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Abstract: Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of
preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile
method ideally suited to process biopolymers with minimal impact on their physicochemical prop-
erties. However, fabrication parameters and post-processing routine can affect biological activity
and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using
trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial proper-
ties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro
using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed
inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the
liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell
viability by nanofibers depending on the method of fabrication. The antibacterial properties of these
biomaterials can be attributed to the structural modifications provided by co-solvent formulation and
application of post-treatment procedure. Consequently, the proposed antimicrobial surface modifi-
cation method is a promising technique to prepare biomaterials designed to induce antimicrobial
resistance via antiadhesive capability and the biocide-releasing mechanism.

Keywords: natural products; chitosan electrospinning; antibacterial biomaterials

1. Introduction

Currently, antibiotic resistance is among the major global health problems and con-
stitutes a common ground for biofilm-linked persistent infections. Biofilm formation is
encouraged via bacterial communication, making biofilms more resistant to antimicro-
bial agents than bacteria growing in a free-swimming (planktonic) state. Microorganisms
growing in a biofilm develop resistance via physical, physiological, and adaptive toler-
ance mechanisms. Biofilms are found in device-associated infection sites (catheters, joint
prostheses, and prosthetic heart valves) [1]. Non-device-associated chronic and recurrent
infections, including otitis, endocarditis, and urinary tract infections, are also associated
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with biofilm formation [2], despite the progress in infection control [3]. Antibiofilm materi-
als prevent bacterial growth via inhibiting bacterial adhesion (antiadhesive surfaces) [4],
killing bacteria (contact bactericidal effect) [5], or delivering the bactericidal agents (biocide
releasing) [6]. However, the application of these materials has limitations due to the short
life of such biomolecules as bactericidal agents [5].

Among broad-spectrum organic materials with antimicrobial properties, chitosan
and chitin-based materials are receiving considerable attention from various scientific
groups [7]. Chitosan (Ch), a mucopolysaccharide, is among the most abundant biopoly-
mers in nature and is present in the exoskeleton of crustaceans, mollusks, insects as well
as the cells walls of fungal cells. Due to its biocompatibility, biodegradability, antimicro-
bial activity, non-toxicity, and versatile chemical and physical properties, chitosan has
become among the most attractive biopolymers in biomedical research [8]. Ch coatings
prevent the adhesion and biofilm development of E. faecalis [9] and retard the growth of
Pseudomonas aeruginosa upon contact [10]. Antibacterial and antibiofilm activity of chi-
tosan, depending on its molecular weight, has been confirmed on Streptococcus mutans and
Streptococcus sobrinus [11].

It has been reported that the properties of Ch depend on the structural organization of
the initial polymer solution [12] and the method of chitosan-based material fabrication [13].
It has also been reported that Ch fibrous scaffolds demonstrate higher effectiveness than
films, sponges, or gels [14]. Recently, electrospinning has become among the most popular
methods for producing nanofibers from various synthetic and natural polymers [15]. This
method allows for the production of materials with diameters below 100 nm that mimic the
native extracellular matrix and may promote cell function and tissue regeneration [16]. Elec-
trospun chitosan nanomaterials combined with silver nanoparticles (AgNPs) and polyvinyl
alcohol (PVA) provide large surface-area-to-volume ratios as well as superior antibacterial
properties due to AgNPs, which can be easily modified through its hydroxylic groups
of PVA, thus to overcome the weak mechanical properties of chitosan [17]. Antibacterial
activity of chitosan fibers against Escherichia coli, Staphylococcus aureus, and Candida albicans
is dictated by the molecular weight (Mw) and degree of deacetylation (DD) of Ch [18].

However, electrospinning of chitosan solution is a highly sophisticated process due to
its high viscosity and presence of free amino groups that form a positively charged poly-
electrolyte under acidic conditions. Increasing the acid concentration in chitosan solution
can decrease the surface tension and thus facilitate the electrospinning process [19]. Many
organic [20] and inorganic acids have been tested for dissolving chitosan [21]. Furthermore,
the type of solvent used also influences the biological activity of chitosan formulations. In
this regard, dichloromethane (DCM) and trifluoroacetic acid (TFA) were found to be the
most suitable solvents for electrospun chitosan fiber production [22].

