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Abstract: Over the past few years, conjugated polymers (CPs) have aroused much attention owing
to their rigid conjugated structures, which can perform well in light harvesting and energy transfer
and offer great potential in materials chemistry. In this article, we fabricate a new luminescent
linear CP p(P[5](OTf)2-co-9,10-dea) via the Sonogashira coupling of 9,10-diethynylanthracene and
trifluoromethanesulfonic anhydride (OTf) modified pillar[5]arene, generating enhanced yellow-green
fluorescence emission at around 552 nm. The reaction condition was screened to get a deeper under-
standing of this polymerization approach, resulting in an excellent yield as high as 92% ultimately.
Besides the optical properties, self-assembly behaviors of the CP in low/high concentrations were
studied, where interesting adjustable morphologies from tube to sheet were observed. In addition,
the fluorescence performance and structural architecture can be disturbed by the host–guest reorgani-
zation between the host CP and the guest adiponitrile, suggesting great potential of this CP material
in the field of sensing and detection.

Keywords: conjugated polymer; host–guest interaction; pillararene; supramolecular chemistry;
light-emitting materials

1. Introduction

Compared with traditional flexible non-conjugated polymers and small conjugated
molecules, conjugated polymers (CPs) containing rigid conjugated backbones have out-
standing capability of light harvesting and energy transfer, favorable to the generation
of luminescence, thus endowing widespread applications in electronic sensing devices,
solar battery, and semiconductor materials [1–10]. Consequently, it is essential to work
out facile and powerful strategies for obtaining promoted light-emitting CPs with high
efficiency [11–17].

Supramolecular assemblies have been widely reported to assist in constructing CP-
based artificial light-harvesting systems [18]. With the rapid development of supramolecu-
lar chemistry, various macrocyclic compounds with rigid structures have been designed
and synthesized [19–23]. Benefiting from their facile synthesis, high yield, rigid cavity
structures, and easy modification, pillararenes and their derivatives, as a relatively new
class of synthetic macrocycles, have been widely applied for the design of high-performance
fluorescent supramolecular polymeric materials [24–28], guaranteeing a variety of appli-
cations in fluorescence imaging [29,30], substance detection [31,32], electroluminescence
materials [33–38], and fluorescence sensor [39–42]. For example, our group reported
one conjugated macrocycle polymer (CMP) from tetraphenylethene (TPE) modified pil-
lar[5]arene, which could be manufactured into a well-behaved fluorescence sensor to detect
Fe3+ and 4-aminoazobenzene, suggesting promising potential for the removal of environ-
mental pollutants [43]. In addition, the applications of CMP materials in catalysis, sensing,
adsorption, and separation have been studied in detail [44–51]. However, common CMP
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materials show limitations in solubility due to the strongly cross-linked structures, which
leads to weak processability. To overcome this drawback, linear CPs containing pillararenes
have been obtained through Suzuki coupling by Tang and coworkers [52]. Instead of
covalently bonding with pillararenes, the guest TPE molecules were brought into the linear
backbone successfully through the encapsulation of the host pillararenes. This system not
only showed a highly efficient light-harvesting property with fluorescence enhancement
but also promised excellent solubility in CHCl3/c-hexane. Our research group also reported
two kinds of linear CPs constructed from terphenyl and diphenyl-pillararenes and their
applications in photocatalysis on the basis of the enlarged visible-light absorption region
and tunable optoelectronic properties [1].

To enrich the synthetic methods and stimulate the property improvement of CPs,
several methods have been utilized to construct linear CPs, including Suzuki coupling [53],
Heck reaction [54], Negishi coupling [55], Stille coupling [56], and Sonogashira cou-
pling [57]. Benefiting from the co-catalysis of copper and palladium, Sonogashira coupling
as one of the essential methods for the palladium-catalyzed coupling reaction of halo-
genated aryl compounds with terminal alkynes shows the advantages of high yields and
mild reaction conditions, enabling the synthesis of linear CPs with good solubility and high
machinability [58].

