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Abstract: Although 1,2σ5λ5-oxaphosphetanes have been known for a long time, the “low-coordinate”
1,2σ3λ3-oxaphosphetanes have only been known since their first synthesis in 2018 via decomplexation.
Apart from ligation of this P-heterocycle to gold(I)chloride and the oxidation using ortho-chloranil,
nothing on their chemistry has been reported so far. Herein, we describe the synthesis of new 1,2σ3λ3-
oxaphosphetane complexes (3a–e) and free derivatives (4a–e), as well as reactions of 4a with chalco-
gens and/or chalcogen transfer reagents, which yielded the P-chalcogenides (14–16a; Ch = O, S, Se).
We also report on the theoretical results of the reaction pathways of C-phenyl-substituted 1,2 σ3λ3-
oxaphosphetanes and ring strain energies of 1,2σ4λ5-oxaphosphetane P-chalcogenides.
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1. Introduction

Strained organic and inorganic ring systems [1] are of high interest, due to their special
bonding situation and high reactivity; for example, oxetanes (I) (Figure 1) are important
building blocks for the synthesis of more complicated molecules [2] and polymers [3].
The phosphorus-containing four-membered rings, the phosphetanes (II), drew attention
because of their use as steering ligands in transition metal catalysis [4], and, more recently,
their performance as organocatalyst [5–7]. The class of oxaphosphetanes can be regarded
as an unusual combination of the features of oxetanes (I) and phosphetanes (II), which
have been scarcely studied so far. Please note that isomeric 1,3-oxaphosphetanes (III) [8]
and 1,2-oxaphosphetanes (IV) [9] do also exist.
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1. Introduction 
Strained organic and inorganic ring systems [1] are of high interest, due to their spe-

cial bonding situation and high reactivity; for example, oxetanes (I) (Figure 1) are im-
portant building blocks for the synthesis of more complicated molecules [2] and polymers 
[3]. The phosphorus-containing four-membered rings, the phosphetanes (II), drew atten-
tion because of their use as steering ligands in transition metal catalysis [4], and, more 
recently, their performance as organocatalyst [5–7]. The class of oxaphosphetanes can be 
regarded as an unusual combination of the features of oxetanes (I) and phosphetanes (II), 
which have been scarcely studied so far. Please note that isomeric 1,3-oxaphosphetanes 
(III) [8] and 1,2-oxaphosphetanes (IV) [9] do also exist. 
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Figure 1. Oxetane (I), phosphetanes (σ3λ3 IIa, σ5λ5 IIb), 1,3-oxaphosphetanes (σ3λ3 IIIa, σ5λ5 
IIIb), 1,2-oxaphosphetanes (σ3λ3 IVa, σ5λ5 IVb), 1,2σ3λ3-oxaphosphetane metal complexes (V), 
and 1,2σ4λ5-oxaphosphetanes (VI). 

Citation: Gleim, F.; García Alcaraz, 

A.; Schnakenburg, G.; Espinosa Fe-

rao, A.; Streubel, R. 1,2σ3λ3-Oxa-

phosphetanes and Their  

P-Chalcogenides—A Combined  

Experimental and Theoretical Study. 

Molecules 2022, 27, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: György Keglevich 

Received: 30 April 2022 

Accepted: 17 May 2022 

Published: 23 May 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

Figure 1. Oxetane (I), phosphetanes (σ3λ3 IIa, σ5λ5 IIb), 1,3-oxaphosphetanes (σ3λ3 IIIa, σ5λ5

IIIb), 1,2-oxaphosphetanes (σ3λ3 IVa, σ5λ5 IVb), 1,2σ3λ3-oxaphosphetane metal complexes (V), and
1,2σ4λ5-oxaphosphetanes (VI).