However, these solvents influence chitosan structure, decreasing the mechanical pa-
rameters of membranes and facilitating degradation in an aqueous environment [23].
Therefore, the biomedical application of chitosan electrospun membranes requires neutral-
ization, and the application of ethanol/methanol, sodium hydroxide (NaOH), or sodium
carbonate (Na2CO3) aqueous solutions can provide efficient neutralization [24], decrease
water solubility and increase biocompatibility [25].

The adhesion of bacteria is a complex multistage process that leads to biofilm forma-
tion. Various physical forces and physicochemical interactions initially lead to a reversible
and, later, irreversible microbial adhesion. Microbial biofilm formation can be prevented
via a direct-contact antibacterial effect.

Superior antimicrobial properties can be achieved by incorporating biocidal agents
such as metallic nanoparticles in the biopolymer. Otherwise, electrospun nanofibers loaded
with metallic nanoparticles such as AgNPs can have a cytotoxic effect on mammal cells [26].
On the other hand, successful management of co-solvent composition and controlled
structural conformation applied to the suitable post-treatment procedure is significantly
required considering the importance of the initial interaction between bacterial cells and
nanofibers [27,28].
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Considering the shortcomings in Ch electrospun membrane production for effective
antibacterial applications, this study was undertaken to evaluate the antibacterial and
antibiofilm effectiveness of electrospun Ch-DMC/TFA membranes using different post-
treatment strategies.

2. Results
2.1. Chemical Structure Study

Chitosan owes its unique properties mainly to the NH2 groups of its polymeric chain.
Figure 1 presents FT-IR analysis of the pristine polymer (a), Ch dissolved in TFA/DCM
7:3 (b), and Ch dissolved in TFA/DCM 9:1 (c). The spectrum of the native chitosan shows
bands that are typical for free hydroxyl groups (3352 cm−1), aliphatic -CH2- and -CH3
moieties (2880 and 2861 cm−1), and amide bonds present in acetylated units (1651 cm−1).
Additionally, bands coming from free NH2 are visible at 1588 and 1145 cm−1. Finally, there
are bands at 1025 and 889 cm−1, typical for glycosidic bonds and glucopyranose rings.
Figure 1b,c present the spectrum of chitosan after dissolving in TFA/DCM in different ratios
(7:3; 9:1). The figure shows that there are some visible changes compared to the untreated
Ch. There is a new band at 1781 cm−1, characteristic for free carboxyl and CF3 groups
coming from trifluoroacetic acid. Noteworthy bands corresponding to amino groups are
shifted to lower wave numbers (1515 and 1140 cm−1 for sample 1; 1525 and 1136 cm−1

for sample 2), which is typical for NH3
+. Additionally, an increase in the intensity of the

amide bonds can be noticed at 1665 cm−1 for sample 1 and at 1669 cm−1 for sample 2,
which is a consequence of a chemical reaction between free carboxyl groups of trifluoracetic
acid and free amino groups of chitosan. The change is especially significant in the case of
TFA/DCM 9:1 application during Ch dissolution, due to the higher acid content. Bands
corresponding to free -OH (3468 cm−1—sample 1; 3418 cm−1—sample 2), aliphatic groups
(2964 and 2897 cm−1—sample 1; 2921 and 2849 cm−1—sample 2), and glycosidic bonds
(1056 cm−1—sample 1; 1059 cm−1—sample 2) are visible as in the case of pristine chitosan.
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2.2. Morphology of Nanofibers