Herein, we fabricate a new linear fluorescent CP, p(P[5](OTf)2-co-9,10-dea), from the
Sonogashira coupling of trifluoromethanesulfonic anhydride (OTf)-modified pillar[5]arene
and 9,10-diethynylanthracene containing alkynyl, which could generate strengthened
yellow-green fluorescence emission at around 552 nm in THF (Scheme 1). Notably, the best
reaction conditions of Sonogashira coupling were selected by adopting the control variable
method. Moreover, tunable fluorescence intensity and morphologies could be realized by
varying the solution concentration of p(P[5](OTf)2-co-9,10-dea) or the guest adiponitrile.
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tunable morphology under different concentrations.
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2. Results and Discussion
2.1. Polymerization

According to the previously published procedures, two reactants, that is P[5](OTf)2
and 9,10-diethynylanthracene, and the CP (p(P[5](OTf)2-co-9,10-dea) were synthesized and
characterized by 1H nuclear magnetic resonance (1H NMR) and 13C NMR (Scheme S1
and Figures S1–S8) [59,60]. Then the key parameters of Sonogashira coupling, involving
solvent, reaction time, temperature, and the feed ratio of catalyst, were profoundly studied
to achieve the highest polymerization yield of this new system; the detailed contents are
as follows.

Firstly, four kinds of organic solvents were selected according to the reported Sono-
gashira coupling systems to investigate the solvent effect [61]. As shown in Table 1, the
solvents all ensured the polymerization in good progress, among which THF was identified
as the most suitable one for the polymerization, allowing the highest yield up to 92%
(Table 1, Entry 2).

Table 1. Solvent effect on the polymerization carried out under N2 atmosphere for 24 h in the presence
of CuI and Et3N. T = 90 ◦C; [P[5](OTf)2] = [9,10-diethynylanthracene] = 0.30 M; [Pd(PPh3)2Cl2] = 0.02 M;
[PPh3] = 0.03 M; [CuI] = 0.04 M; Et3N = 0.6 mL.

Entry Solvent Yield (%)

1 CHCl3 88
2 THF 92
3 DMF 72
4 CH2Cl2 74

Then, the influence of reaction time was systematically discussed in the most optimized
solvent THF (Table 2). The polymeric product started to yield after 8 h with a conversion
rate of 27% (Table 2, Entry 1). Prolonging the reaction time to 24 h kept raising the yield to
92% (Table 2, Entries 2–5). However, further increased duration of polymerization to more
than 24 h was not favorable for the formation of the CP because the decreased activity of the
catalyst caused by the complex of CuI and 9,10-diethynylanthracene resulted in reduced
yields (Table 2, Entries 6 and 7) [62]. Therefore, 24 h was preferred as the optimum reaction
time in subsequent studies.

Table 2. Time course of the polymerization carried out under N2 atmosphere in the pres-
ence of CuI and Et3N in THF. T = 90 ◦C; [P[5](OTf)2] = [9,10-diethynylanthracene] = 0.30 M;
[Pd(PPh3)2Cl2] = 0.02 M; [PPh3] = 0.03 M; [CuI] = 0.04 M; Et3N = 0.6 mL.

Entry Reaction Time (h) Yield (%)

1 8 27
2 10 43
3 11 60
4 12 77
5 24 92
6 36 91
7 48 82

Afterward, the temperature effect on the polymerization was investigated. Due to the
bad reactivity of substituted aromatic hydrocarbons at low temperatures (≤60 ◦C), it is
necessary to elevate the chemical reactivity by increasing the reaction temperature (Table 3,
Entries 1 and 2). Upon raising the temperature to 70 ◦C, the CP started to generate with a
yield of 18% (Table 3, Entry 3). Upon increasing the temperature to 90 ◦C, further production
increment was achieved (92%, Table 3, Entries 4–7). However, when conducting the reaction
at 100 ◦C, a slightly reduced yield was observed (Table 3, Entry 8). We rationally inferred
that this negative result ascribes to the unnecessary side reactions in high-temperature
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environments [63]. Since too high and too low temperatures are not favorable for the
Sonogashira coupling, we chose 90 ◦C as the ideal reaction temperature.

Table 3. Temperature effect on the polymerization carried out under N2 atmosphere for 24 h
in the presence of CuI and Et3N in THF. [P[5](OTf)2] = [9,10-diethynylanthracene] = 0.30 M;
[Pd(PPh3)2Cl2] = 0.02 M; [PPh3] = 0.03 M; [CuI] = 0.04 M; Et3N = 0.6 mL.