In case of III and IV, the higher substituted compounds have been investigated more
often. For example, 1,3σ4λ5-oxaphosphetanes are available through intramolecular Mit-
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sunobu reactions [8], and bi- and tricyclic 1,3σ3λ3-oxaphosphetanes have recently been pro-
posed in the decomposition of HPCO [10]. The high-coordinate 1,2σ5λ5-oxaphosphetanes
(IVb) were known for a long time as intermediates in the Wittig reaction, although they do
not occur in all cases [9,11,12], or in the deoxygenation of epoxides [12,13]. Recent calcu-
lations by Espinosa show that they also occur in the phosphite-initiated reductive dimer-
ization of ketones [14]. Until now, very few crystal structures of 1,2σ5λ5-oxaphosphetanes
(IVb) were reported [15–18].

In contrast, only the low-coordinate 1,2σ3λ3-oxaphosphetanes (IVa) were proposed [19]
for a long time, with no stable derivative known. We synthesized the corresponding κP-
pentacarbonylmetal(0) complexes (M = Cr, Mo, W) (V) either through ring expansion
of epoxides using highly reactive phosphinidenoid complexes [20,21], or ring formation
through intramolecular nucleophilic attack. Recently, the free ligand was obtained [22] us-
ing a decomplexation strategy [23] for octahedral complexes [M(CO)5L] by a combined ther-
mal substitution with the chelating effect of bis(diphenylphosphino)ethane (DPPE). The first
X-ray structure of a non-ligated 1,2σ3λ3-oxaphosphetane (IVa) was also reported together
with the P-oxidation using ortho-chloranil and the P-complexation of gold(I)chloride [22].

Similar to 1,2σ3λ3-oxaphosphetanes (IVa), P-chalcogenides (VI) are rather elusive
compounds. The 1,2-oxaphosphetane P-oxides (VI, E = O) were first reported by Regitz in
1973 [24], but it was later found by Inamoto that these products were in fact 3,4-dihydro-
1H-2,3-benzoxaphosphorin 3-oxides [25]. In 1976, Inamoto proposed a 1,2-oxaphosphetane
oxide as a reaction product of a phosphinidene oxide and trans-stilbene oxide [26]. However,
the same author published a revised structure in 1991, showing that the product was in
fact an acyclic secondary phosphine oxide [27]. In 1991, Hafez proposed an annulated 1,2-
oxaphosphetane P-oxide-like structure for the photochemical reaction product of flavone
with the Lawesson reagent. The product was only characterized by mass spectrometry, IR-
and 1H-NMR spectroscopy, and elemental analysis, but as the publication lacks 13C- and 31P-
NMR data and the four-membered ring bears no hydrogen atoms, this assignment might
be incorrect [28]. In 1994, Okazaki reported the synthesis of a 1,2-oxaphosphetane P-oxide,
kinetically stabilized through a bulky 2,4,6-triisopropylphenyl group at phosphorus [29].
Regarding the 1,2-oxphosphetane P-sulfides (VI, E = S), there is only one publication
proposing 2-alkylthio-1,2-oxaphosphetane P-sulfides as the thermodynamically stable
product of the reaction of 3-alkylamino-2-butenoic esters with phosphorus pentasulfide [30].
To the best of our knowledge, the 1,2-oxaphosphetane selenides and tellurides (VI, E = Se,
Te) are unknown so far.

Herein, syntheses of new C4-substituted 1,2σ3λ3-oxaphosphetanes, the mechanistic
evaluation of this reaction for model compounds using DFT calculations, as well as efforts
to access their P-chalcogenides (VI, E = O, S, Se, Te) are described.