The choice of co-solvent is very critical for chitosan electrospinning to lower the
surface tension of the solution and create a stable jet stream during the electrospinning
procedure [29]. Fine, cylindrical, continuous, and randomly oriented Ch nanofibers were
successfully prepared due to the high volatility of TFA and the possibility of blocking the
positive charges of the amino groups on Ch. Such electrospun nanofibrous membranes
were multilayered, porous, flexible, and permeable to liquid films with a high surface area.
Their structure was determined by the cross-section method using a scanning electron
microscope (Figure 2). SEM microphotographs also showed smooth fibers with diameters in
the nano-range in both variants of membranes. However, the morphology of the deposited
film depended on the TFA/DCM concentration in the solution. Although both sample 1 and
sample 2 were fabricated under the same electrospinning conditions, their fiber diameter
was 0.18 ± 0.009 and 0.2 ± 0.010 µm, respectively, and consequently deposited orientation
significantly affected membrane porosity—‘porous area fraction’ (Figure 3) [30].
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Figure 3 presents SEM results of as-spun nanofibers and after being treated with dif-
ferent alkali solutions. The samples of both co-solvent ratios displayed regular, randomly
oriented, cylindrical, and bead-free nanofibers. After alkali treatment, the diameters of the
nanofibers treated with 1 M NaOH aqueous solution increased slightly. The average diame-
ter of non-treated sample 2 was measured as 0.2 ± 0.010 µm, enlarged to 1.07 ± 0.048 µm
in the case of samples treated with 1 M NaOH aqueous solution, and only to 0.3 ± 0.01 µm
with 1 M NaOH 70% ethanol. Our previous study also indicated that chitosan membrane
coagulation with NaOH aqueous solution increased nanofiber size by swelling without
changing fibrous morphology [31]. The ethanol solution provides gentler treatment and
preserves the high porous structure better than the aqueous solution.

2.3. Antimicrobial Assessment In Vitro
2.3.1. Antibacterial Efficiency and the Bacterial Reduction Rate

The antibacterial activities of Ch membranes were tested in vitro over an 8 h time
period. Studies show that both Ch-TFA/DCM 7:3 (sample 1) and Ch-TFA/DCM 9:1 samples
(sample 2) were more effective at inhibiting E. coli than S. aureus after 2 h incubation,
whereas, after 4 h, S. aureus was more sensitive (Figure 4A). Furthermore, compared to Ch-
TFA/DCM 7:3 membranes, Ch-TFA/DCM 9:1 specimens were more effective at inhibiting
E. coli up to 6 h (p < 0.001). However, after 8 h, both samples exhibited no antibacterial
activity against both S. aureus and E. coli (Figure 4B).
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2.3.2. Resazurin Metabolic Activity

Metabolic activity of biofilm cells was assessed by resazurin to determine the concentra-
tion of viable cells in the samples (Figure 5). In order to determine the correlation between
the bacterial concentration in the sample and the intensity of the resorufin absorbance, we
plotted a resazurin reduction chart for both bacterial species.
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Figure 5. The capability of chitosan membranes to reduce biofilm formation based on resazurin
reduction assay. Asterisks indicate p value between group: ** p < 0.01; *** p < 0.001.

Both test organisms showed a similar trend in the survival rate of bacterial cells after
incubation with the samples. Nevertheless, higher sensitivity value was observed for
E. coli at all points of co-cultivation. All tested samples showed the highest bacteriostatic
effect at 6 h. For both test organisms, D % values were still growing at the last incubation
time of the assay (8 h) despite the solvent ratio and type of treatment. We found that
biofilm eradication differed depending on the solvent system used for chitosan solution
preparation. Studies show more effective bacterial biofilm reduction for Ch-TFA/DCM 9:1
(Sample 2). Overall, there were no significant differences in biofilm production between
the two test organisms regardless of the treatment. Otherwise, S. aureus was less sensitive
to sample 1 (Ch-TFA/DCM 7:3) treated with NaOH aqueous compared to all other tested
samples (p < 0.001), while E. coli showed this tendency only in comparison to the similarly
treated Ch-TFA/DCM 7:3 sample (p < 0.01), but at 4 h as well (p < 0.01).

2.3.3. Morphology of the Bacteria Biofilm by SEM

The results showed bacteriostatic performance by the Ch membranes on E. coli and
S. aureus. Cell viability was lowest for both test organisms for Ch-TFA/DCM 9:1 (sample 2)
membranes. As shown in Figure 6, there were a few bacterial colonies disseminated on
the surfaces of the samples at the end of the assay. Otherwise, SEM observation indicated
large numbers of S. aureus adhered on the surface of the Ch membranes forming a bead
necklace structure. The cells of both organisms displayed membrane lesion or shape and
cell size anomaly. The cell structure of S. aureus was destroyed, indicating the antibacterial
performance of the nanofibrous membrane. Alteration of E. coli cell membrane integrity
was also observed (membrane perforation led to the leaking of intracellular components).
Subsequently, bacterial cells appear translucent and empty (Figure 7).
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3. Discussion

