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Abstract: The goal of the work was to study changes in the activity of the angiotensin-converting
enzyme (ACE) and production of reactive oxygen species (ROS) in the aorta of rats after the intraperi-
toneal injection of stereoisomers of catechin and gallate. The activity of ACE in the aorta sections was
determined by measuring the hydrolysis of hippuryl-L-histidyl-L-leucine. The production of ROS in
the aorta sections was estimated from the oxidation of dichlorodihydrofluorescein. The time and dose
dependences of the effect of catechin stereoisomers and gallate on ACE activity and ROS production
in the aorta were studied. It was shown that (+)-catechin and gallate increased the ACE activity and
ROS production, and (−)-catechin and (−)-epicatechin did not influence these parameters. The doses
of (+)-catechin and gallate that increased the ACE activity to a half-maximal value (AD50) were 0.04
and 0.03 µg/kg, respectively. Fucoidin, a blocker of leukocyte adhesion to the endothelium, reduced
the ACE activity to the control level in the aortas of (+)-catechin-treated rats.

Keywords: aorta; angiotensin-converting enzyme; gallate; stereoisomers of catechin; reactive oxygen
species

1. Introduction

Atherosclerosis is, at present, the main cause of cardiovascular diseases (CVD) associ-
ated with mortality [1]. It is initiated by oxidative stress in the vessels [2]. Oxidative stress
is caused by the activation of the angiotensin-converting enzyme (ACE) and an increase
in the concentration of its product, angiotensin II [3,4]. Angiotensin II activates NADPH
oxidase [5,6], whose stimulation enhances the production of reactive oxygen species (ROS),
which, in turn, activates atherosclerosis progression [7–9].

Population studies have shown that three cups of green or black tea a day signif-
icantly reduce the risk of CVDs [10]. Green tea contains about 30% of the catechins of
the dry weight of a leaf, and 75% of the catechins are due to galloylated catechins: (−)-
epigallocatechin galate and (−)-epigallocatechin [11]. Catechins possess various biological
activities: antioxidative, antimicrobial, anti-allergic, antidiabetic, anti-inflammatory, anti-
cancer, chemoprotective, neuroprotective, and immunomodulatory [12,13]. Epigallocate-
chin gallate reduces blood pressure, the level of blood cholesterol, the amount of body fat,
and the risk of osteoporotic fractures [13,14].

We have shown earlier that tea prevents radiation-induced oxidative stress in the aortas
of rats [15]. Black tea was found to be more effective than green tea, which was explained
by a low content of galloylated catechins in black tea, because galloylated catechins induce
oxidative stress [15]. Green tea contains (+)-catechin and galloylated (−)-epicatechin [16]. It
was also shown that a mixture of (+)- and (−)-catechins increases ACE activity in the aortas
of rats [17]. In the present work, to determine which components of green tea-galloylated

Molecules 2022, 27, 3379. https://doi.org/10.3390/molecules27113379 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27113379
https://doi.org/10.3390/molecules27113379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-0005-8187
https://doi.org/10.3390/molecules27113379
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27113379?type=check_update&version=1


Molecules 2022, 27, 3379 2 of 8

catechins are responsible for oxidative stress in the rat aorta, we studied the effects of (+)-,
(−)-catechins, (−)-epicatechin, and gallate (Figure 1) on ACE activity and ROS production.
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2. Results
2.1. Dynamics of Changes in the Activity of ACE after Injection of (+)-Catechin

In order to determine the optimal time of treatment of rats with flavonoids, the
dynamics of the changes in ACE activity were studied. Figure 2 shows that ACE activity
increases to a maximum by 3 h after an injection of 1 µg/kg of (+)-catechin; after which, it
decreases to the control level during the day.
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2.2. Dose Dependences of the Effect of Catechins and Gallate on ACE Activity

Figures 3 and 4 show the dose dependences of the effects of catechin stereoisomers
(Figure 3) and gallate (Figure 4). It is seen from Figure 3 that (−)-catechin and (−)-
epicatechin do not change the ACE activity, and (+)-catechin increases it. The dose of
(+)-catechin that induces a half-maximum increase in ACE activity in the aorta (AD50) is
0.04 µg/kg. Gallate also increases the ACE activity (Figure 4). The AD50 for gallate is
0.03 µg/kg.
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2.3. Effect of (+)-Catechin and Gallate on ROS Production in the Aorta