2. Results

2.1. Synthesis and Spectroscopic Characterization of 1,2σ3λ3-Oxaphosphetanes

Firstly, the protocol currently used for accessing 1,2-oxaphosphetanes [21,22,31] is sig-
nificantly improved. In the absence of 12-crown-4 the P-triphenylmethyl (trityl) substituted
Li/Cl phosphinidenoid complex 1 reacted cleanly with epoxides 2a–d in THF yielding the
oxaphosphetane complexes 3a,a’–3d,d’ (Scheme 1). The new complexes 3b,b’–d,d’ could
be isolated as pairs of diastereomers (Table 1). Compounds 3a,a’–d,d’ were then treated
with 1,2-bis(diphenylphosphino)ethane (DPPE) at 80 ◦C for two days. The formation of
the desired products 4a,a’–d,d’ was shown by 31P{1H}-NMR spectroscopy (Scheme 1). For
31P{1H}-NMR parameters, as well as product ratios, see Table 2. For all 3b,b’–e,e’, 3e*,e*’,
and 4b,b’–d,d’ diastereomeric pairs, the more highfield shifted 31P{1H}-NMR signal can be
tentatively assigned to the cis-isomers and the downfield shifted signal to the trans-isomers,
based on former calculations for 3a,a’ and 4a,a’ [22].
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similar known compounds reported in the literature [21]. In the case of unligated species 
4b,b’ (Figure 2) and 4c,c’ (see ESI), their crystal structures were obtained after recrystalli-
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Scheme 1. Synthesis of complexed (3a-d) and unligated 1,2-oxaphosphetanes (4a-d).

Table 1. Selected NMR spectroscopic data of 3a,a’–d,d’ measured in CDCl3, chemical shifts in ppm,
and coupling constants in Hz. See Supplementary Materials for more data and spectra.

3a,a’ 3b,b’ 3c,c’ 3d,d’

Ratio 51:49 50:50 50:50 48:52
δ(P) 185.6/207.2 183.5/206.1 187.6/208.8 187.3/208.7

δ(CH2) 2.92/2.96 2.90/2.35 2.91/2.95 2.90/2.98
δ(CH2*) 3.01/3.18 2.90/2.99 3.00/3.12 2.98/3.13
δ(CH) 5.35/4.69 4.54/4.97 4.48/5.13 5.12/4.48
δ(CH2) 41.7/39.9 37.5/39.9 40.6/38.5 38.5/40.5
1J(P-C) 18.3/21.7 21.5/18.5 18.3/21.4 21.5/8.3
δ(CPh3) 68.0/67.2 67.1/67.8 67.2/67.9 67.1/67.9
1J(P-C) 10.6/9.0 9.3/10.7 9.3/10.7 9.4/10.7
δ(CH) 77.7/82.0 85.9/90.1 80.9/85.0 81.1/85.2

2J(P-C) 11.7/11.7 11.3/11.2 11.6/11.4 11.6/11.5

* Denotes second set of the magnetically non-equivalent CH2-protons arising from C4-substituted regioisomers.

Table 2. 31P{1H}-NMR spectroscopic data of 4a,a’–d,d’, chemical shifts in ppm, coupling constants
in Hz.

4a,a’ 4b,b’ 4c,c’ 4d,d’

Ratio 42:58 34:66 39:61 18:82
δ(P) 163.7/199.0 1 161.2/196.7 1 166.2/199.0 2 166.3/199.4 3

1 Measured in CDCl3. 2 Measured in C6D6. 3 Measured in n-pentane.

It should be noted that the change in isomer ratio from the complexes 3a,a’–d,d’ to
the free 1,2-oxaphosphetanes 4a,a’–d,d’ can be attributed to the method of purification
(extraction with n-pentane). At the end of the reaction, the isomer ratio closely resembles
that of the starting material, the final difference arising from slightly different solubilities of
the isomers in n-pentane.