Entry Reaction Temperature (◦C) Yield (%)

1 25 /
2 60 /
3 70 18
4 75 34
5 80 59
6 85 79
7 90 92
8 100 89

Last but not least, the amount of CuI as the co-catalyst is vital to the reduction reaction
of the palladium catalyst in the Sonogashira coupling. Nevertheless, excessive CuI results in
the complex formation with 9,10-diethynylanthracene, minimizing reactant concentration.
As we assumed, the polymer p(P[5](OTf)2-co-9,10-dea) engendered only in 0.03 M (79%),
0.04 M (92%), and 0.05 M (71%) (Table 4), where 0.04 M CuI presents the best co-catalyst
concentration for the following polymerization.

Table 4. Effect of catalyst loading on the polymerization carried out under N2 atmosphere for 24 h in
the presence of CuI and Et3N in THF. T = 90 ◦C; [P[5](OTf)2] = [9,10-diethynylanthracene] = 0.30 M;
[Pd(PPh3)2Cl2] = 0.02 M; [PPh3] = 0.03 M; Et3N = 0.6 mL.

Entry CuI (M) Yield (%)

1 0.10 /
2 0.05 79
3 0.04 92
4 0.03 71
5 0.02 /
6 0.01 /

2.2. Structural Characterization

Compared with the previously reported CMP materials and heteroatoms-containing
CPs, the new linear p(P[5](OTf)2-co-9,10-dea) obtained under the optimized reaction condi-
tion combines the superiorities of conjugate rigid plane structure and good solubility, which
enables its characterization in solution. Firstly, we characterized the number of average
molecular weight (Mn) and the polymer dispersity index (PDI) by gel permeation chro-
matography (GPC). As illustrated in Figure 1a and Figure S9, Mn and PDI were calculated
to be 4103 and 1.46, respectively, revealing 4–5 repeating units in one single chain of the re-
sulting CP. This is in good agreement with the literature reports that the strengthened steric
hindrance effect of reactants always results in short chains [64–67]. The Mn calculated from
the 1H NMR spectrum of p(P[5](OTf)2-co-9,10-dea) is 3798, which coincides well with the
GPC result. Then, X-ray diffraction (XRD) pattern showed the disappearance of P[5](OTf)2
peaks. New peaks emerged in p(P[5](OTf)2-co-9,10-dea), indicating its crystalline structure
(Figure 1b).

The 2D rotating frame Overhauser effect spectroscopy nuclear magnetic resonance (2D
ROESY NMR) experiment of p(P[5](OTf)2-co-9,10-dea) supports the correlations between
the methoxy moieties at around 3.44–3.93 ppm (H1) and the phenyl protons at around
6.50–6.93 ppm (Ha), demonstrating the strong intermolecular interactions between the
polymer chains (Figure 2).



Molecules 2022, 27, 3162 5 of 11Molecules 2022, 27, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 1. (a) GPC trace of p(P[5](OTf)2-co-9,10-dea). (b) XRD patterns of P[5](OTf)2 (blue), 

p(P[5](OTf)2-co-9,10-dea) (black), and 9,10-diethynylanthracene (red). 

The 2D rotating frame Overhauser effect spectroscopy nuclear magnetic resonance 

(2D ROESY NMR) experiment of p(P[5](OTf)2-co-9,10-dea) supports the correlations be-

tween the methoxy moieties at around 3.44–3.93 ppm (H1) and the phenyl protons at 

around 6.50–6.93 ppm (Ha), demonstrating the strong intermolecular interactions between 

the polymer chains (Figure 2). 

 

Figure 2. Two-dimensional ROESY spectrum (600 MHz, CDCl3, 298 K) of p(P[5](OTf)2-co-9,10-

dea). 

