalents (mg) per dry weight of fractions (g).

4.5. α-Glucosidase Inhibition Experiments

The metabolic enzymes such as α-glucosidase and α-amylase are significant enzymes
in diabetes since they are involved in food hydrolyzing activities that regulate postprandial
blood glucose levels [50,51]. The α-glucosidase inhibition assay was carried out on the
basis of Zhao et al. [52], with minor modifications. A 10 µL sample and 50 µL of α-
glucosidase solution (0.1 u/mL) were mixed and incubated at 37 ◦C for 10 min, and 10 µL
PBS considered as a blank control. Next, 40 µL pNPG (5 mmol/L) was added to the
mixture above, and the reaction system was incubated at 37 ◦C for 20 min before being
stopped by 50 µL Na2CO3 solution (0.1 mol/L). The absorbance of the reaction mixture was
measured at 405 nm by a microplate reader (SpectraMax190, Molecular Devices, Silicon
Valley, America).

Inhibition rate (%) = (Oc − Os)/Oc × 100%, (1)

where Oc is the OD value of the blank control, Os is the OD value of the tested samples,
and the analysis was performed in triplicate.

4.6. Kinetic Analysis

The kinetic analysis of PAHEE and its fractions were carried out with final sub-
strate concentrations of 1, 2, 3, 4, 5 µmol/L, PAHEE concentrations of 2.5, 5.0, and
10.0 µg/mL, PEF, EAF, and NBF concentrations of 1.25, 2.5, and 5.0 µg/mL, respectively,
and α-glucosidase concentrations of 0.05, 0.10, 0.15, 0.20, 0.25 u/mL. The type of inhibition
was determined by Lineweaver–Burk plot (the inverse of velocity (1/v) against the inverse
of the substrate concentration (1/[S])).

4.7. Glucose Uptake and Cell Viability Assays

The differentiation process of 3T3-L1 adipocytes was carried out as shown in Figure 3a,
and the mature adipocytes were then inoculated in a 96-well plate at 5 × 104 cells per well,
and the experiment was started 24 h later. The 3T3-L1 adipocytes were divided into model
group (blank control), insulin group (250 ng/mL, positive control), and sample groups
(20, 40, 80, and 160 µg/mL). After 24 h of administration, 10 µL medium was used to
measure the glucose content. Cell viability was detected by CellTiter 96® AQueous One
Solution Reagent according to the manufacturer’s instructions after the glucose uptake
experiment [53]. An amount of 20 µL CellTiter 96® AQueous One Solution Cell Proliferation
Assay reagent was added to the wells of the experiment plate, and then incubated at 37 ◦C
for 180 min before the absorbance was measured at 490 nm, and the relative cell viability
was presented after being normalized to the model group. (Samples were dissolved to
160 mg/mL by using DMSO and diluted to various concentrations (20, 40, 80, 160 µg/mL)
in high glucose DMEM before the experiment.)

Cell viability (%) = Os/Oc × 100%, (2)

where Oc is the OD value of the blank control, Os is the OD value of the tested samples,
and the analysis was performed in triplicate.
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4.8. HPLC-MS Analysis of EAF

Agilant 1290uplc liquid chromatography equipped with Agilant mass spectrometry
(MS) qtof6550 was used to detect and analyze the component of EAF. A Shimadzu In-
ertSustain C18 column (100 × 2.1 mm, 2 µm) was used for HPLC (column temperature:
35 ◦C, flow rate: 0.3 mL/min). Scanning mode, data-independent analysis (100–1500 m/z),
sheath gas temperature 500 ◦C, and sheath gas flow rate 12 L/min were used in mass MS
conditions. The HPLC analysis was performed by step-gradient method, and the mobile
phase with solvent A (acetonitrile) and solvent B (water) was as follows: 10% of eluent A at
0 min, 25% at 15 min, 40% at 30 min, and 55% at 45 min. The HPLC-MS chromatogram was
preprocessed and compared with the TCM database, and the data came from the analytical
results of TCM database.

4.9. Molecular Docking of Candidate Compounds on α-Glucosidase

In silico molecular docking was used to investigate the interactions between candidates
and α-glucosidase [54]. The structure of halomonas α-glucosidase (PDB ID: 3WY1) was
obtained from the Online Protein Data Bank [55], and the three-dimensional structures
of the ligands were downloaded from Pubchem or MarvinSketch. Complexed ligands
and water molecules in the crystal structure of α-glucosidase were virtually removed by
pyMOL Win application (pyMOL, version: 2.2.0). AutoDock Tools (ADT, version: 1.5.6)
was used to accomplish molecular docking in silico [56]. The cubic grid box dimensions of
α-glucosidase were defined as x = 82, y = 86, and z = 126 Å with spacing of 0.681 Å. Finally,
the PyMOL molecular graphics system (version 2.2.0) was used to visualize ligand–enzyme
interactions.