Crystal structures of complexes 3b,b’–d,d’ were obtained (see ESI), but the change
of C4-substituent did not lead to significant changes of bond lengths or angles compared
to similar known compounds reported in the literature [21]. In the case of unligated
species 4b,b’ (Figure 2) and 4c,c’ (see ESI), their crystal structures were obtained after
recrystallization from n-pentane. The bond lengths of 4b,b’–c,c’ are very similar compared
to their metal complexes 3b,b’–c,c’. The bonds of phosphorus change by less than 2%. The
change of the dihedral angle of the ring system is more prominent; for example, for 3b,b’
the dihedral angles are approximately 150◦ (cis) and 170◦ (trans), whereas the trans form of
4b,b’ is nearly planar and the cis-form bent more strongly (around 130◦).
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Figure 2. Molecular structures of 1,2-oxaphosphetane 4b,b’ in the solid state. Hydrogen atoms are
omitted and the thermal ellipsoids are set at the 50% probability level. Split layers C2A:C2 equals
33:67, C2′A:C2′ equals 45:55. Selected bond lengths in Å, angles in degree, second entry corresponds to
the crystallographic positions denoted with a dash: P-O 1.6792(14)/1.6803(13), P-C1 1.854(2)/1.849(2),
P-C6 1.9229(19)/1.9148(18), O-C2 1.538(3)/1.542(3), O-C2A 1.451(6)/1.477(4), C1-C2 1.562(3)/1.599(4),
C1-C2A 1.609(7)/1.552(5), O-P-C1 79.93(8)/80.07(8), C2-O-P 96.67(13)/97.70(13), C2A-O-P 88.0(3),
88.04(19), O-C2-C1 94.35(18)/92.7(2), O-C2A-C1 95.8(4)/97.3(3), C2-C1-P 89.05(14)/89.23(14), and
C2A-C1-P 77.6(2)/80.03(19).

As in the case of the P-bis(trimethylsilyl)methyl substituted phosphinidenoid complex,
the reaction of 1 with styrene oxide (2e) did not lead to the C4-, but preferentially to the
C3-substituted 1,2-oxaphosphetane complexes [31]. The synthesis of a phenyl-substituted
1,2-oxaphosphetane was also attempted via reaction of 1 with the above mentioned oxirane
derivative (2e), hoping to profit from the huge steric demand of the trityl group. How-
ever, this reaction led to a mixture of four isomers, the diastereomeric pairs of the C4-
(3e,e’) and C3-substituted complexes (3e*,e*’) (Scheme 2), whose NMR data and ratios are
collected in Table 3. The assignment of the 31P{1H}-NMR chemical shifts to the C3- and
C4-substituted regioisomers is based on the P-bis(trimethylsilyl)methyl substituted case,
where only the C3-substituted regioisomers are formed (proven by crystal structures), and
where it is shown that they are downfield shifted in comparison to other C4-substituted
derivatives [31]. Unfortunately, the mixture of 3e,e’ and 3e*,e*’ could not be separated
using column chromatography, even at a lower temperature.
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Table 3. Selected NMR spectroscopic data of 3e,e’ and 3e*,e*’, measured in the reaction solution,
chemical shifts in ppm, and coupling constants in Hz.

3e 3e’ 3e* 3e*’

Ratio 40 45 10 5
δ(P) 191.5 210.9 237.3 244.9

δ(CH2) 39.7 40.4 75.9 76.2
nJ(P-C) 18.8 21.7 13.1 13.6
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2.2. DFT-Based Mechanistic Proposal