2.3. Fluorescence Properties 

As the reaction proceeded, the conjugated structure was further extended, which in-

creased electron delocalization and reduced the energy required for electron transitions, 

thus resulting in the redshift of the ultraviolet-visible (UV-vis) absorption band and the 

corresponding fluorescence emission band to 480 nm and 552 nm, respectively (Figure 

3a,b and S10–S12). When increasing the CP concentration in THF, the UV-vis absorption 

Figure 1. (a) GPC trace of p(P[5](OTf)2-co-9,10-dea). (b) XRD patterns of P[5](OTf)2 (blue),
p(P[5](OTf)2-co-9,10-dea) (black), and 9,10-diethynylanthracene (red).

Molecules 2022, 27, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 1. (a) GPC trace of p(P[5](OTf)2-co-9,10-dea). (b) XRD patterns of P[5](OTf)2 (blue), 

p(P[5](OTf)2-co-9,10-dea) (black), and 9,10-diethynylanthracene (red). 

The 2D rotating frame Overhauser effect spectroscopy nuclear magnetic resonance 

(2D ROESY NMR) experiment of p(P[5](OTf)2-co-9,10-dea) supports the correlations be-

tween the methoxy moieties at around 3.44–3.93 ppm (H1) and the phenyl protons at 

around 6.50–6.93 ppm (Ha), demonstrating the strong intermolecular interactions between 

the polymer chains (Figure 2). 

 

Figure 2. Two-dimensional ROESY spectrum (600 MHz, CDCl3, 298 K) of p(P[5](OTf)2-co-9,10-

dea). 

2.3. Fluorescence Properties 

As the reaction proceeded, the conjugated structure was further extended, which in-

creased electron delocalization and reduced the energy required for electron transitions, 

thus resulting in the redshift of the ultraviolet-visible (UV-vis) absorption band and the 

corresponding fluorescence emission band to 480 nm and 552 nm, respectively (Figure 

3a,b and S10–S12). When increasing the CP concentration in THF, the UV-vis absorption 

Figure 2. Two-dimensional ROESY spectrum (600 MHz, CDCl3, 298 K) of p(P[5](OTf)2-co-9,10-dea).

2.3. Fluorescence Properties

As the reaction proceeded, the conjugated structure was further extended, which
increased electron delocalization and reduced the energy required for electron transitions,
thus resulting in the redshift of the ultraviolet-visible (UV-vis) absorption band and the
corresponding fluorescence emission band to 480 nm and 552 nm, respectively (Figure 3a,b
and Figures S10–S12). When increasing the CP concentration in THF, the UV-vis absorption
and fluorescence intensities were all raised. Nevertheless, after introducing the poor solvent
H2O to the solution, fluorescence intensity decreased significantly, revealing quenching
from π–π stacking of the polymeric dye (Figure S13) [68]. Additionally, a reduced lifetime
of about 1.11 ns and promoted quantum yield of around 9.40% of p(P[5](OTf)2-co-9,10-dea)
solution were produced, which is conducive to the construction of efficient short-frequency
emission fluorescent materials (Figure 3c,d, and Figures S14 and S15).
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Figure 3. (a) The UV-vis absorption spectra and (b) fluorescence spectra of p(P[5](OTf)2-co-9,10-dea)
CP in THF with increasing concentration (slit widths: ex. 5 nm, em. 3 nm; 25 ◦C). (c) Fluores-
cence decay profile and (d) quantum yield of p(P[5](OTf)2-co-9.10-dea) (solvent: THF, λex = 480 nm;
[pillar[5]arene unit] = 10–5 M, 25 ◦C). (e) Characterization of the host–guest interactions between pil-
lar[5]arenes and adiponitrile guests by NMR spectroscopy. 1H NMR spectra (400 MHz, CDCl3, 298 K)
of (i) DMP[5]A (5 × 10−3 M), (ii) the equimolar mixture of DMP[5]A (5 × 10−3 M) and adiponitrile
(5 × 10−3 M), (iii) adiponitrile (5 × 10−3 M). (f) Fluorescent emission spectra of p(P[5](OTf)2-co-9.10-
dea) in THF with different ratio of adiponitrile (λex = 480 nm; λem = 552 nm; slit widths: ex. 5 nm, em.
3 nm; 25 ◦C).