Fiber morphology and average diameter, as well as membrane porosity, impact bacte-
rial proliferation. Abrigo et al. have reported that bacteria favorably adhered to fibers with
a diameter similar to bacterial size. The size of the pores in the electrospun Ch-TFA/DCM
membranes was smaller than the size of the microorganisms, which prevented bacterial
penetration and microbial growth. Further, bacterial shape also impacted adhesion—round
S. aureus demonstrated higher adhesion and growth than rod-like E. coli. Fibrous networks
constrain the colonization process, resulting in conformational changes to rod-shaped
bacteria and inducing cell death [29]. Correspondingly, evaluation of antibacterial and
antibiofilm activity verified the antibacterial resistance of electrospun chitosan membranes
made of both solutions at the same level despite type of treatment. The FT-IR study showed
that application of TFA/DCM solvents at different ratios affects the chemical structure
of chitosan by increasing the number of protonated NH3

+ groups, demonstrated by the
higher intensity of the bands and their shift to lower wavelengths. Additionally, we have
shown that the acid reacts with the polymer, creating covalent bonds (amide bonds), thus
affecting the adhesiveness and morphology of the fiber. This effect can also be related
to the incorporation of CF3 moieties revealed in the FT-IR spectrum. The change in the
chemical structure was more visible for the sample prepared using a 9:1 ratio of TFA/DCM
due to the higher amount of the reactive moieties of the acid (-COOH, CF3) and their
higher availability. We revealed higher antiadhesive efficiency against E. coli, supported by
SEM images.

Although Ch materials possess antibacterial potential, the properties depending on
exposure time showed that co-solvent ratio limited antibacterial performance. Co-solvent
ratio in a chitosan solution affects the antibacterial properties of the test samples on Gram-
negative and Gram-positive bacteria in different ways: Ch-TFA/DCM 9:1 membranes
showed superior antibacterial properties to Ch-TFA/DCM 7:3 films. Such phenomena
can be explained by TFA forming chemical bonds with chitosan. Because of that, the
polymeric chain gains fluorine atoms, which decrease Ch hydrophilicity, thus hampering
bacterial adhesion.

Bacteria produce an extracellular substance as a survival mechanism to promote
community-like transformation from the planktonic to the biofilm state. The biofilm
state possesses resistance, which protects bacteria from antibiotic agents [32]. Antibiofilm
molecules isolated from natural sources exhibit antimicrobial activity via neutralization and
disassembly of lipopolysaccharides or alteration of membrane potential or membrane per-
meability [33]. NH3

+ ions of chitosan interact with bacteria which are negatively charged
(in Gram-positive bacteria due to the presence of teichoic acids and due lipopolysaccha-
rides in the cell wall of Gram-negative bacteria) and thus inhibit their penetration [13,34].
Formulations containing a higher amount of TFA showed greater antimicrobial effects
attributed to chitosan. This formulation reduced the microbial growth of both microorgan-
isms at the early stage of incubation but was not effective after 8 h. This may be due to
the time-dependent rate of chitosan degradation and oligomers released from nanofibers
that allow implementation of the antimicrobial effect of chitosan through a shift in cell
permeability, cell membrane destruction, and penetration of oligomers into the cell, leading
to inhibition of transcription [14,35] (Figure 8).
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Figure 8. Schematic representation of chitosan mode of action on Gram-negative and Gram-positive
bacteria cell wall. 1. Electrostatic adsorption and interaction between chitosan with cationic ions and
bacteria cell wall. 2. The collapse of the outer membrane of the cell wall and blocking of nutrient flow.
3. Modification of cell permeability and disruption of the plasma membrane. 4. Osmotic damage and
release of intracellular components.

4. Materials and Methods
4.1. Electrospinning

Chitosan powder (MW 50–190 kDa, DD 75–85%, viscosity 20–300 cP) bought from
Glentham Life Sciences (Corsham, UK) was dissolved in TFA/DCM (Sigma–Aldrich
(St. Louis, MO, USA)) and blended to form two types of 3.5 wt% Ch solutions: Ch-
TFA/DCM 7:3—sample 1 and Ch-TFA/DCM 9:1—sample 2, v/v (Figure 9A).
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Figure 9. Schematics of sample preparation: (A) chitosan solution preparation; (B) electrospinning
process; (C) alkali treatment of chitosan membrane.