Quantum chemical calculations were performed to provide further insights into mech-
anistic aspects of the formation of C-phenyl-substituted 1,2-oxaphosphetanes 3e,e’ and
3e*,e*’. For the sake of computational economy, a methyl group (instead of trityl) was
used as P-substituent in the Li/Cl phosphinidenoid moiety. Additionally, diethylene
glycol dimethyl ether (DEGDME) was used as a model to provide an almost saturated
coordination sphere for the Li cation. The approach of complex 5 to styrene oxide 2e
(taking the S enantiomer for the model study) gave rise to a van der Waals complex 6,
where the Li(DEGDME) group is coordinated to the epoxide O atom in a barrierless,
thermodynamically favorable process, furnishing complex 7 (Scheme 3). Given the high
oxophilicity of phosphorus centers, nucleophilic attack of the negatively charged P atom
to the electron-deficient O atom in the cationic part was first studied. By elimination
of the solvated LiCl salt 8, terminal phosphinidene-epoxide adduct 9 was formed in a
markedly endergonic transformation, for which a TS could not be located. The singular-
ity of a terminal phosphinidene pentacarbonyltungsten(0) oxirane adduct was recently
studied [32], showing the weakest O→P bond among the whole series of cyclic ethers
adducts of phosphinidene complexes. In contrast, complex 9 displayed a strengthened
P→O bond with similar bond strength descriptors values than those obtained when the O
donor is dimethyl ether 9OMe2 (Table S1). Elongation of the less activated, non-benzylic
C-O bond of 9 gives exergonically styrene 10 and phosphinidene oxide complex 11 through
a moderate barrier (18.41 kcal mol−1). A similar result was found previously for a terminal
phosphinidene molybdenum(0) thiirane complex, giving rise to ethylene and a side-on
complexed phosphinidene sulfide [33]. On the contrary, P insertion into the benzylic C-O
bond proceeds through a lower-energy TS (9.81 kcal mol−1) affording 1,2-oxaphosphetane
12* (C3-substituted) in a markedly exergonic process.
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Scheme 3. Reaction of model Li/Cl phosphinidenoid complex 5 with (S)-styrene oxide 2e giving rise
to 9 and its evolution through C-O bond cleavages. Computed ZPE-corrected energies (kcal mol−1)
for both minima and TS (marked with a ‡ superscript) at the CPCMTHF/CCSD(T)/def2-TZVPP(ecp)
level, in brackets.

A more favorable pathway to obtain the desired products resulted from the direct
nucleophilic attack of the P atom to the epoxide C atoms of 7 (Scheme 4). The attack at
the more positively charged benzylic carbon (qN = 0.03 e) is slightly kinetically favored
(∆∆E‡

ZPE = 0.69 kcal mol−1) (Figure 3), due to a higher C-O bond activation (WBI = 0.881,
MBO = 0.778) and the low steric hindrance of the methyl group at the phosphanido moiety.
Conversely, the attack to the non-benzylic carbon atom (qN =−0.10 e), with a comparatively
strengthened C-O bond (WBI = 0.908, MBO = 0.945), leads to a more stable alkoxide 13
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(Figure 3). However, when a tert-butyl group is attached to phosphorus, the attack to
the non-benzylic carbon is (slightly) kinetically favored (see ESI). Therefore, in the real
system with a trityl group, an even more favorable non-benzylic C-O insertion would be
expected, due to the high steric hindrance. The cyclization to form the four-membered
1,2-oxaphosphetanes proceeds in both cases through similar energy TSs. The most stable
isomer 12 is obtained (initially as the van der Waals complex 8·12) through the slightly
higher energy barrier process. The pathways leading to minor diastereomers 12′ and 12*’
were also computed (see ESI).
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2.3. Synthesis of 1,2-Oxaphosphetane P-Chalcogenides

As the main goal of the study was to synthesize various 1,2σ4λ5-oxaphosphetane
chalcogenide derivatives, the 42:58 mixture of 4-methyl-1,2-oxaphosphetane 4a,4a’ was
used as a good case in point.
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In order to target P-oxide derivatives, reactions of the mixture 4a,a’ with various
oxygen-transfer reagents were studied. Treating 4a,a’ with propylene oxide or trimethy-
lamine N-oxide in toluene at r.t. was not effective to convert 4a,a’ into 14a,a’. The use
of tert-butylhydroperoxide or meta-chloroperoxybenzoic acid (mCPBA) led to unselective
reactions; however, the reaction using iodosylbenzene (Scheme 5) led to the selective forma-
tion of 1,2-oxaphosphetane P-oxides 14a,a’. The product was fully characterized by NMR
spectroscopy, as well as ESI and APCI mass spectrometry. The 31P{1H}-NMR spectrum
of the product solution showed two resonance signals of 62.1 ppm and 63.5 ppm, in a
ratio of 66:34. This assignment fits well with the reported shift of the P-triisopropylphenyl
substituted 1,2σ4λ5-oxaphosphetane P-oxide (δ (31P{1H}) = 48.7 ppm [29]).
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Scheme 5. Synthesis of 1,2-oxaphosphetane P—oxides 14a,a’.