The influence of (+)-catechin and gallate on ROS production in the aorta was studied
at doses that induce the maximum activation of ACE. The data in Figure 5 indicate that
both compounds at a dose of 1 µg/kg increase ROS production in the aorta up to 44%, and
(+)-catechin at a dose of 3 µg/kg increases it up to 83%.
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2.4. Effect of Fucoidin on the Increase in ACE Activity in Rat Aortas by the Actions of (+)-Catechin
and Gallate

Figure 6 presents the data on the influence of fucoidin, a blocker of leukocyte adhesion
to the endothelium, on the increase in ACE activity in the aorta induced by (+)-catechin
and gallate. It is seen that fucoidin suppresses the (+)-catechin-induced increase in ACE
activity, but it does not influence the increase in ACE activity induced by gallate.
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of (+)-catechin and gallate. The ACE activity was determined 3 h after the injection of (+)-catechin
and gallate. * p < 0.05 vs. ACE activity in the aortas of the control rats.

3. Discussion

It is well-known that stereoisomers produce different effects in biochemical reactions
and living systems due to the selective binding to enzymes, receptors, and DNA [18]. There-
fore, they can have different pharmacokinetic, pharmacodynamic, therapeutic, and adverse
effects [18]. There is evidence indicating that this also holds true for catechin stereoiso-
mers. A stereochemical configuration significantly affects the transport and metabolism
of catechins in cell monolayers [19] and bioavailability in rats [20]. Moreover, catechin



Molecules 2022, 27, 3379 5 of 8

stereoisomers can induce even opposite effects. Thus, the addition of 0.5 mM catechin to
hepatocytes from fasted rats was shown to result in a 90% stimulation of the net glyco-
gen production in the case of the (+)-isomer and in a 90% inhibition in the case of the
(−)-isomer [21]. Our data added information about the different activities of catechin
stereoisomers. Catechin stereoisomers bind with different amino acids in enzymes [22],
and this fact can explain different influences of these compounds in our work: (+)-catechin
activates some processes, inducing oxidative stress, whereas other stereoisomers produce
no effect.

It was shown in the present work and in [15] that (+)-catechin, gallate, and galloylated
catechins induce oxidative stress in the aorta. The increase in ACE activity by these
compounds is in accordance with the data indicating that catechin and galloylated catechins
induce the contraction of rat aortas in vitro [23], because this increase leads to a rise in the
concentration of the ACE product angiotensin II vasoconstrictor.

Gallate, (+)-catechin, and galloylated catechins are contained in many natural products:
cocoa, tea, blueberries, walnuts, grapes, and a variety of other plants sources [24,25]. The
amount of these compounds consumed by people with these products is much greater than
the IC50 required for the activation of oxidative stress. However, oxidative stress is not
initiated, because the same plant sources contain large amounts of flavonoids that suppress
oxidative stress: flavanonols, flavonols, and flavones [26]. Dihydroquercetin (flavanonol)
cancels oxidative stress in the aorta induced with catechin [17]. The opposite effects on
oxidative stress of catechins and flavonols have been studied for tea. Green and black
teas contain comparable amounts of flavonols, but green tea contains greater amounts
of catechins, about 3.5 times that in black tea [16]. Both teas prevent radiation-induced
oxidative stress in the aorta, but black tea is 12 times more effective than green tea [15].

It is possible that green tea diminishes the risk of CVD [10] to a greater extent than
the suppression of oxidative stress due to the fact that galloylated catechins decrease
other processes involved in atherosclerosis progression. The adhesion of leukocytes and
T-lymphocytes to the vascular epithelium [27,28], followed by the activation of endothelial
ACE [8], initiates atherosclerosis. The expression of the adhesion molecules ICAM-1 and
VCAM-1 in endothelial cells and the adhesion of U937 monocyte cells to them decreases by
the action of (−)-epigallocatechin gallate [29,30]. However, very high doses of catechins
were used in [29,30] in comparison with the concentration in the blood plasma after
the consumption of a cup of tea [11] or a very long treatment [31]. This catechin also
induces some effects in animals: it decreases blood pressure in spontaneously hypertensive
rats [32,33] and promotes atherosclerotic plaque stability in apolipoprotein E-deficient
mice [34]. The doses of (−)-epigallocatechin gallate used in these works were also higher (up
to 300 mg/kg). Gallate, as well as (−)-epigallocatechin gallate, also suppress some processes
responsible for atherosclerosis progression in spontaneously hypertensive rats [35,36] at
large doses. It is possible that the effects of (−)-epigallocatechin gallate are caused by gallate.
Thus, it remains unclear whether the effects of (−)-epigallocatechin gallate that suppress
atherosclerosis can be accomplished in the human organism upon green tea consumption.