Electrospun membranes were made in an RT-advanced machine (Linari Engineering,
Pisa, Italy) with the following parameters: electric field 30–35 kV, pump rate 5.0 mL/h, the
distance between the needle tip and collector 15 cm (Figure 9B).

4.2. Neutralization

NaOH (CAS 1310-73-2)) was purchased from Sigma–Aldrich (St. Louis, MO, USA).
After electrospinning, membranes were placed in the wells of 24-well plastic plates and
neutralized in 2 mL of 1 M NaOH solution, aqueous or 70% ethanol solutions for 24 h
followed by washing three times in distilled water for 30 s and drying under ambient
conditions for 24 h (Figure 9C). The macroscopic feature of the electrospun membrane
before and after neutralization and the types of the samples prepared for investigation are
shown in Figure 10.
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after 24 h alkali treatment with 1 M NaOH aqueous (upper row) and 1 M NaOH ethanol solutions
(lower row). Types of samples prepared for research (C).

4.3. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

FT-IR spectra were collected using a Thermo Nicolet Nexus 470 FT-IR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) in the range between 4000 and 500 cm−1. FT-
IR was applied to analyze the chemical structure of the native chitosan and the biopolymer
after processing. For the analysis, 50 mg of the dry sample was used. Each time, an
Attenuated Total Reflection (ATR) diamond adapter was applied.

4.4. Scanning Electron Microscopy (SEM)

A scanning electron microscope (FEI, Brno, Czech Republic) was used to evaluate
the inner structure of the membrane of the as-spun and post-treatment fibers. For better
conductivity and reduced electron-charging effects, samples were observed as collected on
aluminum foil (without any metallic coating) [23]. SEM high-resolution images were used
to evaluate the spinnability and the presence of beads. The average fiber diameter, fiber
diameter distribution, and porosity—‘porous area fraction’—were analyzed using image
analysis software (ImageJ 1.518j, (NIH, Bethesda, MD, USA). The ‘porous area fraction’ of
the fiber membrane was obtained by determining the area of the pores divided by the total
area of the investigated image region. The ‘porous area fraction’ corresponds directly to a
‘local porosity’ [36]. All parameters were obtained from five SEM images for 100 fibers for
each type of the investigated membrane.

4.5. Evaluation of Antibacterial Activity In Vitro

The antibacterial properties were studied using a Gram-positive bacterium, namely,
Staphylococcus aureus (S. aureus, B 918) and a Gram-negative bacterium, Escherichia coli
(E. coli, B 926), obtained from the Bacteria Collection of Sumy State University by the
National Collection of Microorganisms (Institute of Microbiology and Virology NASU,
Kyiv, Ukraine). Cultures were incubated at 37 ◦C for 24 h. Then, bacterial suspensions were
prepared and adjusted to an initial concentration of 105 colony-forming units per milliliter
(CFU/mL) with a liquid microbial growth medium. The antimicrobial performance of the
Ch fibers was evaluated according to Figure 11. The dynamic contact test was applied for
antibacterial efficiency and, consequently, bacterial reduction in vitro estimation. Ability to
inhibit biofilm formation was assessed with a resazurin-based assay grounded on biological
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peculiarities of bacterial community behavior. SEM of the samples after 8 h incubation in
bacterial suspension was carried out for biofilm bacterial structure assessment. Samples of
0.25 cm2 were placed in the laminar box (Porsa, Ukraine), and UV-light radiation at 254 nm
was applied for 30 min on each side. The independent tests for samples and controls were
completed in triplicates for both bacterial species. The experiments were carried out at a
constant ambient temperature, humidity, and light.
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4.5.1. The Dynamic Contact Test

The dynamic contact test was used to determine the planktonic microbial population
of a biofilm via calculation of log reduction in broth dilution assay. The samples were
incubated in sterile flat-bottom polystyrene 24-well plates containing 105 CFU/mL in
nutrient broth, with final volumes of 2 mL for 2, 4, 6, and 8 h at 37 ◦C. At each time point,
20 µL of the medium was inoculated on agar plates using the spread plate method and
incubated a 37 ◦C for 24 h. Afterward, the colonies were quantified as CFU/mL. The
untreated bacterial suspension (105 CFU/mL) was used as a control.