To synthesize 1,2σ4λ5-oxaphosphetane P-sulfide 15a,a’, 4a,a’ was treated with elemen-
tal sulfur in toluene at ambient temperature (Scheme 6). The reaction occurred selectively;
15a,a’ was isolated via extraction from n-pentane and it was fully characterized by NMR
spectroscopy and LIFDI mass spectrometry. 31P{1H}-NMR chemical shifts of the isomers of
15a,a’ were observed at 115.8 (40%) and 120.0 ppm (60%). These values are close to those
reported for a 2,5-dihydro-1,2-benzoxaphosphole-2-sulfide (130.2 ppm [34]).
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Under the same reaction conditions, but with a slightly longer reaction time (2 d in-
stead of 1 d), 4a,a’ was treated with elemental (gray) selenium. The 1,2-oxaphosphetane-P-
selenides 16a,a’ (Scheme 6) were formed in a selective manner and isolated as 29:71 mixture
in good yields by filtration, and excess selenium was removed. The 16a,a’ mixture was
fully characterized by NMR spectroscopy and LIFDI mass spectrometry. Its 31P{1H}-
NMR spectrum showed two resonance signals with selenium satellites at 116.1 ppm
(1J(Se,P) = 839.7 Hz) and 121.5 ppm (1J(Se,P) = 846.4 Hz), corresponding to the two di-
astereomers of 16a,a’. The 77Se{1H}-NMR spectrum showed two doublets at −10.7 and
79.4 ppm. A comparison to the (acyclic) tert-butyl-ethoxyphenylphosphane-P-selenide[33]
(δ (31P{1H}) = 111.0 ppm, 1J(Se,P) = 786.3 Hz) showed very similar values for the phospho-
rus chemical shifts and coupling constants, whereas the selenium resonances of 16a,a’ are
downfield-shifted (cf. δ (77Se{1H}) = −350.3 ppm [35]).

However, 4a,a’ did not react with elemental tellurium or tributylphosphane-P-telluride
(as transfer reagent) to form 1,2-oxaphosphetane-P-tellurides under the same conditions,
nor by heating to 80 ◦C.

A comparison of the 13C{1H}-NMR data of 4a,a’, 14a,a’, 15a,a’, and 16a,a’ (Table 4)
reveals, for all chalcogenides, the 1J(P,CH2) and 2J(P,CH) coupling constants are increased
as expected when oxidizing P(III) to P(V). In the case of 14a,a’, the 1J(P,CPh3) constant also
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increases, whereas it decreases when going from 4a,a’ to 15a,a’ and then to 16a,a’. The
decrease in the coupling constant hints at a change of the hybridization of phosphorus and,
concomitantly, the bond angles due to increased steric bulk near the ring system.

Table 4. Selected NMR spectroscopical data of 4a,a’, 14a,a’, 15a,a’, and 16a,a’, chemical shifts in ppm,
and coupling constants in Hz. See Supplementary Materials for more data and spectra.

4a,a’ 1 14a,a’ 1 15a,a’ 2 16a,a’ 2

δ(P) 163.7/199.0 62.1/63.5 115.8/120.0 116.1/121.5
δ(CH2) 2.22/2.45 2.53/2.56 2.49/2.22 2.62/2.43
δ(CH2*) 2.69/2.48 2.75/2.96 2.49/2.72 2.75/3.00
δ(CH) 5.12/4.62 4.25/5.04 4.78/4.05 4.88/4.26
δ(CH2) 33.7/31.2 39.5/38.9 44.8/44.4 45.6/44.6
1J(P-C) 13.6/7.9 60.8/64.0 51.5/49.8 44.6/43.5
δ(CPh3) 63.4/62.9 65,6/66.2 70.4/69.8 70.4/69.8
1J(P-C) 52.3/50.7 73.3/71.9 46.1/47.8 33.4/35.4
δ(CH) 77.6/83.0 72.1/74.3 75.3/74.5 76.1/76.1