The current pillar[5]arenes with an intrinsic π-electron-rich cavity in the CP chain
endow the selective recognition to the cyano group based on the host–guest interaction
(Figure 3e). The introduction of suitable guest molecules undoubtedly affects the flu-
orescence emission of CP. The fluorescence spectra with different ratios of adiponitrile
containing cyano groups at chain ends were collected (Figures 3f and S16), which revealed
an appreciable nonlinear relationship between the fluorescence intensity and the guest-host
ratio within the range from 2:1 to 20:1, offering new possibilities for the application of
sensing and detection.
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2.4. Tunable Morphologies Induced by Concentration

To comprehensively understand this new CP, we continue to investigate its assembly
structures at different concentrations by the scanning electron microscope (SEM) and
dynamic light scattering (DLS) experiments. At a low concentration of 1 × 10−5 M,
p(P[5](OTf)2-co-9,10-dea) assembled into a linear long-chain structure of about 970 µm
(Figure 4a). The narrow distributed hydrodynamic radius was found to be 615 nm, demon-
strating the good dispersibility and stability of this CP in THF (Figure 4b). As shown
in Figure 4c, when increased the concentration to 1 × 10−3 M, p(P[5](OTf)2-co-9,10-dea)
changed its self-assembled structure to a wrinkled film due to the amplified intermolecular
interactions as we characterized above. This interesting transformation provides an idea
for building fluorescent systems with controllable structures. In addition, the structures
were disturbed after the combination of p(P[5](OTf)2-co-9,10-dea) and adiponitrile. The
formation of the supramolecular polymer limited the aggregation of the CP with planar
structure, forming into irregular blocks (Figure 4d).
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Figure 4. (a) SEM image and (b) hydrodynamic size of p(P[5](OTf)2-co-9,10-dea) in THF, [pil-
lar[5]arene unit] = 10−5 M. (c) SEM image of p(P[5](OTf)2-co-9,10-dea) in THF ([pillar[5]arene
unit] = 10−3 M) and (d) adiponitrile and p(P[5](OTf)2-co-9,10-dea) in THF ([pillar[5]arene unit]:
[adiponitrile] = 1:10).

3. Materials and Methods
3.1. Materials

All the reagents and solvents were purchased from commercial sources and used as
received unless otherwise noted. Deionized water, purified by Experimental Water System
(Lab-UV-20), was used in the relevant experiments.

3.2. Physical Characterization and Techniques
1H NMR and 13C NMR spectra were recorded on a Bruker Avance 400 MHz spectrom-

eter, and 2D ROESY NMR spectra were recorded on a Bruker AVANCEIII 600 MHz instru-
ment. UV-vis spectra were recorded on a Shimadzu UV-2550 instrument. XRD measure-
ments were carried out on a PANalytical B.V. Empyrean powder diffractometer. GPC was
performed on a Malvern instrument, equipped with a PLgel MIXED guard column followed
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by a PLgel MIXED guard column (molecular weight range 2.0 × 102–4.0 × 105 g/mol), col-
umn thermostated to 60 ◦C, and calibrated by linear polystyrene standards. THF was used
as the eluent at a flow of 0.8 mL/min at 60 ◦C. The fluorescent experiments were conducted
on an RF-5301 spectrofluorophotometer (Shimadzu Corporation, Kyoto, Japan). The time-
resolved fluorescence decay curves and fluorescence quantum yields were obtained on
an FLS920 instrument (Edinburgh Instrument, Livingston, UK). DLS was obtained on a
Zetasizer Nano ZS instrument. Scanning electron microscope (SEM) images were obtained
on a HITACHI-SU8082 instrument.

4. Conclusions

In this work, we successfully designed and prepared a new type of CP with linear
structure and good solubility via the Sonogashira coupling, achieving a polymerization
yield as high as 92% after optimizing the reaction parameters. Notably, promoted red-
shifted yellow-green fluorescence at around 552 nm was harvested in THF. When regulating
the concentration/adding the guest adiponitrile, diverse fluorescence intensity and self-
assembly structures from line to film/irregular blocks were attained when regulating
the concentration/adding the guest adiponitrile. In general, this fluorescent linear CP
with concentration/adiponitrile-dependent luminescence properties and self-assembly
characteristics is appropriate for sensing and available in the fabrication of well-performing
light harvesting and energy transfer pure organic materials with controllable structures.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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