The reduction rate (R) of the total quantity of bacteria we calculated using the following
Equation (1):

R, % =
(C − E)

C
× 100, (1)

where C and E are the amounts of surviving bacteria (CFU/mL) in the controls and
experimental wells, respectively.

4.5.2. Resazurin Metabolic Activity

The resazurin assay is based on the reduction of resazurin to resorufin by the bacteria.
The resazurin method allows evaluating the cell growth within biofilms via detection of
their metabolic activity. Towards this, after 2, 4, 6, and 8 h incubation at 37 ◦C, specimens
were removed from experimental (the samples in bacterial suspension in an initial con-
centration of 105 CFU/mL) and control (the samples in nutrient broth) wells, rinsed with
phosphate-buffered saline (PBS) and transferred to 10 mL of PBS in 15 mL sterile disposable
conical tubes, and then vortexed for 1 min at 1200 rpm. Subsequently, 100 µL aliquots
from all experimental and control tubes were transferred to 96-well plastic plates (in three
replicate wells). Afterward, resazurin was added in an amount equal to 10% of the control
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and experimental wells volume. Absorbances of microbial-generated resorufin were mea-
sured at 570 nm and 600 nm by Thermo Scientific Multiskan FC (Thermo Fisher Scientific,
Waltham, MA, USA) microplate reader equipped with Skanlt Software 4.1 for Microplate
Readers in 60 min periods of incubation at 37 ◦C. To calculate difference (D) % between
experimental (E) and control (C) wells based on absorbance readings, the following formula
provided by the manufacturer’s was used (2):

Di f f erence, % =
((O2 × A1)− (O1 × A2))
((O2 × P1)− (O1 × P2))

× 100 (2)

where O1— molar extinction coefficient of oxidized alamarBlue at 570 nm, O2— molar ex-
tinction coefficient of oxidized alamarBlue at 600 nm, E1—absorbance value of experimental
wells at 570 nm, E2—absorbance value of experimental wells at 600 nm, C1—absorbance
value of control wells at 570 nm, and C2—absorbance value of control wells at 600 nm.

4.5.3. Morphology of the Bacteria Biofilm

After 8 h co-incubation of the electrospun membranes and bacterial strains (2 mL
suspension with a concentration of 105 CFU/mL), the samples were gently washed three
times with PBS and fixed in 2.5% glutaraldehyde solution for 30 min twice. Afterward,
the electrospun mats were washed with PBS, and gradually dehydrated in a growing
concentration of ethanol (from 40% to 96%) for 30 min intervals for each concentration,
followed by drying at room temperature overnight. The fixed samples were sputter-coated
with a silver (VUP-5M, SELMI, Sumy, Ukraine) and imaged by SEM to investigate the
bacteria’s morphological characteristics.

4.6. Statistical Analysis

Results were subjected to statistical analysis using the GraphPad Prism 9.1.1 software
package. One-way analysis of variance (ANOVA) with three replicates was applied. p < 0.05
differences were considered to be statistically significant.

5. Conclusions

Electrospun Ch-TFA/DCM nanofibrous membranes provided a bacteriostatic effect
on the planktonic bacteria and their biofilms. The reduction rate of bacteria was greater for
nanofibers prepared using TFA/DCM 9:1 co-solvent system due to the incorporation of
fluorine atoms into the chitosan polymeric chain backbone. Furthermore, the test results
suggest that the morphological properties of electrospun fibers can control the formation
of biofilm on the nanofibrous membranes. Despite NaOH alkali treatment leading to the
growth of the diameter of the fibers by its swelling, it preserves the nanofibrous structure
of the membrane. The test materials under investigation were able to inhibit the growth of
both test microorganisms for up to 6 h, suggesting their higher antiadhesive potential and
applicability for antibacterial applications. Nevertheless, both membrane compositions
were more effective against E. coli, and NaOH aqueous post-treatment provided the most
observable action. These studies encourage further investigations to use electrospun
biofibrous materials as antibacterial agents to control bacterial adhesion and proliferation
via structural and physicochemical features of the membranes, as well as the production
of nanofibrous insoluble chitosan membranes suitable for biomedical application and
tissue engineering.
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