2J(P-C) 4.6/2.2 20.2/20.2 19.4/19.9 19.4/19.4
1 Measured in CDCl3. 2 Measured in C6D6. * Denotes second set of the magnetically non-equivalent CH2-protons
arising from C3-substituted regioisomers.

2.4. Ring Strain Energy of Model 1,2-Oxaphosphetane Derivatives

To obtain further insight into the chemistry of the 1,2-oxaphosphirane chalcogenides,
their ring strain energies (RSEs) were computed for model 1,2-oxaphosphetane derivatives
VIa-e (Scheme 7) using suitable homodesmotic reactions (see ESI), as previously completed
for related three- and four-membered heterocycles [36–44]. RSEs values (Table 5) slightly
increase in the order VIa < VIb < VIc < VId < VIe, therefore regularly increasing for
heavier P-chalcogenides and also reproducing the reported variation on moving from the
σ3λ3-1,2-oxaphosphetane VIa to its P-oxide derivative VIb [22].
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δ(CH2) 33.7/31.2 39.5/38.9 44.8/44.4 45.6/44.6 
1J(P-C) 13.6/7.9 60.8/64.0 51.5/49.8 44.6/43.5 
δ(CPh3) 63.4/62.9 65,6/66.2 70.4/69.8 70.4/69.8 
1J(P-C) 52.3/50.7 73.3/71.9 46.1/47.8 33.4/35.4 
δ(CH) 77.6/83.0 72.1/74.3 75.3/74.5 76.1/76.1 
2J(P-C) 4.6/2.2 20.2/20.2 19.4/19.9 19.4/19.4 

1 Measured in CDCl3. 2 Measured in C6D6. * Denotes second set of the magnetically non-equivalent 
CH2-protons arising from C3-substituted regioisomers. 
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Scheme 7. Model 1,2-oxaphosphetane-P-chalcogenides VIa-e studied computationally.

Table 5. Computed CCSD(T)/def2-TZVPP(ecp)//PBEh-3c RSEs (in kcal mol−1) for model com-
pounds VIa-e.

VIa VIb Vic Vid Vie

18.95 19.57 19.93 20.35 20.59

3. Materials and Methods
3.1. Synthetic Details

The syntheses of all compounds were performed under an argon atmosphere, using
common Schlenk techniques and dry solvents. All NMR spectra were recorded on a Bruker
AVI-300 or a Bruker AV III HD Prodigy 500 spectrometer at 25 ◦C. The 1H and 13C NMR
spectra were referenced to the residual proton resonances and the 13C NMR signals of the
deuterated solvents and 31P to 85% H3PO4 as external standards, respectively. Please check
the ESI for further experimental details.
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3.2. Computational Details

DFT calculations were performed with the ORCA electronic structure program pack-
age (version 4.2.1, created by Frank Neese, Max Planck Institut für Kohlenforschung,
Mülheim/Ruhr, Germany) [45]. All geometry optimizations were run in redundant in-
ternal coordinates with tight convergence criteria, in the gas phase, and using Grimme’s
dispersion-corrected composite PBEh-3c level [46]. For the mechanistic study, solvent (THF)
effects were taken into consideration with the CPCM solvation method [47] as implemented
in ORCA. For Mo [48] and Te [49] atoms, the [def2-ECP(28)] effective core potential (ECP)
was used. Harmonic frequency calculations verified the nature of ground states or transition
states (TS), having all positive frequencies or only one imaginary frequency, respectively.
TS structures were confirmed by following the intrinsic reaction path in both directions
of the negative eigenvector. From these optimized geometries, all reported data were
obtained by means of single-point (SP) calculations using the more polarized def2-TZVPP
basis set [50]. Reported energies include the Zero-point energy (ZPE) correction term at
the optimization level. In the case of mechanistic aspects, final energies were obtained by
means of double-hybrid-meta-GGA functional PWPB95 [51,52], using the RI [53–55] approx-
imation for the MP2 correlation part, together with the RI-JK approximation for Coulomb
and exchange integrals in the DFT part. Additionally, the latest Grimme’s semiempirical
atom-pair-wise London dispersion correction D4 was included [56]. For RSE calculations,
final energies were computed with the near-linear scaling domain-based local pair natural
orbital (DLPNO) [57] method, to achieve coupled cluster theory with single-double and
perturbative triple excitations (CCSD(T)) [58] using the def2-TZVPP basis set.