4.10. DPPH Free Radical Scavenging Assay

The DPPH assay was conducted in accordance with Tsamo et al. [57]. Initially, 180 µL
DPPH radical solution was mixed with 20 µL sample in PBS (0.1 M, pH 6.8), and the
concentrations of PAHEE and its fractions were 12.5, 25.0, 50.0, 100.0, 200.0, 400.0, 800.0,
1600.0, and 3200.0 µg/mL, respectively. The mixtures were then kept in the dark for 30 min
at room temperature. The absorbance was measured using a microplate reader at 517 nm,
and ascorbic acid was used as a positive control.

Scavenging activity (%) = (Oc − Os)/Oc × 100%, (3)

where Oc is the OD value of the blank control, Os is the OD value of the tested samples.
The analysis was performed in triplicate and the results were described as IC50 value.

4.11. ABTS Radical Cation Scavenging Assay

The ABTS radical cation scavenging assay was conducted in accordance with instruc-
tions for ABTS kit (Suzhou Comin Biotechnology Co., Ltd.; Suzhou, China). Initially, a
10 µL sample (800 µg/mL) and 190 µL of ABTS working reagent were mixed, and incubated
at room temperature for 5 min. The absorbance was then measured by using a microplate
reader at 734 nm.

Scavenging activity (mmol Trolox/L) = (Oc − Os + 0.0012)/0.7021, (4)

where Oc is the OD value of the blank control, Os is the OD value of the tested samples,
and the analysis was performed in triplicate.

4.12. Ferric Reducing Antioxidation Power

The Ferric reducing antioxidation power (FRAP) assay radical scavenging was con-
ducted in accordance with instructions for FRAP kit (Suzhou Comin Biotechnology Co.,
Ltd.; Suzhou, China). Initially, a 10 µL sample (800 µg/mL) and 190 µL of FRAP working
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reagent were mixed, and incubated at room temperature for 20 min. The absorbance was
then measured by using a microplate reader at 593 nm.

Scavenging activity (mmol Trolox/L) = (Os − Oc − 0.0134)/0.1246, (5)

where Oc is the OD value of the blank control, Os is the OD value of the tested samples,
and the analysis was performed in triplicate.

4.13. Statistical Analysis

IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA) was
used to analyze all of the data, and the results were expressed as the average of the three
measurements ± SD. Multigroup comparisons of the means were carried out by one-
way analysis of variance test with post hoc contrasts by Student–Newman–Keuls test.
Differences were considered significant when * p < 0.05, ** p < 0.01, *** p < 0.001.

5. Conclusions

Our study indicated that PAH contain rich sources of natural hypoglycemic molecules
and antioxidants, such as flavonoids and phenolics. The results of total flavonoids con-
tent and total phenolics content were EAF > PEF > NBF > PAHEE, and the results of α-
glucosidase inhibitory activity was EAF > PEF > PAHEE > NBF. In addition, glucose uptake
experiment showed that NBF possessed significant promotion ability on glucose uptake rate
of 3T3-L1 adipocytes. HPLC-MS analysis and molecular docking results proved the interac-
tions between candidates and α-glucosidase. (Flavonoids: 3,5,7,3′,4′,-pentahydroxyflavone-
3-L-rhamnoside, cyanidin, agathisflavone, delphinidin 3-O-β-D-galactoside, avicularin,
delphinidin-3-arabinoside, etc.) Consistent with the results of α-glucosidase inhibitory
activity, the antioxidation capacities of PAHEE and its fractions on DPPH, ABTS, and FRAP
were EAF > PEF > PAHEE > NBF. In general, the best antioxidation capacity of EAF might
be related to its abundant contents of flavonoids and phenolics, and the hypoglycemic
activity of PAH might be related to the inhibition of α-glucosidase activity (EAF, PEF,
and NBF) and the promotion of glucose uptake in 3T3-L1 adipocytes (NBF). Our research
indicated that EAF and/or NBF might be used as potential natural hypoglycemic agent
and/or antioxidant for further new drug research and development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113381/s1, Figure S1: Linear fit results of rutin and
gallic acid.
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