The (+)-catechin-induced increase in ACE activity in the aorta is caused by the adhesion
of monocytes to the endothelium, because the adhesion blocker fucoidin suppresses this
increase (Figure 6). The effect of gallate on ACE activity is not blocked by fucoidin (Figure 6).
This means that the induction of oxidative stress in the aorta with gallate is brought about
through another mechanism, which remains unknown.

4. Materials and Methods
4.1. Animals, Mode of Introduction of Catechins and Gallate, and Aorta Preparation

Male Wistar rats weighing 300–320 g at an age of 10–11 weeks (N = 105) from the animal
collection at the Institute of Theoretical and Experimental Biophysics (Pushchino, Russia)
were used. The rats were maintained in animal facilities and fed a standard diet with free
access to water. All experiments on animals were conducted under protocols approved by
the Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
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(protocol number 22/2022 of 5.3.2022). Matrix solutions (1 mg/mL) of all catechins (Sigma,
St. Luis, MO, USA) were prepared in a mixture of dimethyl sulfoxide (DMSO) (Sigma,
St. Luis, MO, USA) with ethanol at the ratio 1:4, and a matrix solution of gallate Na (Sigma,
St. Luis, MO, USA) was prepared in water. The solutions were diluted (in accordance with
the dose used) with sterile physiological solution and injected intraperitoneally (volume:
0.6 mL). Rats injected i.p. with physiological saline (0.6 mL) or a diluted mixture of DMSO
and ethanol served as a control. The maximal dose of catechins used in the study was
3 µg/kg. At this dose, DMSO was diluted 3000 times and ethanol 750 times. The injection
of the physiological solution or a diluted mixture of DMSO with ethanol did not influence
the ACE activity in the aortas: control rats, ACE = 30.1 ± 0.8 picomol/min/mm2 (N = 5);
injection of a physiological solution, ACE = 30.1 ± 1.6 picomol/min/mm2 (N = 3); and
a diluted mixture of DMSO and ethanol, ACE = 30.1 ± 1.6 picomol/min/mm2 (N = 3).
Fucoidin (Sigma, St. Luis, MO, USA) (10 µg/kg) was injected intravenously 5 min before
the i.p. injection of (+)-catechin or gallate. The aorta sections were prepared as described
in [37].

4.2. Measurements of ACE Activity in the Aorta

The ACE activity was determined by measuring the hydrolysis of hippuryl-L-histidyl-
L-leucine (Hip-His-Leu) (Sigma, St. Luis, MO, USA) using the method of Ackermann
et al. [38] with a modification by Myamoto et al. [39]. Adetailed description of this method
is in Korystova et al. [15].

4.3. Measurement of ROS in the Aorta

The amount of ROS was determined by the method of Korystov et al. [38].

4.4. Statistical Analysis

The results were expressed as the means ± S.E.M. Each experimental point in the
figures wasthe result of experiments on three to six animals. The significance of differences
in multiple comparisons was determined using the ANOVA and post-hoc Tukey’s tests.
p-values less than 0.05 were considered significant.

5. Conclusions

Based on the results of the study, we conclude that (+)-catechin and gallate increase the
activity of ACE and ROS production in the aortas of rats. The other catechin isomers (−)-
catechin and (−)-epicatechin do not induce oxidative stress in the aorta. These data point
out that oxidative stress induced in the aorta by a mixture of (+)- and (−)-catechins [17] is
caused by (+)-catechin, while oxidative stress induced in the aorta by (−)-epigallocatechin
and (−)-epigallocatechin gallate [15] arises from gallate.
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