4. Conclusions

The new unligated 1,2σ3λ3-oxaphosphetanes 4a,a’–d,d’ were synthesized and char-
acterized. As a good case in point, a mixture of 4a,a’ was used to investigate oxidation
reactions, i.e., to access less (Ch = O) and/or unknown (Ch = S, Se) 1,2σ4λ5-oxaphosphetane
P-chalcogenides. DFT calculations provided mechanistic insights into the formation of
C-phenyl-substituted 1,2σ3λ3-oxaphosphetanes 3e,e’ and 3e*,e*’ using model derivatives.
Nucleophilic attack to non-benzylic carbon of styrene oxide 2e followed by cyclization
seems to be the preferred pathway which explains the preferred formation of 3e,e’. Ring
strain energy calculations revealed the tendency to increase RSE values in going from
1,2σ3λ3- to 1,2σ4λ5-oxaphosphetane P-chalcogenides and among the latter from the lighter
to the heavier chalcogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103345/s1. General procedures, synthetic meth-
ods, and analytical data for 3a,a’, 3b,b’, 3c,c’, 3d,d’, 3e,e’, 4b,b’, 4c,c’, 4d,d’, 14a,a’, 15a,a’, and
16a,a’; Crystal structure data of 3b,b’, 3c,c’, 3d,d’, 4b,b’, and 4c,c’; Figures S1–S9: 1H-, 13C{1H}-,
and 31P[1H}-NMR spectra of 3b,b’-3d,d’; Figure S10: 31P[1H}-NMR spectrum of 3e,e’ and 3e*,e*’;
Figures S11–S19: 1H-, 13C{1H}-, and 31P[1H}-NMR spectra of 4b,b’-4d,d’; Figures S20–S22: 1H-,
13C{1H}-, and 31P[1H}-NMR spectra of 14a,a’; Figures S23–S25: 1H-, 13C{1H}-, and 31P[1H}-NMR spec-
tra of 15a,a’; Figures S26–S29: 1H-, 13C{1H}-, 31P[1H}-, 77Se{1H}-NMR spectra of 16a,a’; Table S1: P-O
bond properties of complexes 9 and 9OMe2; Table S2: C-O bond properties of 2e, 2e-Li(DEGDME)
and 9; Scheme S1: Mechanistic proposal for the formation of 1,2-oxaphosphetanes 12′ and 12b*’
from the direct nucleophilic attack of the P atom to the epoxide C atoms of 7; Figure S30: Calculated
(CPCMTHF/CCSD(T)/def2-TZVPP(ecp)) minimum energy profile for the conversion of 7 into 12′ and
12*’; Scheme S2: Nucleophilic attack of the P atom of 5tBu to C atoms of styrene oxide 2e giving rise to
13tBu and 13tBu*; Figure S31: Calculated (CPCMTHF/CCSD(T)/def2-TZVPP(ecp)) minimum energy
profile for the conversion of 5tBu + 2e into 13tBu and 13tBu*; Scheme S3: Homodesmotic reactions for
RSE evaluation on derivatives VIa-e; Calculated structures.
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